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Abstract

A predictive density function g∗ is obtained for the multilevel model which is optimal in
minimizing a criterion based on Kullback–Leibler divergence for a restricted class of predictive
densities, thereby extending results for the normal linear model (J. Amer. Statist. Assoc. 81
(1986) 196). Based upon this predictive density approach, three prediction methods are exam-
ined: multilevel, prior, and OLS. The OLS prediction method corresponds to deriving a predictive
density separately in each group, while the prior prediction method corresponds to deriving a
predictive density for the entire model. The multilevel prediction method merely adjusts the prior
prediction method by employing a well-known shrinkage estimator from multilevel model esti-
mation. Multilevel data are simulated in order to assess the performance of these three methods.
Both predictive intervals and predictive mean square error (PMSE) are used to assess the ade-
quacy of prediction. The multilevel prediction method outperforms the OLS and prior prediction
methods, somewhat surprising since the OLS and prior prediction methods are derived from
the Kullback–Leibler divergence criterion. This suggests that the restricted class of predictive
densities suggested by Levy and Perng for the normal linear model may need to be expanded
for the multilevel model.
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1. Introduction

A basic problem in predictive inference involves the prediction of a future observable
Z based on the observed data Y in some passed experiment. Moreover, Z need not
arise from the same stochastic model as Y . One approach to this problem is to attempt
to “estimate” the stochastic model from which Z arises. Given such an estimate, there
exist several options for predicting the future observable, e.g., the expected value of
the stochastic process. Many authors have investigated this approach, often labeled
the predictive density or predictive likelihood method (Levy and Perng, 1986; Butler,
1986; Geisser, 1971). Another approach is to forgo density estimation and seek to
minimize some expected loss function, often within some prescribed class of predictors
(Rao, 1987; Gotway and Cressie, 1993; Goldberger, 1962). Optimal predictors for
both approaches have been derived for the general linear model. Moreover, there exist
extensions to the multivariate case (Guttman and Hougaard, 1985; Keyes and Levy,
1996). The purpose of this paper is to extend the optimal predictive density results
to the multilevel model. The outline of this paper is as follows: In Section 1.1 we
review the notation of the multilevel model; in Section 2 we present the predictive
density approach and the main result by Levy and Perng (1986) for the general linear
model. In Sections 2.1–2.3 we develop and apply this result to the multilevel model,
thereby obtaining three predictive densities with which to predict a future observation
in a hierarchical dataset. In Section 2.4 we describe a simulation study to assess the
predictive performance of these three densities; in Section 3 we present the results, and
Fnally in Section 4 we provide a brief summary and directions for future research.

1.1. The multilevel model

Multilevel modeling is a tool often used when analyzing hierarchical data, e.g.,
students grouped within schools. In the multilevel model prediction problem, we seek
to predict a future observable y∗j, i.e., a future case of the jth group. Restricting the
discussion to the simple case of nj primary units (level 1: students) grouped within J
secondary units (level 2: schools), the basic multilevel model has the following level-1
model equation:

Yj = Xj
j + rj: (1.1)

Each Xj has dimensions nj × p, and rj ∼ N (0; �2�j), with �j usually taken as Inj .
Some or all of the level-1 coeHcients, 
j, are random variables, and may also be
functions of level-2 (school) variables:


j =Wj�+ uj: (1.2)

The vector � is of length q, each Wj has dimension p×q and is a matrix of background
variables on the jth group, and uj ∼ N (0; �). The elements of the random vector 
j
are not independent as � is not necessarily diagonal. For instance, for each regression
equation there might exist a covariance between the slope and intercept.
The single equation model is obtained by combining Eqs. (1.1) and (1.2):

Yj = XjWj�+ Xjuj + rj; (1.3)
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which may be viewed as a special case of the mixed linear model, with Fxed eJects
� and random eJects uj. 1 The expectation of yj is XjWj� and its dispersion is Vj =
Xj�X ′

j + �2I . Observations in the same group have correlated disturbances, and this
correlation will be larger if their predictor proFles are more alike in the metric �
(de Leeuw and Kreft, 1995). Letting dj = Yj − XjWj�, the full log-likelihood for the
jth unit is

Lj(�2; �; �) = − nj
2
log(2�) − 1

2
log |Vj| − 1

2
d′
jV

−1
j dj: (1.4)

Due to independence across level-2 units, we write the log-likelihood for the entire
model as a sum of unit log-likelihoods, i.e.,

L(�2; �; �) =
J∑
j=1

Lj(�2; �; �): (1.5)

Estimates of �2, �, and � are obtained via full or restricted maximum likelihood.
These estimates may in turn be employed in various approaches to estimate the level-1
coeHcients 
j. 2 For a full review of estimation in multilevel models see Bryk and
Raudenbush (1992). Although multilevel model estimation is an important topic, it is
not the focus of this paper. The focus here lies in the prediction of a future observable
y∗j and we shall employ a predictive density approach to this problem.

