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INTRODUCTION

Classical principal component analysis can be generalized in different directions
to yield non-linear principal component analysis. This means that, in addition to
variables measured on an interval scale level, other variables such as ordinal or
nominal variables can be analysed in a similar way.

The first generalization is a technique that has many names, but we shall refer
to it as ‘multiple correspondence analysis’. For an extensive description of
multiple correspondence analysis, we refer to Nishisato (1980), Gifi (1981a,
1988), or Greenacre (1984). Another generalization, described by Kruskal and
Shepard (1974) and Gifi (1981a, 1988), is ‘non-metric principal component
analysis’.

In the first section of this chapter a brief account is given of both techniques,
which describes them as direct generalizations of principal component analysis.
This account is far from being complete and is meant as an introduction only.
One can introduce principal component analysis in many different ways. Also,
multiple correspondence analysis and non-metric principal component analysis
can be looked upon from quite another angle, without regarding them as
generalizations of principal component analysis. Both techniques can be
presented as multidimensional scaling techniques, using the concept of distance
as the central one rather than the concept of correlation.
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The principal aim of this chapter is to discuss, in detail, the relationships
between multiple correspondence analysis and non-metric principal component
analysis. To this end the techniques will be reformulated in terms of optimal
scaling in Section 2, and, in the third section, a condition will be derived under
which both techniques find essentially the same solution. In Section 4, some
important theoretical examples are given for which this condition is satisfied. To
conclude, an alternative algorithm for non-linear principal component analysis is
applied which combines features of both previous generalizations.

For previous attempts to integrate different generalizations of principal
component analysis, we refer to de Leeuw and van Rijckevorsel (1980), Gifi
(1981a, 1988), de Leeuw (1982), Tenenhaus and Young (1985). The general
approach to PCA in this chapter is taken from Gifi (1981a), the results we discuss
are mainly due to de Leeuw (1982).

1. VARIOUS GENERALIZATIONS OF PRINCIPAL COMPONENT
ANALYSIS

In this section the concept of homogeneity will serve as a basis for the
introduction of multiple correspondence analysis (MCA) and non-metric
principal component analysis (NCA) as direct generalizations of ordinary metric
principal component analysis (PCA). Homogeneity can be defined on the basis of
various models (cf. Fischer, 1974). In this chapter the concept of homogeneity
will be used in a data theoretical sense as being closely related to the concept of
data reduction (cf. de Leeuw, 1973). In other words, homogeneity deals with the
question to what extent different variables measure the same property or
properties. In order to answer this question, we need a measure for the difference
or resemblance of the variables. On the other hand, the measurement level of the
data may allow us to transform the variables before comparing them with each
other. By definition, the class of admissible transformations will be different for
different types of data. The problem is then to find admissible transformations
that maximize the resemblance, or homogeneity, of the variables. When the
variables measure more than one property we may want to proceed in order to
find another, orthogonal, solution. This is in accordance with the principle of
data reduction which advocates that a small number of dimensions should be
used to explain a maximum amount of information present in the data.

For the techniques discussed in this chapter, we might say that they share this
approach of finding a transformation within a class of admissible transforma-
tions such as to minimize the difference between the variables. There are two
kinds of distinctions amongst the techniques: either the way the differences
between the variables are measured varies, or different classes of admissible
transformations are used.
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1.1. Homogeneity and linear transformations

Linear transformations of variables may both change their means and their
variances. To begin we shall leave the mean out of consideration (we exclude
variables which are not in deviations from the mean) and only attach weights to
the variables. The difference between the variables will be expressed in a loss
function. We want this loss function to attain a minimum when all variables are
alike, so one possibility is to use the mean squared Euclidean distance between
the transformed variables and one hypothetical common variable (or vector).
The resemblance of the transformed variables and the hypothetical variable will
be maximized if the loss function is minimized. In that case, the hypothetical
variable can serve as a scale for the individuals or objects. The values of this
variable are called object scores, component scores or—analogous to factor
analysis—factor scores.
The loss function reads:

o(x; ¢)=m"" ), SSQ(x—¢;(h))), (1.1)

where x is the common variable and ¢ is the transformation of variable h;(j=1,
., m). In the present case of linear weighting, we can write ¢ (h ;)="h;y;, where
yjj=1, ..., m)are the weights for the variables.
We can reformulate the loss function as

o(x; y)=x'x+m~ 1y Dy—2m~'x'Hy, 1.2)

where H is the data matrix of order (n xm), D the diagonal of H'H and y the
vector of weights. When minimizing this function, we have to impose a restriction
on the length of x or y in order to avoid the trivial minimum where both x and y
contain zeros.

A possible restriction is x'x = 1, which normalizes the object scores. Another
restriction where the normalization focuses on the transformed variables is given
by y'Dy=1. Both approaches given essentially the same results. Therefore we
shall only work out the first normalization.

The minimum of a(x; y), subject to the restriction x'x=1, can be found by
minimizing the function f(x, y, )=a(x; y)—A(x'x— 1), where / is a Lagrange
multiplier. The stationary values can be found in the usual way by equating the
partial derivatives to zero.

We find

H'x=Dy,
Hy=m(1—A)x.

Hence o(x; y)=4, and the loss function will reach a minimum for the smallest
possible value of 4. This 4 can be found by combining the equations to

HD 'H'x=m(1—A)x.




4 1. RELATIONS BETWEEN VARIANTS OF NON-LINEAR PRINCIPAL COMPONENT

Clearly, the object scores form a latent vector of HD “*H’ and m(1—4) is the
latent root. The loss function will thus be minimized if x is the latent vector that
corresponds to the largest latent root of HD ~ ! H'. If we define the singular value
decomposition (SVD-solution, cf. van de Geer, 1986)

HD V2= vyw',

where V'is of order (n x m), Wis of order (m x m)and V'V=I, W W=Iandyisa
diagonal matrix of order (m x m), then we can find the latent roots and vectors in
the matrix

HD ™ 'H'= W2V

If the latent roots are arranged in descending order of magnitude, the solution is
given by x=v, and m(1 —A)=y3:

HD 'H'x=xy?3. (1.3)
At the same time,
H' Hy=Dyy?. (1.4)
Hence,
y=D""wy,,
and

y=D"'H'x, or xyi=Hy. 1.5)

Which determines completely the solution of the minimization of the loss
function.

For variables measuring more than one property, we may want to find another
scale x, for the individuals, orthogonal to the first scale x,. This means
minimizing o(x,; y,) subject to the restriction x,x,=0. For a third solution we
have to impose x}x; =0 and x},x;=0, etc.

The successive solutions can now easily be found by the same decomposition as
we used for the first solution: HD ~ 12 = iy W’, where V is orthogonal, V'V=1.
We simply use successive singular vectors and values for successive minimiza-
tions. The total number of successive solutions equals m, the number of variables.
If we collect the vectors x;and y,(i=1,. . . ,m) as columns in the matrices Xand Y
respectively, the simultaneous solution is given by:

HD '2=XY'D'2, (1.6)

Apparently, the original and transformed (i.e. weighted) variables are linear
combinations of the column vectors of X. This means that the vectors
x(i=1,...,m)form an orthonormal basis of the vector space spanned by the
original, or transformed, variables. The sum of the latent roots equals m, for:
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SSQ(HD~'?)=tr(HD ~*H')=tr(XY'DYX")
=tr(Y'DY)=tr(y?)= ) ¥}.

In the foregoing we did not concern ourselves with the mean of the variables. In
order for the transformations to be proper linear transformations, we have to
take into account the means. This can be done by decomposing the variables into
mean vectors and vectors in deviation from the mean. If we collect these two
vectors, as columns, in a matrix F;for every variable separately, so that Fu=h;,a
linear transformation is given by F;z;, where z;is a vector of two weights. The first
weight of z; transforms the mean and the second weight transforms the variable in
deviation from the mean. The complete matrix F=(F,,..., F,) is of order
(n x 2m) and the vector z is of order (1 x 2m). Clearly the column vectors of F; are
othogonal, i.e. F;F; is a diagonal matrix. If we now define D to be the diagonal
matrix of F'F, we can rewrite the loss function (1.1) as:

o(x;z)=x'x+m~ 'Y Z\FFz;—2m~' Y x'Fz;,
j J

or
o(x;z2)=x'x+m 'z Dz—2m " 'x'Fz.

