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AN APPLICATION OF MULTILEVEL MODEL PREDICTION
TO NELS:88

David Afshartous* and Jan de Leeuw™*

Multilevel modeling is often used in the social sciences for analyzing data that has a
hierarchical structure, e.g., students nested within schools. In an earlier study, we in-
vestigated the performance of various prediction rules for predicting a future observable
within a hierarchical data set (Afshartous & de Leeuw, 2004). We apply the multilevel
prediction approach to the NELS:88 educational data in order to assess the predictive
performance on a real data set; four candidate models are considered and predictions
are evaluated via both cross-validation and bootstrapping methods. The goal is to de-
velop model selection criteria that assess the predictive ability of candidate multilevel
models. We also introduce two plots that 1) aid in visualizing the amount to which the
multilevel model predictions are “shrunk” or translated from the OLS predictions, and
2) help identify if certain groups exist for which the predictions are particularly good
or bad.

1. Introduction

Multilevel modeling is often used in the social sciences for analyzing data that has a
hierarchical structure, e.g., students nested within schools (Bryk & Raudenbush, 1992;
de Leeuw & Kreft, 2002; Leyland & Goldstein, 2001). Specifically, within each group we
have the following level-1 model equation:

Yj = X]‘ﬂj + I‘j (1].)

Each X; has dimensions n; x p, and r; ~ N(0,02%;), with ¥; usually taken as I,,.
In multilevel modeling, some or all of the level-1 coefficients, 3;, are viewed as random
variables.) They may also be functions of level-2 (school) variables:

B; = W~y +u; (1.2)

Each W; has dimension p x ¢ and is a matrix of background variables on the jth group
and u; ~ N(0, 7). Clearly, since T is not necessarily diagonal, the elements of the random
vector 3; are not independent.

Combining equations yields the single equation model:

Yj = Xjo")’ + lelj + I‘j, (13)
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1) Viewing equation (1.1) as a model which describes a hypothetical sequence of replications which
generated the data, the introduction of random coefficients expresses the idea that the intercepts and
slopes are no longer fixed numbers—which are constant within schools and possibly between schools—
and that they may vary over replications (de Leeuw & Kreft, 1995).
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which may be viewed as a special case of the mixed linear model, with fixed effects

~ and random effects uj.Q)

Marginally, y; has expected value X;W;~ and dispersion
V; = Xj'TXj/ + 0?I. Observations in the same group have correlated disturbances, and
this correlation will be larger if their predictor profiles are more alike in the metric 7 (De

Leeuw & Kreft, 1995). Thus, the full log-likelihood for the jth unit is
L;(0” — T log(2m) — Slog|V,| - SdiVd, 1.4
](0,7,7)——70g(7r)—§0g| J|_§j i 9 (1.4)

where d; = Y; — X;Wj~. Since the J units are independent, we write the log-likelihood
for the entire model as a sum of unit log-likelihoods, i.e.,

J
L(o?,71,7) ZL]O' T,7). (1.5)
j=1

In an earlier study, we consider the problem of predicting a future observable y,; in the
jth group of the framework above (Afshartous & de Leeuw 2004). We examined various
prediction rules for predicting y.; and demonstrated several analytical results on the rela-
tive performance of these prediction rules.® Moreover, the multilevel prediction approach
employing a shrinkage estimator for the regression coefficients within each group proved
to be the most accurate over a wide range of simulations.*) Recall that this shrinkage esti-
mator may be written as a linear combination of the OLS and Prior estimator of the group
regression coefficients (see e.g. Bryk & Raudenbush, 1992, p.43). The multilevel predic-
tion rule for the future observable is simply a linear function of the shrinkage estimator
of the level-1 regression coefficients for the particular group.

In this article, we apply the multilevel prediction approach to a real data set to assess
predictive performance in practice. In addition, we develop model selection criteria (mul-
tilevel cross-validation and multilevel bootstrap) that distinguish the predictive ability of
candidate multilevel models. We introduce two plots that 1) aid in the visualization the
amount to which the multilevel model predictions are “shrunk” or translated from the
OLS predictions, and 2) help identify if certain groups exist for which the predictions are
particularly good or bad.

The multilevel prediction approach is applied to a portion of the base-year sample from
the National Educational Longitudinal Study of 1988 (NELS:88). The base-year sample
consists of 24,599 eighth grade students, distributed amongst 1052 schools nationwide.
Given the plethora of student and school level variables available from the NELS:88 data
(over 6,000), an endless number of multilevel models may be proposed and estimated. We

2) For an excellent review of estimation of fixed and random effects in the general mixed model see
Robinson, 1991.

3) Specifically, we investigated the behavior of the various prediction rules as 1) the number of units
per group increases, and 2) as the intraclass correlation varies. The intraclass correlation measures the
degree to which observations within the same group are related.