2. Predictive density approach

Let f(y; �) denote the density function for Y and g(z |y; �) denote the density
function of Z conditioned upon having observed Y . The forms of f and g are assumed
known, they are not necessarily the same, and they share the common parameter �
which belongs to some parameter space �. Hence the past experiment is informative
for the future. A prediction function s(z;y) for z is an estimator of g(z |y; �), and
if s is a density we call it a predictive density. Levy and Perng (1986) discuss this
problem in the context of the general linear model: Consider an n-dimensional random
vector Y and the m-dimensional random vector Z , where Y = X
+ ! and Z =W
+ �,
with the usual independence and constant variance assumptions for the error terms
(! ∼ N (0; �2In) and � ∼ N (0; �2Im)). Here 
∈"
 ⊂ Rp is an unknown p×1 vector of
regression coeHcients while �2 is an unknown but positive scalar. It is further assumed
that ! and � are independent. Letting pn(y;X; 
; �2) and pm(z;W; 
; �2) denote the
multivariate normal density functions of Y and Z , respectively, we have:

pn(y;X; 
; �2) = N (X
; �2In);

pm(z;W; 
; �2) = N (W
; �2Im);

1 For an excellent review of the estimation of Fxed and random eJects in the general mixed model see
Robinson (1991).

2 The term “estimation” is being used somewhat loosely when speaking of an estimate of 
j since 
j is
a random variable. One may consider an estimate of the random variable 
j as an estimate of the mean of
its distribution.
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where N ($; �2Ik) represents the k-dimensional multivariate density function with mean
vector $ and dispersion �2Ik .
Under Kullback–Leibler (Kullback and Leibler, 1951) information loss, 3 Levy and

Perng (1986) derive an optimal estimator for the density of Z within a prescribed
class of density estimators. Levy and Perng restrict the collection of possible density
estimators to a subset of prediction densities, �, and the density within this subset
which minimizes the Kullback–Leibler measure is selected. SpeciFcally, they consider
the statistics deFned by

t = t(y; z) = (z −W 
̂)=(n1=2�̂); (2.1)

where 
̂ = (X ′X )−1X ′y and �̂2 = (y − X 
̂)′(y − X 
̂)=n are the maximum likelihood
estimates of 
̂ and �̂2, respectively. Then � is deFned as the collection of all predictive
densities that are functions of the statistic t, i.e.,

� = {s(z;W; y; X ) : s(z;W; y; X ) = g(t(y; z))}; (2.2)

where g is any probability density function. Two reasons for restricting attention to
this class are provided: (1) It contains several commonly used predictors, and (2) the
statistic t(y; z) used to deFne � results from a sequence of data reductions by applying
the invariance principle under reasonable groups of transformations. They elaborate by
demonstrating maximal invariance with respect to speciFc groups of transformations;
see Levy and Perng (1986, p.197) for further details.
Recall, if s(z;W; y; X ) is a predictive density estimate for pm(z;W; 
; �2), then the

Kullback–Leibler divergence is deFned as

D
;�2 (pm; s) =
∫
Rn
pn(y;X; 
; �2)

∫
Rm
pm(z;W; 
; �2)

× logpm(z;W; 
; �2)=s(z;W; y; X ) dz dy

= EY;Z log [pm(Z ;W; 
; �2)=s(Z ;W; Y; X )]:

Thus, a predictive density s is considered optimal with respect to Kullback–Leibler
loss if s minimizes D
;�2 among all possible predictive densities uniformly with respect
to 
 and �2. Their main result is expressed as follows:

Theorem 1. Let �, D
;�2 and t be de8ned as above. The prediction density

g∗(z;W; y; X ) = g∗(t(y; z))

= stm(n− p;W 
̂; n�̂2A=(n− p));

where A= Im +W (X ′X )−1W ′, provides the unique minimum of D
;�2 among all s in
� uniformly in 
 and �2.