Because of the obvious resemblance of this expression to the one in (1.2), the
minimization, subject to x'x =1, is analogous to the one we already derived for
(1.2).

The singular value decomposition FD~Y2=VWW’, and the analogous
formulations of (1.3), (1.4) and (1.5), will now render 2m solutions, since F is of
order (n x 2m). However, if we look more closely at the matrix FD ~ /2, we see
that all columns related to mean vectors are identical to n ~ /2y (u being a vector
with unit elements only). This totals up to m columns. Consequently we shall find
m trivial solutions resulting from transformations of the mean vectors only. It is
easy to see that one trivial latent root equals m and m — 1 trivial latent roots equal
0. For the non-trivial solutions only the variables in deviations from the mean are
weighted. Obviously the object scores x; will be in deviations from the mean too.

Thus, the minimization of the loss function for linear transformations renders
m meaningful solutions in deviations from the mean. These solutions correspond
to the ones we would have found if we had started with variables in deviations
from the mean, and simple weighting would have generated them.

1.2. Principal component analysis: PCA

If, in the foregoing section, we had started with variables in deviations from the
mean and normalized to unit length, so that D=1 (the identity matrix) and
H'H = R (the correlation matrix), then, according to (1.4), (1.5) and (1.6)

RY=YW¥? H=XY', R=YY, X'X=I and Y'Y=¥2.
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These formulae relate the latent root and latent vector solutions of the correlation
matrix to the principal components X of the data matrix H. In fact, these
formulae are well known expressions in principal component analysis (cf. van de
Geer, 1986).

1.3. Homogeneity and non-linear transformations: MCA

As we have seen, PCA can be presented as a technique for minimizing differences
among variables by transforming these variables linearly. A quite straightfor-
ward generalization of PCA in this context is given by extending the class of
admissible transformations to include non-linear transformations as well. If we
confine ourselves to categorical data, a non-linear transformation is simply found
by weighting the categories of a variable. The differences amongst transformed
variables can be measured by the same loss function, (1.1), as was used in the
foregoing sections to introduce PCA. Minimization of this loss function, for non-
linear transformations of discrete variables, adds up to a technique we refer to as
multiple correspondence analysis.

If we use so-called indicator matrices, the transformed variables can easily be
expressed in matrix notation. An indicator matrix is a binary matrix which
indicates the category that an observation is in. Thus, if h; has k; categories, the
indicator matrix G; is n x k;. For the transformation of variable h; we have,

d)j(hj):Gjij

where G; is the indicator matrix of variable h;, and y; is a vector comprising k;
weights for the k; categories of variable h;. MCA therefore can be presented as a

technique which minimizes the following loss function

o(x; y))=m~"'} SSQ(x—G;y)), (1.7)

or

o(x; y)=xx+m~ Y y\G/G,y;—2m ™' Y X'G,y;.
J j

As the column vectors of G; are orthogonal, the matrix D;=G|G;is diagonal and
hence we can write

o(x; y)=x'x+m~ 'y Dy—2m~'x'Gy, (1.8)

where D is the diagonal supermatrix of univariate marginals and G is the
indicator supermatrix. The resemblance with (1.2) is obvious. The minimization
is completely analogous: instead of the data matrix H we simply use the indicator
supermatrix G.

All solutions will now be rendered by the singular value decomposition of

GD™ ' =V¥W.
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If we write G'G = C for the matrix of bimarginals we have, analogous to (1.3),
(1.4) and (1.5) :

X=V, and Y=D 12wy, (1.9)
GD 'G'X=X¥?%, and CY=DYW¥?, (1.10)
X¥2=GY, and Y=D !G'X. (1.11)

Since Gis of order (nx Y_ k ;)» we find Yk ;solutions. Although some of these, the
so-called trivial solutions, are completely meaningless, their existence is, as we
saw in Section 1.1, a pleasant circumstance. If we look at the indicator matrices
more closely, we see that they comprise a certain amount of redundant
information. For, when all vectors of G; but one, are known, then this one vector
is also fixed (we assume that there are no missing data). As a result of these m
redundant vectors in G, we shall find in our analysis m trivial solutions. The most
prominent trivial solution is given by the vector y,, where all }_ k ; weights equal
n~ 12 and the associated object scores in x,,, which also equal n = /2. It is easy to
see that this pair x,, y, is a solution; and in fact the loss function reaches its
absolute minimum so that there is no loss at all. The corresponding latent root -
equals m. The m— 1 remaining trivial solutions are found for weights which are
the same for the categories within a variable, but which vary across variables, so
that, for all remaining trivial solutions, we have y'Cy=0. The corresponding
latent roots all equal zero. This situation resembles the situation where we are
maximizing homogeneity by means of linear weighting, while the data matrix H
comprises units only. As a result of the existence of these trivial solutions, all non-
trivial, meaningful solutions are in deviations from the mean. On the one hand we
have X' X =1, consequently for dimensions we have, x,x,=0, or u'x,=0, and so
the object scores are in deviations from the mean. On the other hand, we have
transformed variables G;y; in deviations from the mean.

In order to prove this, we define u; (j=1,...,m) as vectors comprising k;
units, and U=u, # . .. # u,, the direct sum of these vectors. As a result, the m
rows of the matrix U’C are all identical to the row vector u'D. Consequently we
have U'Cy,=0, because y,Dy,=0. According to (1.10) we may also write
U'Cy,=U'Dya)? Then,if y2 #0, this means that U’'Dy,=0. So we have for every
variable separately u'D;y; =0, or u'G;G;y;;=0, whence v'G;y;;=0, which is a
reflection of the fact that the transformed variables for non-trivial solutions are in
deviations from the mean. Ultimately we have ) k;—m meaningful solutions in
deviations from the mean; the inner products of the solutions x; and G,y;, can
now be interpreted in terms of variances, covariances or correlations. For the
sum total of the non-trivial latent roots, we find: ) yZ =3 k;—m.
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1.3.1. A relation with x?

We may rewrite the latent vector solutions D~ Y2CD ™ '?=WWY>W’' as a
summation of matrices of rank one:

DU CD 2 =Y waplw,.

5

From this summation (s=1,...,), k;) we may remove the trivial matrices for
which 2 =0 For the trivial solution for which ¥2=m, we have

wo=D"2yop5 =D u(n . m)~12,
so that
wol?wy =D ?uu'D'?*n !
If we now remove all trivial solutions from W and ¥, we could write
D~ YY(C—Duu'Dn~')D ™12 = WY W (1.12)
For a non-diagonal submatrix of (1.12) we have
D Y*(Cy— Duw'Dn~")D V2. (1.13)

C, being the contingency table of the variables i and k. The matrix Duw'D,n ™!
. contains the expected frequencies on the hypothesis of independence, based on
the univariate marginals of C;,. If we multiply (1.13) by the scalar n'/?, then its
elements equal the difference between the observed and expected frequencies,
divided by the root of the expected frequency. This implies that the sum of squares
of a non-diagonal submatrix of (1.13) equals y2n~' the Pearson y?-statistic
divided by n.
For diagonal submatrices we have

D7 V*(D,—Duw'Dn~')D; V?=I—-D}*uw'D}*n"!

The sum of squares of this idempotent matrix equals its trace: k;— 1.
The total sum of squares of (1.12) is therefore

2 ki=D+X ¥ rin ™" =SSQUVYIW) = 3 4.

itk
Since Y, Y=Y k;—m, we may now write

Z Z Xlk=n2(l//4 'jlz

i+k

As Y 1=Y k;—m, we also have
j j

> xlk—nZ(t/f“—Zl/ﬁH) nZ W2 -1 (1.14)

i*k



1. VARIOUS GENERALIZATIONS OF PRINCIPAL COMPONENT ANALYSIS 9

In case of independently distributed variables, the statistic

Z x;k—ZnZ(lll _1)

i<k

converges to a y-distribution with df—7{<2k m) =Y (k;—1)*} (cf. de
Leeuw, 1973). !

1.3.2. The geometry of MCA

As was the case with PCA, the column vectors of X form an orthonormal basis of
a vector space, in which all original variables, the column vectors G, and
transformed variables, G;y;, are contained. For,

G=XY'D, and Gy,=XY,Dy,. (1.15)

where Y, is a matrix of order (k;x Y. kj), with y;, (s=1, . , 2. k;) as columns.
Since the transformed varlables G;yjs are in dev1at10ns from the mean for
non-trivial solutions, the trivial vectors of X and Y; can be removed without
causing any trouble. The transformed variables can thus be represented by
vectors in a vector space, of which the x; (S=1,. (Zk —m)) form an
orthonormal basis.