4) Accuracy was assessed via the popular measure of predictive mean square error. Moreover, the
simulation study extensively covers both the sample size and parameter space. Specifically, the sample
size space concerns the various combinations of level level-1 (individual) and level-2 (group) sample
sizes, while the parameter space concerns different intraclass correlation values.
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Figure 1: Distribution of mathematics score in 50 schools from NELS:88 data
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Figure 2: Distribution of SES in 50 schools from NELS:88 data

consider student mathematics score modeled as a function of the race and socio-economic
status (SES) of the student, while schools are differentiated according to school type (pub-
lic versus non-public) and the extent to which school lunches are subsidized.”) A stratified
random sample of 50 schools was taken from the 1052 schools, yielding a total of 1152
students.%) There are 19 to 64 students within each school with a median of 24 students
per school. Students for which mathematics score data was missing were removed from
the sub-sample. The average mathematics score for the 1152 students in the sample is
50.7590 with a standard deviation of 9.9683; The variability of mathematics score from
school to school is displayed in Figure 1. The SES variable is a standardized variable and
thus has an average of -0.0641 and a standard deviation of 0.7416; The distribution of
SES from school to school is displayed in Figure 2. In section 2 we propose four candidate
multilevel models for the NELS:88 data set; we estimate each of the four models and com-
pare and contrast the adequacy of each model. In section 3 and 4 we propose and apply
cross-validation and bootstrapping algorithms, respectively, to assess the predictive per-

5) The extent to which school lunches are subsidized may be considered as an indicator of the poverty
level of the students within a given school. The whites/Asians variable was formed as a composite
variable from the respective indicator variables for whites and Asians.

6) The stratification was with respect to the public/non-public school dichotomy, with the percentage
of each being set equal to that in the populations. This method resulted in 39 public schools and 11
non-public schools. The non-public schools consist of private, Catholic, and other religious schools.
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formance of each of the four models; in section 5 present a brief summary and directions
for future research.

2. Four Models

Using the two level-1 and two level-2 variables mentioned previously, we consider four
candidate models for our sub-sample of 50 schools. Model 1 employs student SES as the
level-1 variable and Public as the level-2 variable, where public is a 0-1 indicator variable
with 1 representing public schools. Model 2 is the same as Model 1 but for the fact that the
level-2 variable is G8Lunch, a categorical variable indicating the degree to which school
lunches are subsidized in the school; this variable may be interpreted as a proxy variable
for the overall poverty level of the school. Model 3 is the same as Model 1—with SES as
the level-1 variable and Public as the level-2 variable—except that a level-1 whites/Asians
variable is introduced, coded 1 for whites/Asians and 0 for all others. Model 4 is the
same as Model 3 except the level-2 variable is G8Lunch instead of Public. The estimation
results for each of these models are presented below. Note that in each case the full model
is estimated, i.e., all the coefficients are random and there is a covariance(s) between the
coeflicients. After the presentation of the estimation results, we shall compare and con-
trast the estimation results for the different models. Table 1 below lists the level-1 and
level-2 variables for each of the models:

Table 1: Four Candidate Models

[ Model level-1 level-2
Model 1 | SES Public
Model 2 | SES G8Lunch

Model 3 | SES, Whites/Asians | Public
Model 4 | SES, Whites/Asians | G8Lunch

Formally, Model 1 may be written as follows:
Mathij = ﬂoj + SESZ‘jﬂlj + 7rij
where

ﬁOj = Yoo + '701Publicj + ug;
ﬁlj = Y10 + ’ynPubliCj + u1;

Maximum likelihood estimates for Model 1 were produced by TERRACE-TWO and are
given in Table 2.7)

7 An XLISP-STAT program written by James Hilden-Minton, which incorporates both the EM algo-
rithm and Fisher scoring for parameter estimation. See “TERRACE-TWO User’s Guide: An XLISP-
STAT Package for Estimating Multi-Level Models” by Afshartous & Hilden-Minton (1996) for a full
description of TERRACE-TWO. XLISP-STAT was developed by Luke Tierney and is written in the
Xlisp dialect of Lisp, which was developed by David Betz. Note: the log-likelihood for Model 1 may
be directly obtained from equation (1.4) and equation (1.5). Each X; has dimensions n; X 2, while
each W has dimension 2 x 4 (block-diagonal) since we have two level-1 variables modeled as random.
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Table 2: Model 1 for NELS:88 data

TERRACE-TWO: Full Maximum Likelihood Estimates
Deviance Method
Final Iteration 10: 8236.2026 Fisher

Parameters Estimates (S.E.) T
Intercept
By Intercept 51.7820 ( 1.2357) 41.9064
By Public -0.9527 ( 1.3895) -0.6856
BYSES
By Intercept 3.5716  ( 0.9485) 3.7652
By Public 0.9457 ( 1.0655) 0.8875

Sigma”~2: 69.2333
Tau (covariance)

Intercept 12.6168 2.6826
BYSES 2.6826 1.1784

Tau (correlation)
Intercept 1.0000 0.6957
BYSES 0.6957 1.0000

The output in Table 2 contains the estimates of the fixed effects for each of the level-1
random coefficients—the intercept and SES slope in this case. They may be interpreted
as follows: The oo estimate of 51.780 represents the expected mathematics score of a
student attending a non-public school with a value of 0 for SES.®) Similarly, the ~o; esti-
mate of -0.9527 corresponds to the intercept shift between public and non-public schools.
With respect to the SES-mathematics relationship, the estimate of 3.5715 represents the
average value of this slope, i.e., a one unit increase in SES is associated with a 3.5715 unit
increase in mathematics score on average, while the estimate of 11 corresponding to Pub-
lic indicates a slightly steeper SES-mathematics relationship in public versus non-public
schools. Also provided in Table 2 are the estimates of standard errors for these fixed
effects and their corresponding t-ratios. Asymptotically we may treat these t-ratios in the
usual manner, i.e., as normal z-values indicating the significance of the coefficient estimate
(Bryk & Raudenbush, 1992). Table 2 also contains estimates of the level-1 and level-2
variance components, o2 and 7 respectively. Note that since we have a level-2 variable, we
may interpret the elements of 7 as a conditional level-2 variance, i.e., the variation of the
level-1 slopes that remains after accounting for certain level-2 variables. The legitimacy of
modeling the level-2 slopes as random is illustrated via the overlayed added variable plots
in Figure 3. We may interpret the separate lines as the OLS slope for the corresponding