3 Kullback–Leibler information measure was proposed by Atchinson (1975) as a general prediction mea-
sure; a discussion of the motivations and properties of this criterion may be found in Larimore (1983).
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The notation std(k; b; C) denotes a multivariate Student-t density function, where d is
the dimension, k the degrees of freedom, b the location parameter, and C the dispersion
matrix, and density function as follows:

std(k; b; C) =-[(k + d)=2]=[�d=2-[k=2]

×[det(kC)]1=2{1 + (z − b)′(kC)−1(z − b)}(k+d)=2]:
As noted by Levy and Perng (1986), assuming a non-informative diJuse prior for
(
; �2), f(
; �2) ˙ 1=�2, the predictive density g∗ may be interpreted as a Bayesian
predictive density.
Let us examine this predictive density further by using it to create a predictive

interval for z in the case where z has dimension one. For large values of n, our
predictive interval is centered around the mean of the predictive density, ẑ = W 
̂,
with margin of error taken as 1:96n�̂2A=(n − p), in this case a scalar since we have
A= 1 +W (X ′X )−1W . Upon closer examination, however, we see that this interval is
very close to the standard exact prediction interval in linear regression. SpeciFcally,
the predictive density variance can be written as follows:

n�̂2A=(n− p) =
n

n− p
[�̂2 + �̂2W (X ′X )−1W ′]

=
n

n− p
[ ˆvar(z) + ˆvar(W 
̂)]

=
n

n− p
[ ˆvar(z) + ˆvar(ẑ)]:

Thus, recalling that our usual exact predictive interval in linear regression has margin
of error tn−p;.=2[ ˆvar(z)+ ˆvar(ẑ)], the only diJerence we obtain by using this predictive
density to form a prediction interval is the adjustment of the term n=(n − p) in the
expression above. Hence, the resulting interval based on this optimal predictive density
would be wider than the exact predictive interval.
We would like to extend this result to the multilevel model. We shall do this in three

diJerent ways. First, we extend the theorem above to each of the J groups in the mul-
tilevel model as independent OLS regression equations. Thus, in each of the J groups,
the prediction problem is identical to the presentation above. This method is referred
to as the OLS prediction method. Second, we do not ignore the multilevel structure
and write the network of J models as one large model and derive the corresponding
predictive density for this model. For reasons that will become clear later, this is called
the prior prediction method. Finally, we alter the prior prediction method by utilizing
a well-known result for the multilevel model to yield the multilevel prediction method.

2.1. OLS prediction method

Here, the level-1 
j coeHcients are not random variables regressed on level-2 vari-
ables. Instead, we simply have J separate regressions:

Yj = Xj
j + rj; (2.3)
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and desire to predict the future observation in the jth group, y∗j:

y∗j = X∗j
j + r∗j: (2.4)

If y∗j were observed, X∗j would represent a row of the Xj design matrix and we
have r∗j ∼ N (0; �2). Thus, we may immediately apply Theorem 1 above to yield the
predictive density for y∗j:

g∗(y∗j;X∗j; Yj; Xj) = st1(n− p; X∗j 
̂j; n�̂j
2Aj=(n− p)); (2.5)

where Aj =1+X∗j(X ′
j Xj)

−1X ′
∗j; 
̂j and �̂j

2 are the usual OLS estimates for slope and
residual variance.
We employ this predictive density to construct a predictive interval by taking its

expected value, X∗j 
̂j, as our point predictor for y∗j and use its variance to form our
margin of error. Formally, we have the following predictive interval:

X∗j 
̂j ± tn−p;0:975�̂j[nAj=(n− p)]1=2; (2.6)

where tn−p;0:975 is the 0:975 critical value for a t distribution with n − 2 degrees of
freedom.