The squared norms of the transformed variables are usually called discrimina-
tion measures: yj,D;y;; the norm of a transformed variable Gy, is larger as the
discrimination between the categories, according to the quantlﬁcatlons Vis» 18
larger.

The sum total of the discrimination measures of all variables, for one solution s,
equals y.Dy,= 2. So, for every solution s, the sum total of the discrimination
measures is maximized. At the same time the discrimination measure equals the
squared correlation between x;, and G;y;,. Namely,

y,=D"'G'x,, and y,=D;'Gjx,, (1.16)

from which we may infer that the projection of x, on the subspace spanned by the
column vectors of G, is identical to the transformed variable:

GD; 'G/x,=Gjyj,.

As x, is normalized such that xix,=1, we have the result that the squared
correlatlon between x, and G;y;; equals the squared norm of G;y;,, which is the
same as the dnscrlmlnatlon measure.

This derivation indicates that we could interpret MCA as follows. Find, in the
space spanned by the column vectors of G, a vector x, for which the sum of the
squared norms of the projections on the m subspaces G; is maximized. Having
found such a vector x, find another one, subject to the restriction x,'x; =0, etc.
The projections of the trivial solution x, on the various subspaces G all equal x,
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itself; x, is contained in the intersection of the subspaces spanned by
G(j=1,...,m).

Another description is the following. As we have y,= D ~ 'G'x, this means that
the object scores, corresponding to a certain category of a variable, have a centre
of gravity that coincides with the quantification of that category; these points are
usually called barycentra. If we replace the object scores by the barycentra of a
given variable, the dispersion of the points will be smaller than before
replacement. This reduction in dispersion is due to the fact that the dispersion of
the object scores around their barycentra has not been taken into account. In this
context, the discrimination measure of a variable gives the percentage of
dispersion explained by the barycentra. So, for the first dimension, the dispersion
of object scores around their centres of gravity is minimized for all variables
simultaneously. The second dimension is the best orthogonal dimension, etc.

We can also conceive of the category scores as vectors. For we can write
GD ~1=XY, and the projections of these vectors on the space spanned by x, and
X,, can be completely represented by the category quantifications of these
dimensions. Bearing in mind that all column vectors of GD ~*/2 have norms equal
to unity, it is evident that, considering the norms of the column vectors of GD ~*,
categories with low frequencies are represented by vectors with large norms.
Since the projections on the trivial dimension x,, all have norms equal to one:
w'GD ™' =u'DD ™! =u/, these differences in norms will be present in the nontrivial
space as well. As there is no reason why those differences in norms should not be
present in the first two or more dimensions, we generally expect categories with
low frequencies to have extreme positions, when represented as points in two (or
more) dimensional space.

Because GD ! =XY’, the norms of the projections of the object scores, the
rows of X, on the category scores, the rows of Y, have to be proportional to the
elementsin GD ~ !, or G. Since the mean is not mapped into non-trivial space, we
expect objects corresponding to a certain category of a variable to have a position
in the direction of the related category, while others have a position in the
opposite direction. Obviously this will be approximately true for two dimensions.
But, as we have seen, category scores are in the centre of gravity of object scores
and this relates to another possible introduction, or interpretation, of MCA.

1.3.3. The method of reciprocal averages

This method begins with the notion that the category quantifications and the
object scores in a way should be proportional to one another. For example, the
objects should be located in the centre of the categories to which they correspond.
This means that x = Gy/m. Or, conversely, the situation we already had at hand,
the categories should be located in the centre of the objects: y=D ~'G'x. For
non-trivial solutions these two requirements are inconsistent, and so we only
require the following proportionalities:
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x+Gy/m, and y+D7'G'x. 1.17)
Consequently we must have,
x+GD7'G'x.

From which it is evident that x should be a latent vector of GD ~'G’, This means
that we are dealing with MCA.

Conditional to the normalizations x’x=1, or yDy=1, we find y=D"'G'x,
and xy2/m=Gy/m, or, respectively, x=Gy/m, and yy>/m=D" 1G'x.

1.3.4. PCA revisited

As we have seen MCA and PCA are closely related. Beginning with a similar loss
function, the presentation of both techniques can be analogous. Partly based on
this analogy we can relate PCA and MCA in another way. Every MCA solution
generates m transformed variables G;y;(j=1,...,m). It must therefore be
possible to apply PCA to the correlation matrix of these transformed variables.
In addition we can apply PCA to every non-trivial MCA solution. In doing so we
obtain Z kj—m correlation matrices, each with m PCA solutions. Thus we find
no less than m (3 k;—m) different solutions. Albert Gifi (1981a) refers to this
phenomenon as ‘data production” as opposed to ‘data reduction’

It would make sense to investigate whether or not redundant information is
present in these correlation matrices. Although this topic will be discussed
extensively in the following sections, we can already give a relation between the
MCA and related PCA solutions.

Using the loss function (1.1) it is easy to see that the first non-trivial MCA
solution (i.e. the solution having the largest latent root) equals the first PCA
solutions of the associated correlation matrix. The transformed variables of the
first MCA solutions, G;y;; (j=1,...,m), all are in deviations from the means
and have norms equal to the root of their discrimination measures, v 1{? say. The
loss function

o(xy; y1)=m_1 z SSQ(X1‘G,')’,'1)9
J

has a non-trivial minimum. PCA applied to these transformed variables means
minimizing the loss function,

o(x;a)y=m=1Y SSQ(x—G;y;,v;;"%a)). (1.18)
f

Clearly then, a minimum will be attained for x=x, and a;=v;{*, and we have a
solution identical to the one found for MCA. We may say that the first MCA-
solution is found for a transformation which maximizes the largest latent root of
the associated correlation matrix. Also the discrimination measures of the first
MCA-solution are in fact, using PCA terminology, the squared component
loadings of the first component. Of course, the same unambiguous relation holds
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for the MCA solution with the smallest latent root and the smallest latent root of
the corresponding correlation matrix.

For the intermediate MCA solutions things are more complicated. Subsequent
MCA solutions are found subject to the restrictions of orthogonality. Applying
PCA to the correlation matrix of transformed variables then means substituting
the transformations and discrimination measures into (1.18), and any x that
minimizes (1.18) will do, i.e. restrictions of orthogonality no longer exist.

Nevertheless, the intermediate MCA solutions do correspond to a principal
component of the associated correlation matrix. This component, however, does
not necessarily correspond to the largest or smallest latent root. In order to prove
this we let v, denote the vector of discrimination measures and let V; denote the
diagonal matrix comprising the discrimination measures in its diagonal, and
0,={G,y;,} the matrix of transformed variables. From Section 1.3.2, we know
that the correlation between transformed variables and object scores equals the
root of the discrimination measures. Then clearly

Vs"”zQ;xs=vs“2.
Hence,
Rp*=R VI *u=V 1n2g o V-2 Vi2u=v12Q.Gy,
=V 20 i=v M.

Obviously v!/? is a latent vector of the corresponding correlation matrix; and so
a;=v}/? generates one of the successive solutions of (1.18).

1.4. Non-metric principal component analysis: NCA

As we have shown, MCA can be regarded as a direct generalization of PCA. Both
techniques can be described in terms of a similar loss function, while MCA has an
extended class of admissible transformations.

NCA will now be presented as a technique for which the same class of
admissible transformations is used as was used for MCA, but which differs from
the latter because it starts off with a different loss function.

Nevertheless NCA can still be regarded as a direct generalization of PCA
because both loss functions produce the same results in case of linear weighting.