8) Note that since SES is a standardized variable a value of 0 corresponds to the average score.
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Figure 3: Model 1: Overlayed added variable plots for Intercept and SES for NELS:88 data
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Figure 4: Double residual plot for Model 1

coefficient in the various schools. The variability of the SES-mathematics relationship
is strong across the schools, while the intercept is not as variable. A useful diagnostic
procedure for multilevel models is a “double residual” plot, where the residuals obtained
from the multilevel estimation are plotted against those obtained from OLS estimation.
Hilden-Minton (1995) introduced this double residual plot and suggested that such a plot
is a good check of the level-2 model being entertained.?) Specifically, a well-fitting model
should evince a strong linear relationship between both sets of residuals with a correlation
approaching one. Figure 4 displays the double residual plot for Model 1; The correlation
between the two sets of residuals is 0.969.'9)

Formally, Model 2 may be written as follow:

Math;; = Bo; + SES;; 01, + 7i;

where

9) The actual term double residual plot was provided by Jan de Leeuw.
10) Note that the residuals produced by the multilevel model are often referred to as empirical Bayes
(EB) residuals.
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Table 3: Model 2 for NELS:88 data

TERRACE-TWO: Full Maximum Likelihood Estimates
Deviance Method
Final Iteration 9: 8227.9179 Fisher

Parameters Estimates (S.E.) T
Intercept
By Intercept 53.5417 ( 0.9710) 55.1394
By GS8LUNCH -0.8183 ( 0.2559) -3.1978
BYSES
By Intercept 4.8650 ( 0.7632) 6.3744
By G8LUNCH -0.2314 ( 0.1996) -1.1592

Sigma”~2: 69.2205
Tau (covariance)

Intercept 10.2139 2.0192
BYSES 2.0192 1.0362
Tau (correlation)
Intercept 1.0000 0.6207
BYSES 0.6207  1.0000

Boj = Yoo + Y01G8Lunch; + up;

B1j; = 710 + 711 G8Lunch; + uy;
Maximum likelihood estimates for Model 2 were produced by TERRACE-TWO and are
given in Table 3. The information in Table 3 may be interpreted in a similar manner to
that of Table 2. The estimated models will be compared in the next section. Once again,
the legitimacy of modeling the level-2 slopes as random is illustrated via the overlayed
added variable plots in Figure 3.'Y) Figure 5 displays the double residual plot for Model
2; the correlation between the two sets of residuals is 0.968, once again very high.

Formally, Model 3 may be written as follows:

Mathij = ﬁoj + SESijﬁlj + Whites/Asiansijﬁgj + Tij
where

Boj = Yoo + Yo1Public; + ug;

B1j = 70 + y11Public; + uy;

B2 = Y20 + ye1Public; + uy;
Maximum likelihood estimates for Model 3 were produced by TERRACE-TWO and are
given in Table 4. The added variable plots and double residual plot cannot be produced

for Model 3, since some of the schools possess singular level-1 design matrices and thus
cannot produce OLS estimates.!?)

11) We have the same added variable plots since the level-1 model is is unchanged.
12) The singularity in the level-1 design matrices is a result of some of the schools having no variation
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Figure 5: Double residual plot for Model 2

Table 4: Model 3 for NELS:88 data

Full Maximum Likelihood Estimates

Deviance Method

Final Iteration 11: 8194.6650 Fisher
Parameters Estimates (S.E.) T
Intercept

By Intercept 46.0834 ( 1.6267) 28.3297

By Public 1.2385 ( 1.8191) 0.6808
Whites/Asians

By Intercept 8.2003 ( 1.8660) 4.3946

By Public -3.9427 ( 2.0197) -1.9521
BYSES

By Intercept 3.2610 ( 1.1523) 2.8299

By Public 0.7585 ( 1.2954) 0.5855
Sigma~2: 66.9927

Tau (covariance)
Intercept 8.0358 1.1934 1.2787
Whites/Asians 1.1934 0.2324 0.6973
BYSES 1.2787 0.6973 5.5541
Tau (correlation)

Intercept 1.0000 0.8733 0.1914
Whites/Asians 0.8733 1.0000 0.6138
BYSES 0.1914 0.6138 1.0000

Formally, Model 4 may be written as follows:

Mathij = 50j + SESijﬁlj + WhiteS/Asiansijﬁgj + Tij

in the whites/Asians variable.
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Table 5: Model 4 for NELS:88 data

TERRACE-TWO: Full Maximum Likelihood Estimates
Deviance Method
Final Iteration 22: 8185.3118 Fisher