2.2. Prior prediction method

In this case the structure of the data is incorporated via the multilevel model as
discussed earlier. However, we Frst need to do some re-arranging. We shall manipulate
the notation in the multilevel model such that it is presented as a special case of the
general linear model. By appropriately stacking the data for each of the J level-2 units,
we may write the model for the entire data without subscripts. Thus, we have

Y = X
 + r; (2.7)

with r normally distributed with mean 0 and dispersion � where

Y = (Y ′
1 ; Y

′
2 ; : : : ; Y

′
J )

′;


 = (
′
1; 


′
2; : : : ; 


′
J )

′;

r = (r′1; r
′
2; : : : ; r

′
J )

′;

X = diag(X1; : : : ; XJ );

� = diag(�1; : : : ; �J );

where �j is usually �2Inj . The level-2 equation may also be written in no-subscript
form through similar stacking manipulations:


 =W�+ u; (2.8)

where u is normally distributed with mean 0 and covariance matrix T where

W = (W ′
1 ; W

′
2 ; : : : ; W

′
J )

′;

u= (u′
1; u

′
2; : : : ; u

′
J )

′;

T = diag(�; : : : ; �):
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The entire model may now be written as

Y = XW�+ Xu+ r; (2.9)

where we note that E(y) = XW� and Var(y) = XTX ′ +�.
Now, consider a future observable y∗j, i.e., a future observation in the jth unit. As

before, let the level-1 data corresponding to this observation be denoted as X∗j, a 1×p
row vector. To make the analogy with Levy and Perng (1986) explicit, recall that for
the general linear model we had the following distributions:

pn(y;X; 
; �2) = N (X
; �2In);

pm(z;W; 
; �2) = N (W
; �2Im):

Similarly, for the multilevel model in stacked form, we now have

pN (y;X; �; �2) = N (XW�; XTX ′ +�);

p1(y∗j;X∗j; �; �2) = N (X∗jWj�; V∗); (2.10)

where V∗ =X∗j�X ′
∗j + �

2 and N =
∑J

j=1 nj equals the total number of cases (students)
across all the units or groups (schools). The corresponding parameter estimate for the
multilevel model is now � instead of 
 and may be estimated as follows:

�̂=


 J∑
j=1

W ′
j X

′
j V̂

−1
j XjWj




−1
J∑
j=1

W ′
j X

′
j V̂

−1
j yj

V̂ j = ˆvar(yj) = Xj�̂X ′
j + �̂

2I; (2.11)

where �̂ and �̂2 must be estimated iteratively via full or restricted maximum likelihood.
The estimate above for the Fxed eJects � may be interpreted as a generalized linear
model (GLM) estimator. If the dispersion matrix in the multilevel model was diagonal
as in the normal linear model, we could directly apply the result of Levy and Perng to
obtain the corresponding predictive density for the multilevel model. However, as can
readily be seen from Eq. (2.10), the dispersion matrix has a complicated structure. This
problem may be solved, however, by making use of some transformations. In order to
simplify presentation, we shall Frst extend Levy and Perng’s assumptions in the case
of the normal linear model, and then directly apply this result to the multilevel model.
Formally, let us generalize Levy and Perng’s case to that of the following:

pn(y;X; 
; �2) = N (X
; �20);

pm(z;W; 
; �2) = N (W
; �21):

Assume that 0 and 1 are known matrices of rank n and m, respectively. Let G be
an n × n matrix of rank n such that 0 = G′G. Similarly, let H be an m × m matrix
of rank m such that 1 = H ′H . Let ỹ = G′−1y and let z̃ = H ′−1z. Similarly, let X̃ =
G′−1X and let W̃ = H ′−1W . Thus, the models above have now been transformed
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as follows:

pn(ỹ; X̃ ; 
; �2) = N (X̃ 
; �2In);

pm(z̃; W̃ ; 
; �2) = N (W̃
; �2Im):

Hence, we are back in the original format of Levy and Perng’s problem and may apply
the main result to the transformed variables ỹ and z̃ in order to produce the optimal pre-
dictive density for z̃. Note that our corresponding maximum likelihood estimates in the
transformed model are now 
̂=(X̃

′
X̃ )−1X̃

′
ỹ and �̂2=(ỹ− X̃ 
̂)′(ỹ− X̃ 
̂)=n. However,

it can be readily shown that 
̂= (X̃
′
X̃ )−1X̃

′
ỹ= (X ′0−1X )−1X ′0−1y (Graybill, 1976,

p. 207). Following along similar lines as Levy and Perng’s original development, de-
Fne t̃ = (z̃ − W̃ 
̂)=(n1=2�̂) and restrict the set of candidate optimal predictive densities
for z̃ to �= {s(z̃; W̃ ; ỹ; X̃ ) : s(z̃; W̃ ; ỹ; X̃ ) = g(t̃(ỹ; z̃))}. Thus, applying Theorem 1, we
have the optimal predictive density g∗ for z̃ over the restricted set � as follows:

g∗(z̃; W̃ ; ỹ; X̃ ) = g∗(t̃(ỹ; z̃))