1.4.1. PCA based on another loss function

PCA was introduced by using loss function (1.1). The difference among the
transformed variables was measured by the mean squared distance to one
hypothetical variable. Of course, we could as well base our loss function on the
distance of the transformed variables to a plane, or more generally, to a p-
dimensional vector space. By doing so, the objects or individuals can be
characterized by object scores in more dimensions, although the variables are
transformed only once. We can depict the p-dimensional space by a matrix of
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basis vectors X of order (n x p), with X’ X =1. A vector in this space is given by Xa,
where a is a vector of p weights, or coordinates. A possible loss function is

o(X, a, p)=m™! ZSSQ(Xaj—qu(hj)). (1.19)

For PCA we have ¢;(h;)=h;y;. In order to avoid meaningless solutions, we have
to normalize again. The normalization X’ X = I is not enough, for both q; and y;
are not normalized. A possible normalization is to have yjh}h;y;=1; this
normalization determines the vectors h,y; completely in the matrix HD ~ /2. If we

collect the vectors a; as rows in the (m x p) matrix 4, we could rewrite (1.19) as
o(X, A)=m~'SSQHD ~'*—XA4'). (1.20)

How to minimize this function is known from the Eckart and Young (1936)
theorem. If we define the singular value decomposition HD ~'?=V¥W’, the
loss function is minimal for

XA'= Y o/ (1.21)

i

This simultaneous solution for more dimensions is similar to the successive
solution described before. This means that the simultaneous solutions for
different p are nested; that is to say that the solution for p=k corresponds to the
first k principal components found for p>k.

1.4.2. Principal components and non-linear weighting

For NCA the transformed variables are given by G,y;, just as they were for MCA.
Now the loss function (1.19) reads

o(X,a,y)=m~'Y SSQ(Xa;,—G,y)). (1.22)

Again we use the normalizations X’X=J and y;D;y;=1, the transformed
variables are normalized to unit length. However, this does not determine the
transformed variables G,y;. The G,y;are to be found so as to maximize the sum of
the p largest latent roots of the corresponding correlation matrix. For PCA, or
linear weighting, we found the same correlation matrix for every ‘transforma-
tion’. Now they are different. This also means that the correlation matrix found
for p=k will usually be different from the one found for p # k. Consequently, the
solutions are no longer nested. We may observe that NCA for p= 1, corresponds
to the first MCA solution. However, in general it is not true that NCA with p=k
corresponds to the first k MCA solutions. We shall come back to this point in the
following sections.

For the minimization of (1.22) we have to use an iterative procedure. For
example:

(1) Take an arbitrary vector y for which y/D;y;=1, and ¥'G;y;=0.
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(2) For fixed Gy we can apply principal component analysis of which only the
first p solutions will be used.

(3) Subsequently the vectors Xa; are projected onto the subspaces G;. The
projections are G;z;=G;D; 'G; Xa;. Every vector in G; will be orthogonal to
the vector G;z;—Xa;, and so must be G;y;—G;z;. Since G;y;—Xa;=
(G;z;— Xa;)+(G;y;— G;z;), we have

SSQ(G;y;—Xa;)=S8SQ(G;z;— Xa)+ (y;—z; Di(y;— z)).

The first term on the right-hand side is fixed and so we only have to
minimize the second term. This can be done simply by setting y equal to z. In
the case of ordinal data we can carry out a monotonic regression.

(4) Return to the second iteration step or stop.

Loss function (1.22) is used by Kruskal and Shepard (1974), Tenenhaus (1977)
and Young, de Leeuw and Takane (1976). De Leecuw and van Rijckevorsel (1980)
and Gifi (1982) use another loss function, for two reasons: (i) the treatment of
missing data becomes more simple, (ii) both variables with a single quantification
or transformation, and variables with multiple quantifications can be analysed
simultaneously: a combination of NCA and MCA.

This alternative loss function is given by:

ou(X, a, y)=m"" ZSSQ(G iy — X). (1.23)

In this function the rank-one matrix y;a;can be replaced for certain variables by a
matrix Y;, not necessarily of rank one, in order to treat variables with multiple
quantxﬁcatlons

Both loss functions (1.22) and (1.23) give the same results.

o(X,a,y)=m~'Y dia;+1-2m~ 'Y a/X'Gy,
y ‘
ou(X,a,y)=m 1Ztr )+p—2m” 1Ztr(X’ Gya;)
=m~'Y a/a;+p-2m~'Y dX'Gy,.
J J

So that 6,, =0+ (p—1). Thus it is evident that both loss functions attain minima
for the same X, 4, Y (for missing data the solutions will usually not be the same).
Again we use an interative procedure

(1) Take a matrix X of order (n x p), with X’X=7 and v’ X=0.
(2) Project the column vectors of X onto the subspaces G;. The projections are
G,Z;=G;D; 'GX, and

SSQ(G;y;a;— X)=SSQ(G;Z;— X)+ SSQ(G,y;a;— G, Z;)
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For multiple quantifications, the second term on the right-hand side can be made
equal to zero by taking ¥;=Z;. For nominal data the solution for y; and a; can
be found by taking the dominant singular value solution of D }/ 2z ;- This solution
can also be found by an iterative procedure, which can also be used to treat
ordinal data: the so-called inner iterations.

(2a) Take a vector y; with y;/'D;y;= 1.
(2b) Now project G;Z; on G;y;. This gives b;. Thus

G;yibi =G;;y;G,G,Z;, and
SSQ(G,y;a;— G, Z;)=SSQ(G;y;b; —G;Z;)+ SSQ(a;—b));
set a;=b;
(2c) Project the rows of Z; onto a;: a;z; = (aja;)" 'a;a}Z,
and

SSQ(Gya — G, Z;)=SSQ(G;z,a;— G, Z) + a;a;SSQ(G;(y;— z;))

The minimum of the second term on the right-hand side can be found,
depending on the type of data, by linear regression, monotonic regression, or
simply by setting y,=z;. After normalization of G;y;, we can return to (2b) or go
on to step 3. Before doing so, we may observe that G;z;is in deviations from the
mean:

uGz;=u'D;Zaaja;)” '=u'D,D; G/ Xa,(a;a;)” 1
=u'Xa;(a;a;)" "' =0.

(3) Forfixed G,y;a; we now have to find a new space X. Ifwelet Q;=G;y;a;, then
we have to minimize the loss function

o(X)=m""' Y (Q;—X) (1.24)

where X' X = I. This is a Procrustus problem (Cliff, 1966). Minimizing (1.24)is the
same as maximizing,

Z tr(X'Q;)=tr(X" 2 Q,)=tr(X'Q).
j i
where Q=Y Q,. If we define the SVD-solution Q=KAL' then
i
tr(X'Q)=tr(X' KAL) =Y (I X'k))A;.

As k/X1,<1, the above expression reaches a maximum for k;X;=1. This
means X = KL'. As the vectors of Q;, and thus the vectors of Q, are in deviations
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from the mean, also X is in deviations from the mean. We can now return to the
second iteration step.

1.4.3. The geometry of NCA

For every variable we have p component loadings and the transformed variables
can be mapped into a subspace or ‘X-plane’ as vectors Xa;. As was the case for
PCA, the squared component loadings (a js)z(s= 1, ..., p)can be interpreted as
explained variances per variable. Usually these quantities are referred to as
measures of ‘single fit'. Analogous to MCA, the barycentra Z;=D; 'G’X can be
mapped into the ‘X-plane’ by projecting the vectors G;D; ' onto the ‘X-plane’:
XZ;=XX 'G;,D; . And, also analogous to MCA, usually categories with low
frequencies will have extreme positions, when they are represented by Z;. Where
MCA uses the term ‘discrimination measure’ for indicating how close the object
scores are located around their barycentra, NCA uses ‘multiple fit’.

As opposed to MCA the multiple fit is not maximized for all variables per
dimension. It just indicates the dispersion of the categories per dimension.

However, for nominal data (with single quantifications) we do have a
maximum dispersion of the categories in the direction of Xa;. So we first have to
project the object scores onto Xa;, instead of x, and x, as was the case for MCA.
The corresponding measure is the single fit (a js)z summed over all dimensions.
For all variables together:

Y Y2y ?: latent roots of the correlation matrix: i=1, ..., p).

For ordinal data also the order of the categories has to be correct, so that the
single fit might be smaller than a measure of dispersion of the barycentra (when
projected on Xa;) would indicate.

2. A REFORMULATION

In this section we reformulate multiple correspondence analysis and non-metric
principal component analysis in terms of optimal scaling.