Parameters Estimates (S.E.) T
Intercept
By Intercept 48.5284  ( 1.4064) 34.5043
By GS8LUNCH -0.4304 ( 0.3180) -1.3534
Whites/Asians
By Intercept 5.3982  ( 1.4358) 3.7597
By G8LUNCH -0.2125 ( 0.3354) -0.6335
BYSES
By Intercept 4.4992 ( 0.9094) 4.9476
By G8LUNCH -0.2392 ( 0.2366) -1.0108

Sigma~2: 67.0669

Tau (covariance)

Intercept 7.2827  1.3251 1.2838
Whites/Asians 1.32561  0.2613 -0.0315
BYSES 1.2838 -0.0315 4.4055
Tau (correlation)
Intercept 1.0000 0.9605 0.2267
Whites/Asians 0.9605 1.0000 -0.0294
BYSES 0.2267 -0.0294 1.0000
where

Boj = Yoo + Y01G8Lunch; + up;
B1j = 710 + 711 G8Lunch; + uy;
B2; = Y20 + v21G8Lunch; + ug;

Maximum likelihood estimates for Model 4 were produced by TERRACE-TWO and are
given in Table 5. Once again the added variable plots and double residual plot cannot
be produced since some of the schools possess singular level-1 design matrices and thus
cannot produce OLS estimates.

There exist many ways in which these four candidate models may be compared. For
instance, one may rely on the asymptotic properties of the t-ratios and favor models with
more stable coefficient estimates. On the other hand, one may focus on the explained vari-
ance at level-1 and level-2, choosing the model that has the lowest variance components.
As will be seen below, both of these methods quickly lead to confusion. Indeed, Snijders
& Bosker (1994) have shown that the addition of explanatory variables in the multilevel
model may actually lead to an increase in the estimates of level-2 variance components
and have proposed two candidates for measuring the explained or “modeled variance” at
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level-1 and level-2.13) Nevertheless, we discuss these models in such a manner to illustrate
the difficult problems encountered with respect to model selection with multilevel models
with real data. Next, we take a predictive approach to model selection and examine how
well these models perform predictively.

2.1 Model 1 versus Model 2

Recall that Model 1 is identical to Model 2 but for the fact that Model 1 has Public as
the level-2 variable and Model 2 has G8Lunch as the level-2 variable; both models have
student SES as the level-1 variable. With respect to estimation, Tables 2-3 indicate that
the estimates of the fixed effects of G8Lunch are more stable than those for Public, for
both the fixed effects on the level-1 intercept and the fixed effects on the level-1 SES slope.
Indeed, the t-ratios for Public are small in magnitude for both the intercept and and SES
slope in Model 1. Furthermore, the intercept variance—ryp— is lower in Model 2 than in
Model 1, indicating that the variability of the level-1 intercept from school to school is
better explained by the level-2 variable G8Lunch than the level-2 variable Public; the SES
slope variance—ry1—is similar in both models. The estimated level-1 variance is similar
in both models and, as noted above, both models produce similar double residual plots.
Thus, although there are similarities in the fit of these two models, it would appear that
Model 2 is a better model for the 50 schools under consideration.

2.2 Model 3 versus Model 4

Recall that Model 3 is identical to Model 4 but for the fact that Model 3 has Public
as the level-2 variable and Model 4 has G8Lunch as the level-2 variable; both employ
student SES and whites/Asians as the level-1 variables. Once again the estimates for
the fixed effects of G8Lunch are more stable than those for Public, both for the fixed
effects on the level-1 intercept and level-1 SES slope. However, with respect to the level-1
whites/Asians slope, the fixed effect for Public is more stable than that for G8Lunch,
where both G8Lunch and Public have the effect of reducing the level-1 whites/Asians
slope, although only weakly in the case of G8Lunch. In both models, the whites/Asians
variable represents a positive level-1 intercept shift for average mathematics score. Both
models produce similar estimates of level-1 and level-2 variance components. Thus, based
on the level-1 and level-2 variance estimates, it is questionable which of these models is
better.

13) Briefly, their measures of modeled or explained variance at level-1 and level-2—R;? and R2?,
respectively—are based on assessing the proportional reductions in mean squared prediction error.
Although they show that population values of R12 in correctly specified models becomes smaller when
predictor variables are deleted, they also note that it cannot be proved in general that estimates of
this quantity become smaller when predictor variables are added. Thus, the undesirable possibility
of negative values for R;? remains. Although the formulae for estimating R12? and R2? for random
intercept models are straightforward, they note that transferring these results to the general multilevel
model is rather tedious.
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2.8 Model 1 versus Model 3

Although Model 1 and Model 3 both have Public as the level-2 variable and SES as the
level-1 variable, Model 3 also uses the whites/Asians level-1 variable. The level-1 variance
in Model 3 is noticeably lower than that of Model 1. With respect to the level-2 variance
components, the estimated variance of the intercept increases and the estimated variance
of the SES slope decreases with the addition of the whites/Asians level-1 variable between
Model 1 and Model 3. The estimated variance of the whites/Asians slope is relatively
small. Although the Public variable does not seem important in Model 1, in Model 3 it
possesses a stable estimate with respect to the fixed effect on the level-1 whites/Asians
slope, indicating that the effect of the whites/Asians variable is lower in public schools.
With respect to the other level-1 variables, however, the level-2 Public variable is still
weak. Although the level-1 variance is reduced in Model 3, we have the problematic result
of an increase in the estimated variance for one of the level-2 coefficients.