= stm(n− p; W̃ 
̂; n�̂2A=(n− p));

where A= Im + W̃ (X̃
′
X̃ )−1W̃

′
, provides the unique minimum of D
;�2 among all s in

� uniformly in 
 and �2.
Of course, we are interested in the optimal predictive density of z, not z̃, so we

must transform back to the original units. Since we have z̃ = H ′−1z, this implies that
z = H ′z̃. Thus, our predictive density for z is as follows:

g∗(z;W; y; X ) = g∗(t(y; z))

= stm(n− p;W 
̂; n�̂2RA=(n− p)); (2.12)

where once again we emphasize that the estimates of 
̂ and �̂2 above are not the
same as that in the original development. Recall that previously we showed that the
dispersion term derived by Levy and Perng for the normal linear model may be written
as an adjusted exact predictive interval, where the adjustment factor was n=(n − p).
Now, with a little bit of algebra, we demonstrate a similar result for our more general
case:

n�̂2RA
n− p

=
n�̂21
n− p

[I + W̃ (X̃
′
X̃ )−1W̃

′
]

=
n

n− p
[�̂21+ �̂21W̃ (X̃

′
X̃ )−1W̃

′
]

=
n

n− p
[ ˆvar(z) + R ˆvar( ˆ̃z)]

=
n

n− p
[ ˆvar(z) + R ˆvar(H ′−1ẑ)]
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=
n

n− p
[ ˆvar(z) + RR−1 ˆvar(ẑ)]

=
n

n− p
[ ˆvar(z) + ˆvar(ẑ)]: (2.13)

Thus, as in the general case, this illustrates the dispersion of the predictive density with
respect to an adjustment to the margin of error in an exact predictive interval. Let us
apply this result to our multilevel model such that we may produce a predictive density
for y∗j. The only diJerence in assumptions is that certain components (�2 and �) of
the variances for y and y∗j are unknown and must be estimated. Directly applying the
results from Eqs. (2.12) and (2.13) yields the following predictive density:

t(y∗j;X∗j; y; X;W ) = st1

(
N − q; X∗jWj�̂;

N
N − q

Bj

)
; (2.14)

where q is the length of � and Bj= ˆvar(y∗j)+ ˆvar(ŷ ∗j) and may be written as follows:

Bj = X∗j�̂X ′
∗j + �̂j

2 + ˆvar(X∗jWj�̂)

= X∗j�̂X ′
∗j + �̂j

2 + X∗jWj ˆvar(�̂)W ′
j X

′
∗j

= V̂ ∗ + �̂j2 + X∗jWj


 J∑
j=1

W ′
j XjV

−1
j XjWj




−1

W ′
j X

′
∗j:

Comparing the main result here with that from the previous section, the center of
the prediction density is now X∗jWj�̂ instead of X∗j 
̂j. One may view �̂ as analogous

to 
̂j with respect to the application of the theorem, noting that maximum likelihood
is satisFed via generalized least squares in the former and OLS in the latter. As before,
we employ this predictive density by taking its expected value, X∗jWj�̂, as our point
predictor for y∗j and use the variance to form our margin of error. Formally, we have
the following predictive interval:

X∗jWj�̂± tN−q;0:975[NBj=(N − q)]1=2: (2.15)

Readers familiar with multilevel models will recognize that this corresponds to em-
ploying the prior estimate of 
j, 
̂Priorj =Wj�̂, in forming ŷ ∗j=X∗j 
̂Priorj ; Hence the term
prior prediction method. Similarly, in the previous section we employed the OLS esti-
mate for 
j and obtained the OLS prediction method. Although the predictive density
above corresponding to the prior prediction method is the optimal predictive density
in the sense of Levy and Perng (1986), it behooves the researcher to investigate the
eJect of using the popular multilevel estimate of 
j in place of either the OLS or prior
estimate.