2.1. Optimal scaling

Linear multivariate analysis can be generalized in several directions to non-linear
multivariate analysis. An important generalization is given by non-linear
multivariate analysis using optimal scaling, where optimality is defined in terms
of the correlation matrix of scaled (or quantified or transformed) variables. We
could describe this generalization as follows. Suppose we are free to choose m
elements (vectors or random variables) g; from m subsets L; of a linear space L.
For every choice (q,, - . . , 4,), ;€Li=1, ..., m), we can compute a correla-
tion matrix R(q,, . . . , 4,,) (We do not consider those (q,, . . ., g,,) for which this
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computation is impossible). We also have an objective function y, defined on the
set of all possible correlation matrices. Our non-linear multivariate analysis
technique then consists of choosing the g;e L; in such a way that the function
w(R(qy, - - -, q,) is maximized. More generally, we could say that we are
interested in computing some, or all, of the stationary points of u(R(q;, - - - , 4,,))
onL x...xL,.

In defining our technique this way, we must consider two aspects: the form of
the subspaces L; and the nature of the objective function. Different choices in
respect of one or both aspects will usually result in different techniques of
analysis. The question is whether different choices would, in special situations,
yield the same results. In the following sections we hope to give an answer for this
question, in particular for two different techniques: MCA and NCA. Before
presenting these two techniques in terms of optimal scaling, we first give some
examples of possible subspaces L; and objective functions u.

Optimal scaling may be used to compute quantifications for observations that
are missing. In this case the subspaces L ;are formed by elements with values that
equal the observed values but which are arbitrary for observations that are
missing. Using these subspaces, we can find optimal quantifications for the
missing data (cf. Wold and Lyttkens, 1969). '

Another application is given by the analysis of ordinal data. In this case the
subspaces L;are convex cones:ifq;,p;e L;,and « >0, thenag;e L;and g;+p;eL;.
These subspaces are applied by Kruskal (1965), Kruskal and Shepard (1974), de
Leeuw, Young and Takane (1976), Young, de Leecuw and Takane (1976), Young,
Takane and de Leeuw (1978), and many others. Of course, for nominal data, we
can also form subspaces. Again each variable corresponds to a subspace and an
element corresponds to an arbitrary quantification of the categories of a variable.
Obviously these spaces are linear. This definition too has been used in the articles
of de Leeuw, Young and Takane mentioned above. Other choices of subspaces
are polynomials of a certain degree, or polynomial splines (van Rijckevorsel,
1987). See also Chapters 2 and 3.

As regards the objective function we first mention the situation where there
exists a partitioning of the variables into two sets. As objective function we may
then use the canonical correlation; special, that is linear, applications are given by
Anova, Manova, discriminant analysis and multiple regression (cf. van de Geer,
1986). When there is no prior partitioning of the variables into subsets, we treat
the variables in a symmetric way and the objective function will then be invariant
under permutations of the variables. Such a function is given for example by the
sum of the correlations (Horst, 1965). Another class of objective functions is given
by the symmetric functions of the latent roots (i) of the correlation matrix. We
mention the determinant of the correlation matrix (] Jy;), used by Chang and
Bargmann (1974) and the sum of squares of the correlations (} ¥2), suggested by
Kettenring (1971). Another important function is the largest latent root of the
correlation matrix, proposed by Horst (1965) and Carroll (1968).
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The most popular programs for non-linear principal component analysis use
the sum of the p largest latent roots of the correlation matrix as their objective
function. Of course, maximizing the sum of the p largest latent roots is equivalent
to minimizing the sum of the m— p smallest latent roots. We shall denote these
particular functions as y,,, with the understanding that different choices of p result
in different analyses.

2.2. Another definition of NCA

If we denote the intersection of a subspace L;and the unit sphere S by L S, then
all elements g;€ L;S are normalized to unit length and for each choice (g, . . .,
q..), we can define a matrix R(q,, . . . ,q,,) with elements ral@is - - o> 4m)=4;q;, the
ordinary inner product of ¢;and g,. The matrix R(q, . . ., g,,) can be regarded as
a correlation matrix, in the sense that it is positive semi-definite and that it has
diagonal elements equal to one. The problem of non-metric principal component

analysis (NCA)is to find y;e€ L;S in such a way that the sum of the p largest latent

roots of the matrix R(q,, ..., q,,) is maximized. More generally, we shall be
interested in all solutions of the stationary equations corresponding to the
maximization of u,(R(q,, ..., q,)). We consider the special case where the

subspaces L; are linear and of finite dimension ;.

If the dimensionality of the total space L equals n, then orthonormal bases of
Lij=1,...,m)can be depicted by matrices F;of order (n x k;), and Fw;e LS if
and only if w/w;= 1. If we set B, = FF,, then,

rjl(ql’ S ‘Im)=Wj,leWl~

We collect the matrices F;in a supermatrix F=(F,, ..., F,). The matrix B=F'F
is called the Burt table, named after Burt (1950). This latter matrix is of course
dependent on the choice of a basis. If we define W as the direct sum W=w, #. ..
#w,, so that W'W =1, then clearly,

R=W'BW, @.1)
Hp(R(@ys - - -, g))=tr(4'RA), 2.2)

where the matrix 4 varies over all matrices of order (m x p), for which 4’A=1.
For a maximum of (2.2) the vectors of 4 must be latent vectors of R. If we write
o,(Ly, ..., L,)for a maximum of u,(R(q,, ..., g,,)) with q;€L;S, then,

0,(Ly, ..., L,)=max{tr(4'W BWA)} =max{tr(T'BT)}, 2.3)

with 4 and W varying over matrices of the prescribed form, or T varying over
matrices T= WA of order(ij x p), for which T"T=1T and T consists of matrices
T;=wja; of order (k; x p), where a; is row j of matrix 4. Thus T is blockwise of
rank one; each subspace L; defines a block. The maximum (2.3) is found by
differentiation. We first write:
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tr(A'WBWA)=Y.Y. Y a,w;Bwa,
I j s
= Z Z 7iW; Bywys (2.4)
[

where y;, are elements of [=44". A maximum subject to wjw;=1 is found by
differentiating the function

2 2 vaWiBuw— 2 Aiwiw;—1),
tj j

where A; are Lagrange multipliers. The maximum is found for

! —
wiw;=1,

2 VaBywi=Aw;.
i

As mentioned above, for a maximum of (2.4) the matrix 4 must comprise latent
vectors of R, and thus the stationary equations are given by

RA=AQ, : (2.5)

Z ViBuw, =Aw;, (2.6)
1

where Q is a diagonal matrix of order (p x p) comprising latent roots of R.
From the equations, we can derive a relation between Q and 4;. An element of

Ris given by r;,=w/B;w,. An element of A4’ is given by y;,. Both are symmetric

matrices of order (m x m), so that for a diagonal element of RAA’, we have on the

one hand, according to (2.6),

’ —
2 Wy Bywy =4,
I

on the other hand, according to (2.5),
RAA'=AQA'.
Thus, we must have that 4; is a diagonal element of AQ4’. Consequently,

Z Aj=tr(Q), or tr(A)=tr(Q).

Although (2.5) and (2.6) can be used to construct convergent algorithms, they
give little insight into the mathematical structure of the NCA problem.

It is not clear how many solutions there are of (2.5) and (2.6) nor is it clear how
these various solutions might be related. However, there is one fortunate
exception: p=1.
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2.3. Another definition of MCA

In the special case where p=1, the solution of (2.5) and (2.6) becomes much
simpler and the problem of multiple correspondence analysis (MCA) is to
compute some or all solutions. If p=1, the matrix T comprises one vector only
and the restriction that the blocks of T must be of rank one is trivially satisfied.
The solution is then found by maximizing ¢’ Bt subject to ¢'t =1, and this is simply
a latent root problem, leading to the equation,

Bt=ty. Q.7)

Of course, we could decompose t into subvectors ¢;=w,a;, where a; is a scalar
a;=(tjt;)"?, and w;=t(tt;)" '/ (if tt;= 0, then w; 1sarb1traryw1thw w =1).The

relations between w and l}- in (2. 5) and (2.6) are then as follows:

Ay= Zajal Byw,= ZtJBﬂtl_ltﬂu’
1

and

Hence Q= pu. If u is the largest, or smallest, latent root of B, then x must also be
the largest, or smallest, latent root of R. For intermediate latent roots of B, we can
only state that they must also be latent roots of the corresponding matrix R.