2.4 Model 2 versus Model 4

Although Model 2 and Model 4 both utilize G8Lunch as the level-2 variable and SES
as the level-1 variable, Model 4 also uses the whites/Asians level-1 variable. Once again,
the larger model produces a lower estimate of the level-1 variance and mixed results for
the level-2 variance components, where the estimated variance for the intercept increases
and the estimated variance for the SES slope decreases. The G8Lunch fixed effect on the
level-1 intercept is reduced in Model 4, both in magnitude and stability. In both models
the G8Lunch effect on the SES level-1 slope is small in magnitude and stability. The
whites/Asians variable in Model 4 seems to provide a better level-1 model.

In oder to improve upon the rudimentary and potentially problematic model compar-
isons above, we apply a predictive approach to these four models very similar to the
simulations we employed to assess the performance of various prediction rules (Afshartous
& de Leeuw, 2004). Specifically, instead of focusing on coefficient estimates we examine
how well these models predict a future observable y.; in the jth group, e.g., a future
student in a particular school. To be sure, we no longer have any future observables as
in the simulations, for we have but one data set. Thus, we employ cross-validation and
bootstrapping schemes in order to mimic the process of predicting future observables in
an attempt to determine which of the various models produces the best predictions.

3. Cross Validation

Recall that we have 50 schools and a variable number of students per school. One could
calculate the standard cross-validation leave-one-out estimate of prediction error similar
to that from the general case (Stone, 1974). Recall that in the general case this involves
the following calculation:

CV = Z — ;)2 (3.1)
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where y}(i) represents the fitted value for observation i that is computed with the i
th part of the data removed. For the multilevel model, this would entail summing
N = 250:1 n; = 1152 squared elements, where the prediction of each observation is based
on the other N — 1 observations. To be sure, given the size and structure of the data set,
this would produce a result very similar to that produced by the ordinary residual sum
of squares where we do not perform a leave-one-out procedure. Moreover, this procedure
would entail cycling through every observation within every group. Instead, we propose
an approach that takes advantage of the data structure that need not cycle through every
observation within every group. Specifically, the algorithm is as follows:

Multilevel Cross-Validation

1. For each of the J schools, randomly select one student.
Estimate the multilevel model with the remaining N — J students.

3. Form the corresponding predictions and average sum of squared errors for the J
selected students;
Go back to step 1.

5. Stop after m iterations and take the mean of the m average sum of squared errors,
i.e., the m predictive MSEs.

This algorithm is similar in nature to that of our previous simulation studies (Afshartous
& de Leeuw, 2004) where for each simulated multilevel data set an additional J obser-
vations were simulated as future observables. Here—since we no longer have the option
of simulating data—we mimic this procedure by repeatedly selecting J observations and,
in essence, designating these as future observables. Several aspects of this algorithm are
appealing. One, since the students to be predicted are selected at random, different com-
binations of students from the schools will be selected each time. For instance, although
we may select a student from the same school more than once, the students that will be
selected along with that particular student will certainly be different each time. Further-
more, by taking advantage of the data structure in this manner we may get an assessment
of prediction error by cycling through the algorithm a relatively few number of times.™®
This is important since this reduces the computing time because new model estimates
must be produced for each set of predictions. Indeed, how many times the algorithm is
cycled can be varied by the user. Recall the well known combinatoric results that if there
are n; students per school we have niny - - -ny possible combinations of students. For our
current data set with J = 50 this number is approximately 2.9 x 10%%. To be sure, the
algorithm may be cycled fewer times than this.

We apply this group cross-validation method to the four candidate models in order

14) Another possible approach to taking advantage of the data structure would be a leave-one-group-out
approach instead of the leave-one-student-out-per-school approach. However, this approach presents
serious problems with respect to the calculation of level-1 coefficient estimates in the school that is
left out. Although a few approaches were investigated, none proved to be worth pursuing further. The
leave-one-student-out approach probably does not leave out enough of the data while leave-one-school-
out approach leaves out too much of the data.
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to investigate which model(s) is best with respect to prediction. First, we calculate the
average sum of squared errors for all observations that is produced by the four models
when cross-validation is not employed. As in the simulation studies, we shall refer to this
quantify as predictive MSE. It is well known that such an estimate of predictive error
is too optimistic, the reason being that the sample that is used to form the parameter
estimates is the same sample that is used to evaluate the predictive performance. Efron &
Tibshirani (1993) refer to the latter as the “test sample” and the former as the “training

” Table 6 displays the results for the four models, seeming to divide the perfor-

sample.
mance of the models between the smaller (Models 1 and 2) and larger (Models 3 and 4)
models, with the models within each group performing similarly from this perspective.
With respect to predictive accuracy, the standard deviation of mathematics score across
all of the schools is 9.96830, and the magnitude of the prediction error (the square root
of the terms in the table) for all four models is less than this amount on average. To be
sure, as with non-nested data, were the estimates from these models applied to predict

future data, the prediction error would surely rise.