2.3. Multilevel prediction method

One of the main results in the multilevel model literature is the shrinkage estimator
for 
j, which may be expressed as a weighted combination of the OLS and prior
estimate. Intuitively, the higher the reliability of the OLS estimate the larger the weight
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attached to the OLS estimate, and vice versa. Formally, the multilevel model estimate

̂j

∗ may be written as follows:


̂j
∗ = 5j 
̂j + (I − 5j)Wj�̂; (2.16)

where

5j = �̂[�̂+ �̂
2(X ′

j Xj)
−1]−1; (2.17)

is the ratio of the parameter variance for 
j (�) relative to the variance of the OLS
estimator for 
j (�2(X ′

j Xj)
−1) plus this parameter variance matrix. Thus, if the OLS

estimate is unreliable, 
̂j
∗ will pull 
̂j towards Wj�̂, the prior estimate. Once again, the

variance components � and �2 must be estimated iteratively and � is estimated via the
generalized least squares as in the previous section. The shrinkage estimator above for

j which employs the estimator of Eq. (2.11) for � yields the minimum mean square
linear unbiased estimator (MMSLUE) of 
j (Harville, 1976). 4

The multilevel estimator may also be expressed as 
̂j
∗ = Wj�̂ + ûj, where uj may

be interpreted in the mixed model sense as the random eJect of the jth group. With
respect to the prediction of y∗j, we will now take our predicted value of y∗j to be
X∗j 
̂j

∗, which may also be written as ŷ ∗j = X∗jWj�̂+ X∗j ûj. Harville (1976) showed
that this may also be written as follows:

ŷ ∗j = X∗jWj�̂+ V̂ ∗jV̂−1
j (yj − XjWj�̂); (2.18)

where V̂ ∗j= ˆcov(y∗j; yj)=X∗j�̂X ′
j +�̂

2. This last representation illustrates our prediction
as the conditional expectation of y∗j given the data Y . Furthermore, Rao (1973, p. 522)
showed that ŷ ∗j is the best predictor of y∗j with respect to the minimum mean square
error criterion.
Getting back to our predictive density, we center this predictive density around

X∗j 
̂j
∗ and form its dispersion in a manner analogous to the previous sections, yielding:

t(y∗j;X∗j; y; X;W ) = st1

(
N − q; X∗j 
̂j

∗;
N

N − q
Cj

)
; (2.19)

where q is the length of � and Cj = ˆvar(y∗j) + ˆvar(ŷ ∗j) and may be written as

Cj = "∗j +Mj(var(�̂))M ′
j ;

where "∗j=V∗+V∗jV−1
j Vj∗ and Mj=X∗jWj−V∗jV−1

j XjWj. 5 As before, we will form
our predictive interval for y∗j by centering it around the distribution’s mean and using
its variance to form the margin of error. Formally, we have the following predictive
interval:

X∗j 
̂j
∗ ± tN−q;0:975[NCj=(N − q)]1=2: (2.20)

4 One must restrict oneself to the class of unbiased estimators since a MMSLE does not exist for the
unknown � case (PfeJerman, 1984).

5 This expression is derived in Liski and Nummi, 1996.
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Table 1
Simulation speciFcation

�2 = 0:25
�00 = �11 = 0:125
�01 = 0:03

Xij ∼ N (0; 1)
Wj ∼ N (0; 1)

J = (25; 50; 100)
n = (10; 25; 50)

We investigate the diJerence between the OLS, prior, and multilevel prediction meth-
ods mentioned above through a simulation study. The design of the simulation study
is explained in the next section.

2.4. Simulation study

The design for simulating multilevel data is based on the design of Busing (1993).
As a simpliFcation, we consider a simple 2-level multilevel model with one explanatory
variable at each level and equal numbers of units in each group. Data are simulated in
two stages. At stage one, the level-1 random coeHcients are simulated as follows: 6


0j = �00 + �01Wj + u0j;


1j = �10 + �11Wj + u1j:

The �’s are the Fxed eJects and are set to a predetermined value; we set them all
equal to one as in Busing (1993). The scalar Wj is a standard normal random variable,
while the error components, u0j and u1j, have a bivariate normal distribution with mean
(0; 0) and a 2 × 2 covariance matrix �. We set the two diagonal elements of �, �00
and �11, to be 0.125 and the oJ-diagonal covariance term �01 at 0.03, following one
of Busing’s major design conditions. This yields in intraclass correlation 8 of 0.33. 7

At stage two, the level-1 observations are generated according to the following equa-
tion:

Yij = 
0j + 
1jXij + !ij: (2.21)

The level-1 explanatory variable, Xij, is simulated as a standard normal random variable,
while the level-1 error !ij is a normal random variable with mean 0 and variance �2

equal to 0.25. The parameter speciFcation for simulating multilevel data is summarized
in Table 1.