In order to emphasize the relationship between NCA and MCA, we could
define the latter as the maximization of,

oLy, - - . s Ly)=max.{tr(V'BV)}, 2.8)

where V varies over matrices of order (3 k ;% p)and V'V =I. The main difference
with NCA, (2.3), is that the blocks of V' need not be of rank one. As a consequence
and as contrasted with NCA, MCA is nested, i.e. the solution for p=k is the same
as the first k solutions found for p> k. In addition, a MCA solution, according to
(2.8), generates p correlation matrices, whereas a NCA solution generates only
one correlation matrix. Clearly, we have,

pLys. ... L)=0,(Ly,..., L), 2.9)

with the equality holding if and only if the p dominant latent vectors of B have
blocks of rank one.

3. CORRESPONDING MCA AND NCA SOLUTIONS

In this section, we shall derive a condition under which both MCA and NCA find
the same solution. The emphasis will be on the possible interpretations of this
situation.



3. CORRESPONDING MCA AND NCA SOLUTIONS 21
3.1. A special condition

At the end of the previous section, we gave a condition under which the maxima
(2.3)and (2.8) are equal: p,= g ,,. The rigidity of this condition can be lessened by
demanding that a solution of (2.3) equals a stationary value of (2.8). Then we can
still say that the two solutions are equivalent. This new condition means that
there are latent vectors of B which are block-wise of rank one, but which need not
be necessarily the latent vectors corresponding to the p largest latent roots of B.
In particular, the situation for which there are m such latent vectors is interesting,
because then the relation between MCA and NCA holds for any p.

Therefore we assume that there are m latent vectors of B which can be
decomposed in the manner of equation (2.3)to give: V=WA, W=w, #...#w,,
W'W=1Iand A’A=1 (because A is of order (m x m), we must also have 44" =1).
This means that,

BWA=WAQ, (3.1)

where Qs again a diagonal matrix comprising latent roots. For these m different
MCA solutions (by which we mean separate latent vector solutions and not m
solutions of (2.8)), we find only one correlation matrix.

R=W'BW.

We already know that each MCA latent root corresponds to a latent root of the
associated correlation matrix. In this case all latent roots of R are latent roots of
B:

RA=W'BWA=W'WAQ=AQ. (3.2)
We can now derive an important relation,

BW=BWAA'=WAQA'=WRAA'=WR,
so that,
BW=WR, or, Byw=wgr;. (3.3)

Conversely, when there are vectors w;(j=1, ..., m) satisfying (3.3), we can
combine these vectors with p latent vectors of R, in order to form p latent vectors
of B which are block-wise of rank one. For,

BWA=WRA=WAQ.

Although we can form m such latent vectors of B, it follows from (3.1) that
p,(p<m) has a stationary value. Also o, has a stationary value. This follows, in
particular, from the fact that the stationary equations (2.5) and (2.6) are satisfied:

(2.5): RA=A4

(2.6): Y vuBuw=Y vaw;ri= W,-(Z Vit ril> =W;4;.
] 1 1
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Thus, if condition (3.3) is satisfied we can form m different MCA solutions and
C(m, p) stationary NCA solutions (using definition (2.8). We could also say that
there are C(m, p) stationary MCA solutions).

Besides MCA and NCA, condition (3.3) can also be related to other techniques
of analysis. In fact, all (differentiable) functions u(R(q,,...,q,)) have a
stationary value if condition (3.3) is satisfied. A stationary value of u(R(qy, - . .,
4.)), Where g;=Fw; is subject to wjw;, is found by differentiating.

BRGys - -5 dm))— 2 AWiw;— 1), (34
j
where 4; are Lagrange multipliers. As r;=w/B;w,, we can use the chain-rule to
find:
wiw;=1,
ou
52X B (3.5)
i

Jl

Clearly, if condition (3.3) is satisfied, then (3.5) is also satisfied, i.e. all functions
w(R(qy, . . ., q,)) have a stationary value. Of course, this is due to the fact that
R(q,, . . ., q,,)itself is stationary if (3.3) is satisfied. Conversely, if R(q,, . . . , q,,)
is stationary then (3.3) is satisfied.

Condition (3.3) corresponds to another desirable property. Suppose v is a
MCA solution, and thus a latent vector of B, but not one of the m solutions that
can be formed by using (3.3). As the latent vectors of B are orthogonal (when the
latent roots are equal, they can be chosen to be orthogonal), we may write,

VWA=(,...,0), or, vWAA'=(0,...,0), or
D’W= (09 AR 2 0)9 or) U;Wj=0 (36)

This means that the quantifications are orthogonal for each variable separately.
In the terminology suggested by Dauxois and Pousse (1976), the solutions are
not only weakly orthogonal, because they are latent vectors of B, but actually
strongly orthogonal. Thus Fjp; and Fjw; are orthogonal, but Fp; is also
orthogonal to the transformations of the other variables Fw/(I=1, ..., m). For,

ViFiFw=v; Byw,=v/wi;=0.

This means that the space Z spanned by the vectors Fw,(j=1,...,m) is
orthogonal to the transformed variables of all other MCA solutions. In particular
this holds for all other solutions of (3.3):

Byv,=v;s;.

If all subspaces L; have the same dimensionality k, then the maximum number of

solutions of (3.3) equals k. We can depict the condition for the existence of these k
solutions as follows. If we collect the solutions w;(s=1,...,k) in an
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orthonormal matrix K, and the correlations r;, for the k different solutions in a
diagonal matrix R, then the total condition is given by:

Ji
B,K,=K,R;. 3.7)

If the dimensionalities of the subspaces are different, we can maintain the
formulation of (3.7), with the understanding that the matrices K; are of order
(k; x k;), where k; is the dimensionality of subspace L;,and R is a matrix of order
(k; x k;) having non-zero elements in the positions (i, i) where (i=1, ..., min
(kj, k1))

A solution of (3.7) for which all submatrices B, are diagonalized simultan-
eously, generates a number of orthogonal spaces Zy(s=1, ..., max (k;)). Each
space Z, is spanned by m, vectors: those transformed variables for which k;>s.
Each space generates m, separate MCA solutions and C(m,, p) NCA solutions (if
m, <m, we may use arbitrary quantifications for variables with k; <s, while, at the
same time, the weights a; equal zero; for then the stationary equations are still
satisfied). This amounts to Y m ;=) k; different MCA solutions.

Before discussing the interesting interpretations of the conditions (3.3) and
(3.7) we would like to make a remark on the possible nestedness of the NCA
solutions. As we have already observed, the NCA solutions are not nested in
general, i.e. correlation matrices formed at a maximum of ¢, are different for
different p. If (3.7) is satisfied then the correlation matrix found at a maximum of
o, also generates stationary values of ¢, where p#k. However, it is not all that
clear whether this correlation matrix corresponds to a maximum of o, (p#k).

With respect to the MCA solutions we can say that, although it is not
impossible, the largest p latent roots are generally not generated by the same
correlation matrix. Only if the p largest latent roots come from the same
correlation matrix, do we have p, =0, (see (2.9)).

3.2. A general interpretation

If we represent (3.3) in words, it says that if two of the matrices C; have a
subscript in common, then they have a singular vector in common. Condition
(3.7) then says that they share all singular vectors corresponding to the common
index. This is of course a very strong condition which greatly restricts the form of
the matrices. The point of interest at the moment, however, is the interpretation.
One possible interpretation says that the (normalized) quantifications of the
variables remain invariant under removal of other variables from the analysis.

As far as we are considering the (normalized) quantifications, we could say that
the analyses are nested with respect to the variables. This also holds for the
condition (3.3) if we restrict our attention to the MCA and NCA solutions
generated by this single system.

Obviously this situation always exists for numerical data. In that case the
linear subspaces are one-dimensional and the condition (3.3) is a trivial one. We
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also expect approximations of this ideal situation to be much better for ordinal
data than for nominal data, the former being more ‘one-dimensional’ than the
latter. We could say that the nominal variables measure more than one thing.
Consequently, in a homogeneity analysis, we expect a nominal variable to act
upon the other variables in two ways, the first of which is ‘how well is something
measured’, the second is ‘what is measured’. Therefore, we do not expect the
conditions (3.3) or (3.7) to be satisfied, or even nearly satisfied for nominal data:
variables will measure different things before and after removal of a variable from
the analysis, that is to say, the (normalized) quantifications will be different.