Table 6: Predictive MSE for the four models

Model Predictive MSE
Model 1 | 66.6080
Model 2 | 66.6953
Model 3 | 63.5978
Model 4 | 63.7044

Table 7 displays the estimates of predictive MSE produced via the cross-validatory
algorithm described above. The algorithm was iterated m = 100 times for each of the
four models. As expected, these numbers are greater than the corresponding numbers in
Table 6 since the observations being predicted were not used for model estimation. In
addition, the results provide a differentiation between the models within the small and
large model groups. Specifically, it now appears that Model 2 is preferable to Model 1. In
other words, adding the level-2 variable G8Lunch to our model reduces the variability of
the Math-SES relationship across schools. Although the t-ratios in the model comparisons
of the previous section hinted at this, the variance components estimates were similar in
both models. In addition, Model 3 now appears slightly better than Model 4, whereas
before the results were ambiguous as well. In other words, when we have both SES and
Whites/Asians as our level-1 variables, the addition of the Public variable to the level-2
model does not seem to help with respect to prediction. Figure 6 displays the distribution
of predictive MSE over the 100 iterations of the algorithm, where we form the average
squared error in predicting 50 randomly selected students each iteration. The side-by-side
boxplots provide the additional information that Model 2—although not nearly the best
with respect to its overall level of predictive MSE—clearly enjoys the advantage of being
less variable over the iterations.

To be sure, these results are specific to our sub-sample of 50 schools from the entire
NELS:88 data. It is reasonable to ask if the results of Table 7 apply to other sub-samples



56 D. Afshartous and J. de Leeuw

Table 7: Cross validation PMSE for the four models

Model Predictive MSE
Model 1 | 74.2009
Model 2 | 71.0282
Model 3 | 70.4985
Model 4 | 69.9195

I :
|
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Figure 6: Distribution of Cross-validation PMSE for Models 1,2,3,4
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of 50 schools. In order to investigate this question, we replicated the preceding cross-
validation routine for 100 different sub-samples of 50 schools. Thus, for each of the 100
sub-samples of 50 schools, we iterate the cross-validation routine 100 times and calculate
mean PMSE over these iterations. Table 8 below provides the overall mean cross-validation
PMSE results taken across 100 different sub-samples of 50 schools, along with the relevant
standard errors. The previous model ordering in Table 7 is maintained; however, due to
the high variability of mean cross-validation PMSE across different sub-samples, we ob-
serve statistically significant differences only when comparing Model 1 to Model 3, and

Table 8: CV PMSE for the four models, averaged over 100 sub-samples

Model Predictive MSE |
Model 1 | 72.6068 + .3091
Model 2 | 72.4598 + .3069
Model 3 | 71.7866 + .3058
Model 4 | 71.6623 £+ .3199
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when comparing Model 1 to Model 4.1% Thus, the hypothesis that the cross-validation
algorithm may be slightly better with respect to distinguishing within the groups of mod-
els, based on the analysis of the initial sub-sample of schools, is not validated across other
sub-samples of schools. Although the cross-validation routine may provide useful infor-
mation for model selection for a specific group of schools, a larger sub-sample may be
necessary to make inferences with respect to the population of schools in the NELS:88
data.

In the results presented thus far we have not been concerned with the predictive per-
formance in the particular schools, as we have averaged over the 50 predictions of each
iteration to produce a single estimate of predictive mean square error. However, the per-
formance of the predictions according to school identification is often of interest. For
interest, we might want to know if predictions are more reliable in some schools than
others. Thus, we introduce two plots which may be formed from the output of the cross-
validation algorithm which provide useful information about the particular groups. One
plot provides information about the accuracy of prediction while the other provides in-
formation about the degree to which the multilevel model predictions differ from those
produced via OLS.

We shall refer to the first plot as the error plot. The error plot illustrates the predictive
accuracy within the groups over the iterations of the cross-validation algorithm. Instead
of averaging the predictions for the 50 selected students each iteration, these values are re-
tained and studied separately for each school. If one performs 100 iterations of the original
algorithm one will have 100 predictions for each school and may examine the distribution
of these predictions for the school. Figures 7-10 display the distribution of the prediction
errors over the 100 iterations for each of the 50 schools for each of the four models; we
have chosen to plot the errors instead of the squared errors to illustrate in which schools
there is substantial over/under prediction occurring.

‘We shall refer to the second plot as the translation plot. The translation plot illustrates
the degree to which the multilevel model predictions differ from those of OLS; i.e., predic-
tions formed from separate OLS equations for each school. One may view the predictions
formed via the multilevel model as predictions that are translated from the predictions
which would have been formed via OLS. The difference between the multilevel prediction
and the OLS prediction represents a measure of the amount of translation. Accordingly,
one may examine the distribution of the translations over the 100 iterations of the cross-
validation algorithm for each of the 50 schools. This illustrates which schools have their
predictions translated the most. However, we only present this distribution for Models 1
and 2, since the OLS predictions were not obtainable for Models 3 and 4. These plots
for Models 1 and 2 are presented in Figures 11-12. A particular school principle could

15) Specifically, we performed a paired 2-sample significance test for the difference in mean CV PMSE
between models at the .05 level. We performed paired 2-sample tests since the same sub-samples of
50 schools were used in the cross-validation routine for the different models. The observed p-value for
comparing Model 1 and Model 3 was .043, while that for comparing Model 1 and Model 4 was .025.
The observed p-value for comparing Model 2 and Model 3 was .077. Note: the standard errors listed
in Table 8 are for the individual models, not the difference sample relevant for the paired t-test.