6 There is a slight abuse of notation here. Previously Wj represented a matrix while here it represents a
scalar.

7 The intraclass correlation is deFned as follows: 8=�00=(�00 +�2) and thus measures the degree to which
units within the same unit are related.
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Table 2
Mean fractional coverage for multilevel, prior, and OLS prediction intervals

J n = 10 n = 25 n = 50

25 0.949, 0.946, 0.984 0.961, 0.951, 0.973 0.952, 0.950, 0.952
50 0.956, 0.952, 0.989 0.956, 0.953, 0.96 0.951, 0.951, 0.955
100 0.960, 0.948, 0.987 0.953, 0.953, 0.966 0.956, 0.947, 0.959

The multilevel data are simulated under a variety of speciFcations for the number of
groups (J ) and number of units per group (n). Once again following Busing (1993),
the number of groups studied are 25, 50, and 100, while the number of units per
group are 10, 25, and 50. Moreover, one additional “future” observation is generated
for each of the J groups. Thus, for the J = 100, n = 25 design speciFcation, 100
additional observation are generated and set aside. These are the observations that will
be predicted; they are not used for estimative purposes.

2.5. Prediction results

The adequacy of prediction was checked in two ways: predictive intervals and pre-
dictive mean square error (PMSE). The predictive interval method is performed as
follows. For each of the future observations to be predicted, a predictive interval is
formed from the respective predictive distribution and we check whether or not the
observation lies in this interval. Thus, for J = 50 we will have a possible range of
0–50 correct predictive intervals. Moreover, to check the variability of such coverage,
each of the nine J × n design conditions are simulated 100 times, each time checking
the percent of correct intervals. The data simulations were performed in XLISP-STAT
while the multilevel model estimation was performed with TERRACE-TWO. 8

The predictive interval results are given in Table 2, where we give the mean of
the fraction of correct intervals over 100 simulations for each design speciFcation.
For instance, the entries in the top left cell shows that for the J = 25, n = 10 design
condition the mean fractional coverage for the multilevel, prior, and OLS predictive
intervals were 0.949, 0.946, and 0.984, respectively, over the 100 simulations.
For all three methods, the coverage rate is close to that expected from a theoretical

95% predictive interval. Moreover, there is not much diJerence between simple OLS
and the multilevel intervals. (1) This could be a result of the wideness of our margin
of error, and (2) it could be a result of the discreteness of the assessment approach
we have employed. In order to get around this problem, we also examine the popular
predictive mean square error (PMSE) approach to assessing predictive performance.
For the predictive mean square error (PMSE) approach, we employ the standard

technique of taking the average of the sum of the squared errors (SSE) of the observed
and predicted values. The predicted values are taken as the expected value of our

8 An XLISP-STAT program written by Hilden-Minton (1994, 1995), which incorporates both the EM
algorithm and Fisher scoring for parameter estimation.
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Table 3
Mean PMSE over 100 simulations for multilevel, prior, and OLS prediction

J n = 10 n = 25 n = 50

25 0.2958, 0.4914, 0.3056 0.2591, 0.4691, 0.2610 0.2758, 0.489, 0.27666
50 0.2963, 0.4817, 0.3128 0.2644, 0.4785, 0.2674 0.2558, 0.4839, 0.2567
100 0.3005, 0.5048, 0.3188 0.2765, 0.5073, 0.2786 0.2677, 0.5056, 0.2682

Fig. 1. J = 25; n = 10; 25; 50 for multilevel, prior and OLS PMSE over 100 simulations.