Another interpretation is given by a reformulation of (3.3) in terms of
projections. We can rewrite (3.3) as

EFFEw,=Fw;r;. (3.8)

This indicates that the projection of the transformed variable, q,= Fw,, onto the
subspace L;, spanned by the orthonormal basis F;, coincides with the projection
on the one-dimensional space spanned by ;= Fyw;. This holds for all mutual
projections. As a consequence, the projections of all vectors in the space Z
(spanned by ;= Fw,(I=1, . . ., m)) onto the subspaces L; will coincide with the
projections on the one-dimensional spaces q;. Conversely, projections of vectors
in L; onto Z coincide with projections on g;. Namely, if we denote a vector in L;
by Fa, where a is a vector containing zeros with the exception of those k; elements
that correspond to the k; vectors of F;, then the projection of Fa onto the space Z,
spanned by FW, is given by:

FW(W'BW) ‘W F'Fa=FWR 'W Ba=FWR ™ 'RW'a
=FWW'a=Fywjw;a), (3.9)

which is a vector in the space spanned by g;= Fw;. In the next subsection, we
shall see that these projections have a special meaning if we use bases of indicator
functions. Then we also have special interpretations of the conditions (3.3) and
(3.7).

3.3. The interpretation for bases of indicator functions

In the first section, where we used indicator functions, we derived a relation
between the optimal MCA-quantifications y;, and the object scores:

V=D; G,

This indicated that the projection of x, on the subspace spanned by G, coincides
with the projection on the one-dimensional space of the transformed variable
G,yjs- As the vectors of G; are indicator functions, we have a special interpretation
for the operator D; 'G;. Variable h; partitions the objects, or individuals, into k;

subgroups, indicated by the categories of variable h;. The number of objects in
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these groups can be found in the diagonal of D;= G G;. The averages of a variable,
for instance x, for these k; groups can then easily be formed by:

i
D; 'Gx,.

The averages y; lie on the regression line of the linear regression of x, on y;; (or
G;y;,)- In fact, linear regression means projecting a vector on another vector, and
a non-linear regression could be defined as the projection of a vector on the space
of all non-linear transformations of another vector. In the present case of discrete
data, non-linear regression means projecting onto a subspace L; or G;. If these
two regressions, linear and non-linear, coincide, we say that the regression is
linearized. In the present case this means that no other transformation of h;, than
G,y;s» gives better predictions of x,. The variance between the groups can be fully
explained by a linear function of Gy;,.

For stochastic variables the ‘percentage of variance between groups’ is
expressed in the correlation ratio:

Var(E(x,|X,))
c.r.(xlxz)——vm)———, (3.]0)

which is the ratio of the variance of the conditional expectation of x, given x,,
and the variance of x, . If the conditional expectation lies on the regression line,
then the correlation ratio equals the squared correlation r?. For discrete
variables the correlation ratio can be simply related to the projection on a
subspace G;.

Returning to MCA, the relations between the transformed variables can be
formed by using (1.10):

Y. D Cun=y ¥ (3.11)
1

This indicates that the average regression of y, on y;is linear: the summation of the
projections of all G,y,(I=1, . . ., m) on G;is in the one-dimensional space of G;y;.
Let us now consider the situation where (3.3) or (3.7) is satisfied. The Burt table is

given by:
B=D"Y?cD~'?. (3.12)

If we normalize the transformed variables, y;D;y;= 1, then y; can be written as
y;=D; *w;. Condition (3.3) is then given by:

D' Cuy=y;ry. (3.13)

We now see that all regressions between the transformed variables are linearized.
Hence, all correlation ratios equal the squared correlations. These findings are
important because now the correlation matrix accounts for the whole bivariate
relationship amongst the transformed variables, whereas it usually only gives
linear relations.
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4. SOME THEORETICAL EXAMPLES

Some reflection shows that the ideal conditions (3.3) and (3.7), which we
discussed in the previous section, will usually not be met in practice. Very often
the ideal situation can only be approximated. However, in this section we shall
discuss some examples for some of which the conditions underlying this ideal
situation are always met.

4.1. The trivial solutions

When discussing MCA in the first section, we observed that indicator functions,
used as bases of the subspaces of non-linear transformations, generated
meaningful solutions, as well as a number of trivial solutions. As we shall see,
these trivial solutions have a quite natural place within the framework of the
previous section. In fact, they give a trivial example where the condition (3.3) is
always met.

We have already noticed that, by using indicator functions, condition (3.3) can
be transformed as follows.

Dy 1Cjzyz =V

This condition has a trivial solution given by: r;=1 and y;=un"'2(j, =
1,...,m) where the elements of u are units. All trivially quantified variables
Gun~'?=un"1/% have a length equal to unity and they coincide completely.
They span a one-dimensional space Z,. All elements of the so-called correlation
matrix are units:

R=Y'CY=ud (Y=y,#.. #,) 4.1)

This matrix has one latent root equal to m, and (m — 1) latent roots equal to zero.
These are the trivial MCA latent roots. The consequent strong orthogonality
implies that the space Z is orthogonal to all other transformed variables. Thus
all other, meaningful transformed variables are in deviations from the mean, and
the matrices R, can be regarded as correlation matrices in the usual sense.

4.2. Analyse des correspondances: m=12

If we apply MCA to a data set of only two variables, the supermatrix of
bimarginals has only one contingency table as submatrix. It is well known that, if
we apply a similar analysis to this contingency table instead of to the supermatrix
of bimarginals, the solutions agree up to a normalization and the latent roots can
be directly related to one another (cf. Gifi, 1981a). This technique of analysis is
called analyse des correspondances and it is discussed by many authors; see for
instance Benzécri et al. (1973), Nishisato (1980), Gifi (1981a) or Greenacre
(1984).
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In this case of two variables, condition (3.7) is always met. In fact, when all
submatrices B, can be diagonalized simuitaneously, then condition (3.7) is
satisfied:

K;szKz =R jl»

and this will always be possible when there are two variables, since then only one
submatrix B,, has to be diagonalized. In that case a solution for (3.7) can be
found easily by taking singular vectors of B, ,. The orthogonal spaces Z, are now
spanned by two vectors, and the corresponding correlation matrices R, have only
one subdiagonal element which equals the singular value r,, of B;,. The MCA
latent roots are consequently one plus the singular value and one minus the
singular value.

In the case of analyse des correspondances, the regressions between the
transformed variables are always linearized and the quantifications are always
strongly orthogonal. Of course, in this case, NCA is not very meaningful.

4.3. Dichotomous variables: k;=2

For dichotomous or binary variables, the regressions are by definition linear,
because a straight line can always be drawn through two points. If k;=2, the
subspaces L; are two-dimensional. However, one dimension is due to the trivial
solution Z,, which means that the variables can be quantified in deviations from
the mean in only one direction. The frequencies directly induce a quantification,
and similar to the case of numerical data, there is nothing to quantify. We simply
compute the product-moment correlations (phi-coefficients, or point-correla-
tions) and perform a PCA of the correlation matrix.

4.4. Normally distributed variables

Hitherto, we have assumed the dimension of a subspace L; to be finite. In this
section we shall consider subspaces of infinite dimensions. We have seen that the
indicator functions are a perfectly satisfactory basis if L; is the space of all
non-linear transformations of a discrete variable which assumes only a finite
number of values. However, if the number of categories of the variables is very
large and close to the number of observations, difficulties might arise. In that case
the use of indicator matrices is no longer satisfactory: for they will be close to a
permutation of the identity matrix. Next to G, this will also be true for the
matrices D; and C;;. Consequently, all latent roots of the multiple correspon-
dence problem will be close to either zero or one, and the latent vectors will be
very unstable and rather uninteresting.