58 D. Afshartous and J. de Leeuw

- i @él%"%]‘%‘f'#

Figure 7: Model 1: Distribution of prediction errors in the 50 schools
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Figure 8: Model 2: Distribution of prediction errors in the 50 schools
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Figure 9: Model 3: Distribution of prediction errors in the 50 schools
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Figure 10: Model 4: Distribution of prediction errors in the 50 schools
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investigate these plots to examine the amount of translation in the predictions for their
school, both with respect to direction and magnitude.

4. Bootstrapping

A bootstrapping approach to assessing predictive performance may also be employed.
Recall that in the previous section we first calculated the average sum of squared errors
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Figure 11: Model 1: Distribution of prediction translations in the 50 schools

Figure 12: Model 2: Distribution of prediction translations in the 50 schools

produced by the four models on the original data, noting that this would be an under-
estimate of prediction error since the test sample and training sample are identical. The
cross-validation algorithm was offered as a means of mimicking the predictive process that
was studied in the simulations. Now, we offer the following bootstrap approach:

Multilevel Bootstrap

1. Set aside the original data.
2. Bootstrap the original data in the following manner: sample n; student with replace-
ment from each of the J schools.
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3. Estimate the multilevel model using the bootstrap sample.

4. Form the predictions for all of the original data employing the coefficients obtained
from the bootstrap sample.

5. Calculate the average sum of squared errors.

6. Go back to Step 2.

7. Stop after m iterations and take the mean of the m average sum of squared errors.

As with the cross-validation algorithm, this approach is appealing for several reasons.
One, it better simulates the process of actual predictions since the bootstrap samples will
be different from the original sample. Two, the user may alter the number of bootstrap
samples. Indeed, given the structure of the data and the manner in which the bootstraps
are taken, there exists a very large number of possible bootstrap samples even for data
sets with a small number of groups.'® Recall that for the cross-validation approach above
there exists nins - --ny choices for the students to be predicted each iteration. Now, for
the bootstrap approach the students to be predicted remain the same each iteration, while
the sample producing the coefficient estimates changes each iteration.!” Also note that
for the cross-validation approach we are making only J predictions each iteration while
for the bootstrap approach we are making N = Z;']:1 n; predictions each iteration, i.e.,
the entire original data set is being predicted.

Table 9 displays the estimates of predictive MSE produced via the bootstrap algorithm
described above. The algorithm was iterated 100 times for each of the four models. As
expected, these numbers are greater than the corresponding numbers in Table 6 since
we use bootstrap samples for estimation rather than the original data. With regard to
model selection amongst the four models, the results of the bootstrap approach would
lead to the same ordering of the four models as that from the cross-validation approach.
For instance, Models 3 and 4—which contain the whites/Asians level-1 variable—clearly
outperform Models 1 and 2 over the 100 iterations. The distinction between Models 1 and
2 and the distinction between Models 3 and 4 that was provided by the cross-validation
approach, however, is now barely noticeable with the bootstrap approach, at least for this
sub-sample of schools. Figure 13 displays the distribution of predictive MSE over the 100

Table 9: Bootstrap PMSE for the four models

Model Predictive MSE
Model 1 | 67.1643
Model 2 | 67.1008
Model 3 | 65.6405
Model 4 | 65.4784

16) Note that for data sets with few students per schools, this method runs the risk of producing boot-
strap samples where some of the schools have singular level-1 design matrices, e.g., when the same
student is selected n; times in a particular school for the bootstrap sample. Although this problem
was encountered in previous simulations studies it was not a factor with the NELS:88 data.

17) To be sure, the sample producing the coefficient estimates changes from iteration to iteration in
the cross-validation approach as well, but in a much less corruptive manner than in the bootstrap
approach since only J observations are removed and the remaining N — J observations are part of the
original data.
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Figure 13: Distribution of Bootstrap PMSE for Models 1,2,3,4

iterations of the algorithm, where we form the average squared error in predicting the
original data from a bootstrap sample each iteration. The lower variability in prediction
for Model 2 in the cross-validation approach that was illustrated in Figure 6 does not ap-
pear in Figure 13 with respect to the bootstrap approach. However, Figure 13 illustrates
how the distinction between Models 3 and 4 over Models 1 and 2 is now stronger.

As with the cross-validation results, it is reasonable to ask if the results of Table 9 apply
to other sub-samples of 50 schools. In order to investigate this question, we replicated
the preceding bootstrap routine for 100 different sub-samples of 50 schools. Thus, for
each of the 100 sub-samples of 50 schools, we iterate the bootstrap routine 100 times and
calculate mean Bootstrap PMSE over these iterations. Table 10 below provides the overall
mean Bootstrap PMSE taken across 100 different sub-samples of 50 schools, along with
the relevant standard errors. The previous model ordering in Table 9 is maintained, and
we observe statistically significant differences for all pairwise model comparisons, except
for comparing Model 3 versus Model 4.'%)

Table 10: Bootstrap PMSE for the four models, averaged over 100 sub-samples

Model Predictive MSE |
Model 1 | 67.9035 £ .2850
Model 2 | 67.8592 £ .2830
Model 3 | 65.8672 &+ .2774
Model 4 | 65.8438 &+ .2797