Fig. 2. J = 50; n = 10; 25; 50 for multilevel, prior and OLS PMSE over 100 simulations.

predictive density, varying according to our estimate of 
j. Once again, for each of
the nine J × n design conditions, we calculate our result 100 times. The results are
summarized in Table 3, where each entry is the average of PMSE over 100 simulations.
The multilevel method is clearly the best, closely followed by the OLS method. As
expected, the discrepancy between the multilevel and OLS method becomes less as n
increases. Increasing J should have no eJect on the OLS method since this method
forms predictions separately for each group. On the other hand, an increase in J should
decrease PMSE for the multilevel method since the multilevel method uses all of the
data; however, this is not entirely conFrmed in these simulations, possibly because the
increase in J is not large enough to make a diJerence. Somewhat of a surprise, the
prior prediction method performs the worst of the three methods, increasingly worse
as J increases. Although the multilevel prediction rule is superior, the diJerential gain
is not incredibly large and does not increase dramatically as the design tends towards
smaller J and n, i.e., speciFcations where we would expect the multilevel prediction
rule to further outperform the other methods.
These results are more clearly illustrated in Figs. 1–3, where we display boxplots

of the distribution of PMSE for the three methods over the 100 simulations. Consider
Fig. 1 where J=25 is Fxed. Starting from the left, the Frst three boxplots correspond to
the PMSE for the multilevel prediction method for n=10, 25, and 50, respectively. The
next three boxplots correspond to the PMSE for the prior prediction method for n=10,
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Fig. 3. J = 100; n = 10; 25; 50 for multilevel, prior and OLS PMSE over 100 simulations.

25, and 50, respectively. And, Fnally, the last three boxplots correspond to the PMSE
for the OLS Prediction Method for n=10, 25, and 50, respectively. Figs. 2 and 3 are
arrayed similarly for J=50 and 100, respectively. The eJect of group size n is clear as
PMSE decreases within each prediction method as n increases. An exception, however,
occurs in Fig. 1 for the multilevel method. And, once again, the poor performance
of the prior prediction method is apparent as the corresponding boxplots have higher
medians in all design speciFcations. Moreover, as indicated by the boxplots, examining
the standard deviation of PMSE over the 100 simulations conFrms that the multilevel
predictive approach is also the least variable. 9

These results demonstrate that in spite of the fact that the OLS and prior prediction
rules are based on predictive densities which are optimal in the sense of the Kullback–
Leibler divergence criterion as employed by Levy and Perng (1986), the predictive
performance of the multilevel prediction rule is superior. Part of the reason for this
result may arise from the fact that we have restricted the collection of possible density
estimators to a subset of prediction densities. This restriction, although possibly useful
for theoretical purposes of density estimation, has clearly failed to produce the best
density with respect to predicting future observations. Indeed, Levy and Perng (1986)
employ this particular restriction in order to demonstrate their result with respect to
several other commonly used predictive densities that also belong to this restricted set
of predictive densities; whether this set is a reasonably large collection of predictive
densities is not their main concern. For the multilevel model at least, our results indicate
that this collection needs to be larger.

3. Summary

A predictive density for the multilevel model has been derived in order to facilitate
the prediction of future observables in multilevel data. Based upon this predictive den-
sity, three prediction methods have been examined: multilevel, prior, and OLS predic-
tion. The OLS prediction method corresponds to deriving a predictive density separately
in each group, while the prior prediction method corresponds to deriving a predictive
density for the entire model. The multilevel prediction method merely adjusts the prior
prediction method by using a well-known result from multilevel model estimation.
The adequacy of prediction has been assessed through both predictive intervals and

9 For the J = 100, n= 10 speciFcation, the standard deviations of SSE for the multilevel, prior, and OLS
methods are 3.678, 5.357, and 3.982, respectively.
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predictive mean square error (PMSE). Based on simulated multilevel data, the mul-
tilevel method is superior. This indicates that for the multilevel model the restriction
used by Levy and Perng (1986) in the context of the normal linear model is possibly
overly conservative.
The diJerential gain in prediction for the multilevel method, however, is not incred-

ibly large, nor does this diJerential gain increase appreciably as the design conditions
tend towards smaller J and n, i.e., speciFcations where we would expect the multilevel
method to outperform the OLS method. To be sure, our results might vary if we widen
the J ×n space or change other design parameters aside from J and n, e.g., the various
parameters of Table 1. In the sequel we explore this enhanced design space and also
present a decomposition of prediction error to assess the relative costs of missing data
and parameter estimation.

4. For further reading

The following references could also be of interest to the reader. Afshartous, 1997;
Afshartous and Hilden-Minton, 1996; Harville, 1985.
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