This solution occurs for continuous variables. For, in practice, dealing with
continuous variables really means dealing with discrete variables with a very
large number of categories, close to the number of observations. In these cases the
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space of all non-linear transformations is simply too big, because it is
approximately equal to the whole space L, and if each L; is approximately equal
to L then non-linear PCA does not make sense. Thus, we want to approximate
the space of all non-linear transformations by using small-dimensional
subspaces. Indicator functions correspond with approximations of non-linear
functions by step functions. In the theory of the approximation of functions, it is
well known that step functions give poor approximations of continuous or
smooth mappings. A classical alternative is given by polynomials. Although
polynomials have many attractive theoretical properties, they are not very
suitable for approximating general continuous functions. The basic problem is
that polynomials are too rigid; if we change a coefficient then the whole
polynomial changes. Therefore polynomials of a very high degree are needed for
the approximation of functions which do not behave in the same way over the
whole range. A more satisfactory alternative is given by the so-called B-splines
(De Boor, 1978). We shall not go further into this matter, this being dealt with in
the Chapters 2 and 3. However, we will give an example in which polynomials are
used. The theoretical example of this section is given by the multinormally
distributed variables, for which it is known that all bivariate regressions are
linearized, that is to say, condition (3.7) is satisfied. Suppose the random
variables x;, (j=1, . . . , m) are jointly multivariate normal, with zero means, unit
variances and correlations p;. The subspaces of non-linear transformations are
given by:

L;={¢,(x;)|var{¢,(x;)} < oc}. (4.2)

The mapping ¢; are assumed to be measurable. As a basis for L; we use

Hermite-Chebyshev polynomials ¥, (.), of degree v=0, 1,... which are
orthonormal on the normal distribution:

J U0 (x)N(x) dx=6(v, 1) (43)
where (v, x) is the Kronecker delta. We can now expand ¢;(x;) as,
d’j(xj):Z ajv‘/’v(xj)- 4.4)

For the covariance of ¢;(x;) and ¢,(x;) we have,

cov. (;(x), du(x) =Y 3. a;,a,00v.(Y,(x,), ¥, (X)) 4.5)

The following identity is due to Mehler (cf. Lancaster, 1969),
cov. (¥,(x;), ¥, (x))=4(v, x) (P))" (4.6)
where p;, is the correlation between x; and x,. Clearly then,

cov. (¢;(x;), ¢l(xl))=z a;,a,(pj)" - 4.7)
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With respect to (4.6) we could say, in the terminology of the previous section, that
polynomials of the same degree, ¥,(x)), . . . , ¥,(X,,), span a space Z,, orthogonal
to all other spaces Z,, spanned by polynomials of another degree, y#v. This
means that we could as well have taken the polynomials of a certain degree
directly as the (normalized) non-linear transformations. For then condition (3.7)
is satisfied. The MCA and NCA solutions are again generated by the latent root
solutions of the correlation matrices:

R(v)avzwav, y= l, 2, ey (48)

where R™ has elements (p;)’. Thus, for every matrix R® we find m MCA
solutions and C (m,p) NCA solutions. It is implied by general results on
Hadamard products (Styan, 1973) that the largest latent root of R cannot be
smaller than the largest latent root of R?, which in its turn cannot be smaller
than the largest latent root of R®, etc. For the smallest roots the converse holds.
The largest and smallest MCA latent roots are, consequently, the largest and
smallest roots of R‘Y, and both correspond to linear transformations.

The second largest latent root is more of a problem. It can either be the
second largest latent root of R, or the largest latent root of R®. In the
former case, both the first and second MCA dimensions correspond to linear
transformations; in the latter case the first MCA dimensions corresponds to a
linear transformation, whereas the second dimension corresponds to a quadratic
transformation.

For homogeneous variables, the largest latent root of R will be considerably
larger than the second latent root of R'"), and usually also the largest latent root
of R® will be larger than the second root of RY. Thus, homogeneous variables
approximating the normal distribution usually have mappings (into the first two
dimensions) which approximate parabolas: horseshoes.

For general ordinal conditions for data matrices to have horseshoe mappings
we refer to Schriever (1986). The question, however, is whether this second,
quadratic transformation contributes to our knowledge about the relations
amongst the variables. In his doctoral thesis de Leeuw (1973) writes: ‘As pointed
out by Bartlett [1953] and McDonald [1968], in the classical case we suppose,
more or less implicitly, that the component scores are stochastically indepen-
dent’. In the present case there is a simple non-linear relation between the
components and, obviously, the dimensions are not independent. As we noticed
before, correlations can only fully account for the bivariate relations amongst the
variables if the regressions are linearized. In our case, the regressions between the
linear transformations and the quadratic transformations are not linearized at
all; they are ‘parabolized’. The non-correlatedness of the dimensions says nothing
about the non-relatedness of the dimensions. Thus, in case one finds a horseshoe
mapping, it is best to consider only the correlation matrix of the first MCA
solution, or NCA solution. See also van Rijckevorsel (1987).
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The NCA solutions are always generated by one of the R,
R®, ... matrices. In practice, it is usually the first matrix R, which is the
original, non-transformed, correlation matrix.

We discussed some situations where (3.3) and (3.7) hold. Data analytically the
situations in which these properties are approximately true are just as interesting.
Often we do not know nor can we find out beforechand how the data are
distributed or whether there exist any other dependencies. If simultaneous
diagonalization is approximately true the correlations in the off-diagonal blocks
must be small; the percentage of corresponding dimensions between the
eigenvectors of R, R?, ..., R@ and the observed complete set of homoge-
neity analysis scores is a measure for the existence of the blockwise rank-one
structure. One can compute the correlations between the approximately
diagonalizing eigenvectors and the actual homogeneity analysis transformations.
De Leeuw (1982) and Bekker (1983) respectively constructed an algorithm and a
computer program (PREHOM) to this purpose. The practical value of the
program is not that obvious, but an application provides a tangible illustration of
the blockwise rank one approximation. To this purpose we show the following
example by van Rijckevorsel (1987) using the Holmquist data.

Pathologists study biopsy slides of the uterine cervix in order to classify
carcinoma in situ and related lesions into five classes:

1 =negative

2 =atypical squamous hyperplasia

3 =carcinoma in situ

4 =squamous carcinoma with early stromal invasion

5=invasive carcinoma

cf. Holmquist, McMahan and Williams (1967).

The major decision to give treatment or not is usually based on the fact whether
a slide belongs to the classes 1 or 2 (=no treatment) or to the classes 3, 4 or 5
(=treatment). If several pathologists study the same set of slides we would like
their judgements to be consistent at least with respect to give treatment or not. In
practice this is an ideal and unrealistic situation because there exists no absolute
true scale of slides that is perfectly partitioned diagnostically. Even for the best
pathologist in the world there occasionally exist serious doubts about the right
classification of certain slides.

Slides and subsets are quantified by the parameters x and y respectively, and
the problem is to find a common scale x for slides and scores y for categories such
that the common scale is maximally consistent with all weighted judgements of
each pathologist G;y; simultaneously.

These data are of the rating scale type and they show a non-perfect horseshoe
in the first two dimensions of a homogeneity analysis. We do not report on this
analysis here. The eigenvalues with their approximations and the correlations
between the corresponding eigenvectors per axis are shown in Table 1.1
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Table 1.1. The eigenvalues of and the correlations between the homogeneity analysis
solution and its block diagonal approximation of the Holmquist data

Eigenvalues
0, 0, 0, 0, 0,
Actual 5.56 5.20 2.75 2.09 1.68
approximation 5.50 5.24 2.50 221 1.53
Correlations between the 0.92 0.92 0.84 0.82 0.87

corresponding eigenvectors

Without any extra assumptions the axes of the homogeneity analysis have
approximately a blockwise rank-one structure, at least in the first five
dimensions. This is more or less to be expected because of the type of data, the
number of variables, the number of categories and the occurrence of a horseshoe
in the first two dimensions. We observed a particular bad fit of pathologist no. 6
in the preceding homogeneity analysis; this is also reflected in a bad
approximation regarding the size of the off-diagonal correlations between
dimensions for this pathologist (not displayed). However, it is more efficient to
look at the percentage of overlap between corresponding observed and
approximated dimensions per pathologist. This can be expressed in chi square
per pathologist between observed and approximate transformations (Bekker,
1983) see Table 1.2. Pathologist no. 6 has the smallest overlap and is hence the
least diagonizable. Tentatively this could mean that no. 6’s response is not so
regularly distributed, is less of a rating scale type or is less order dependent than
the responses of the other pathologists. To locate this odd man out by block
diagonalization or by testing for order dependence in another way than by
ordinary homogeneity analysis is respectively too cumbersome or downright
impossible (there exist no statistical tests for order dependence (cf. Schriever,
1986)).

Table 1.2. The percentage of chi square in corresponding dimensions of the Holmquist

data

Pathologist Averaged

1 94
2 97 2 97
3 93 98 3 96
4 98 98 97 4 96
5 98 97 96 96 S 97
6 81 93 97 90 95 6 92
7 100 98 93 98 99 96 7 98