18) We performed a paired 2-sample significance test for the difference in mean Bootstrap PMSE be-
tween models. The observed p-values were all statistically significant at the .01 level, except for the
Model 3 versus Model 4 comparison, where the observed p-value was .053. We performed paired 2-
sample tests since the same sub-samples of 50 schools were used for the different models. Note: the
standard errors listed in Table 8 are for the individual models, not the difference sample relevant for
the paired t-test.
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Next, we consider a minor alteration to this bootstrapping method in order to illustrate
an approach to a more specific prediction problem. Suppose we are interested in a fixed
group of students from our original data set of fifty schools; say we are interested in one
student per school and thus 50 students. The predictive performance of the four respec-
tive models may be examined with respect to predicting these particular 50 students. The
bootstrap algorithm used to investigate this problem is identical but for the fact that the
predictions are made only for these fifty students each iteration and these fifty students
are not available for the bootstrap samples. Formally, the algorithm is as follows:

1. Randomly select one student per school and remove these students from the original
data. These are the 50 students of interest; one may view them as 50 incoming
students for which predictions are desired.

2. Estimate the model on the remaining N — J observations and form the predictions
and corresponding squared errors for the 50 students and take the average of these
50 squared errors. This represents the initial estimate of predictive MSE for these
students.

3. Bootstrap the N — J observations in step 2 and repeat step 2. This is a bootstrap
estimate of predictive MSE for these 50 students.

4. Stop after m iterations of Step 2 and take the average of the m estimates of predictive
MSE. Compare this to the result of Step 2.

Table 11 displays the initial estimates of predictive MSE for a randomly selected group
of 50 students from the 50 schools.'®) Once again the models separate into two groups,
but notice that for these particular students Model 4 outperforms Model 3 slightly, at least
based on this one data set. Table 12 displays the estimates of predictive MSE for these 50
students produced via the bootstrap algorithm described above. The algorithm was iter-
ated 100 times for each of the four models. With respect to model selection, the ordering
of the models is now restored, where we prefer Model 4 over Model 3. This demonstrates
the caution that should be applied to the predictions from the original sample, even if the
observations to be predicted are omitted from this original sample.

Table 11: Initial estimates of PMSE for 50 students

Model Predictive MSE
Model 1 | 71.9280
Model 2 | 71.1016
Model 3 | 57.9067
Model 4 | 58.0071

As with the cross-validation algorithm, the output from the bootstrap algorithm may
be used to study different items of interest. For instance, instead of viewing the fixed

19) The fifty students possessed the following characteristics: 35 of the students where white or Asian,
the rest non-white/Asian; the average mathematics score was 52.4940, compared to a value of 50.8195
for the remainder of the data. The average SES of the 50 selected students was -0.0367, compared to
an average SES of -0.06042 for the remainder of the data.
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Table 12: Bootstrap estimates of PMSE for 50 students

Model Predictive MSE
Model 1 | 72.6800
Model 2 | 72.3947
Model 3 | 60.2810
Model 4 | 60.0361

50 students as a group, one may be interested in predicting a particular student. Thus,
instead of averaging the predictions for these 50 students each iteration, these values are
retained and studied separately for each student. If one performs 100 iterations of the
original algorithm, one will have 100 predictions for each student and may examine the
distribution of these predictions for this student. Figures 14-17 display the distribution
of the prediction errors over the 100 iterations for each of the 50 students for each of the
four models; once again we have chosen to plot the errors instead of the squared error to
illustrate for which students there is substantial over/under prediction occurring. To be
sure, these results are somewhat specific to the students we have selected, but nevertheless
the algorithm and resulting plot illustrates an approach to gauging the predictions for a
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Figure 14: Model 1: Distribution of prediction errors for 50 students
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Figure 15: Model 2: Distribution of prediction errors for 50 students
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Figure 16: Model 3: Distribution of prediction errors for 50 students
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Figure 17: Model 4: Distribution of prediction errors for 50 students

particular student via bootstrapping.

5. Summary

We have applied the multilevel prediction approach to the NELS:88 educational data
in order to assess its predictive performance on a real data set. We have seen that the
addition of a level-1 variable reduces the predictive MSE for the models considered, as ex-
pected due to the reduction in conditional variability of the outcome to be predicted. For
models with equal numbers of level-1 variables (e.g., Model 1 and Model 2), the distinction
in predictive ability is often not as clear. We present model selection criteria, multilevel
cross-validation and multilevel bootstrap, that are useful tools for assessing the predic-
tive ability of candidate models. These cross-validation and bootstrap approaches often
demonstrate distinctions in predictive performance that are often not as clear when exam-
ining only one sample and one set of estimates. In addition to applying these re-sampling
routines to a sub-sample of the NELS:88 data, we investigate the stability of these results
across repeated sub-samples from the NELS:88 data. These approaches adhere to the
predictive perspective followed in our earlier study.

The two suggested plots, error plot and translation plot, capture several important
aspects of the prediction process. Specifically, the error plot indicates whether certain
schools exist in our NELS:88 sub-sample for which the predictions are particularly good
or bad. The translation plot assesses how much the predictions of the multilevel method
differ from those of the OLS method, i.e., how far the predictions are translated. These
issues are especially salient from a substantive perspective. For instance, for graduate
admissions data where one is attempting to predict the future performance of applicants,
the use of translated or shrinkage predictors has the potential for controversy and thus re-
quires careful study. To be sure, the NELS:88 data set considered in this article is but one
data set; such methods need to be applied to many datasets before we can unequivocally
endorse them.
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