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1 Introduction

Multilevel statistical models are a relatively recent development. The basic
idea is that one’s data are nested, and the goal is to characterize how the
different levels are related. The classic application is in educational research.

One might want to study how the socio-economic background of students
is related to the scores on some standardized test. But students are assembled
into classes. One might then be interested in how the relationship between a
student’s background and test score differs depending on the teacher-student
ratio of the class. Perhaps students from higher income households are better
able to capitalize on a favorable teacher-student ratio.

It would seem that one could explore this with conventional regression
analysis by including the relevant interaction term. But this would only take
you part of the way. The clustering of students within classes could well mean
that the regression disturbances were not independent. Then, conventional
estimates of the standard errors would probably be too small. Falsely narrow
confidence intervals and falsely powerful hypothesis tests would follow. A
Multilevel model for linear regression would solve such problems in principle.
There are a number of excellent textbook treatments available including Kreft
and De Leeuw (1998) and Bryk and Raudenbush (2002).

Nested data are common in ecological research, but can be somewhat
more complicated to analyze. First, errors of the multilevel model can be
related not just as a function of clustering but as because of spatial proximity



more generally. The errors for observations that are closer together in space
may be more alike than the errors for observations that are farther apart.
A failure to properly account for such spatial autocorrelation will lead, as
before, to incorrect estimates of the standard errors. Second, one has allow
for the errors (or equivalently the conditional distribution of the response
variable) to have a non-normal but still specified distribution, such as the
binomial or the Poisson. Such flexibility is found in the generalized linear
model. For example, a binary outcome such as polluted or not might suggest
a binomial distribution as operationalized in logistic regression.

It this paper (and especially in the lengthy appendix), we present a gen-
eralization of multilevel regression models that allows for spatially dependent
errors and for the class of link functions and conditional error distributions
found with the generalized linear model. An application will also be pre-
sented.

2 Some Basics: A Very Simple Illustration

Suppose one is interested in the diversity of fish species living around coral
reefs and in particular the impact of preserves. Do fishing preserves increase
species diversity? Data come from a set of transects from two different kinds
of reefs: one protected from all fishing and one unprotected. Along each
transect, data are collected from four locations 5 meters apart. Transects
are taken here as the observational units at the lowest level while the reef
is taken to be the observational unit at the highest level. For this simple
illustration, we will ignore locations within transects. The response variable
is a measure of species diversity. The two predictors are the percentage of
the ocean floor that is sandy and whether the reef is protected or not. The
former is taken to operate at the first (or “micro”) level while the later is
taken to operate at the second (or “macro”) level.
At the“micro” or “first” level let

diversity;; = Boj + Bijsandy;; + €, (1)

where parameters are subscripted as 0 and 1, ¢ refers to the transect, j to
the reef, and ¢;; is the usual regression error term. A key point is that the
errors are assumed to be independent. The subscript j attached to the slope
and intercept implying that each reef can have its own equation.



The researcher would like to systematically characterize the similarities
and differences in these equations across the two reefs. One strategy would
be to employ a fixed effects model with an indicator variables for reef. In
principle, one could allow for different intercepts and different slopes.

But this may be unsatisfactory for at least three reasons. First, allowance
would have to be made for the possibility of different error variances in the
different schools. Second, the number of parameters to be estimated could be
very large. Third, the role of the whether the reef is protected or not has not
been considered. In response, one might specify the following relationships
(as but one of several possibilities) for the parameters in the first-level model.
One might write:

Bo; = Yoo + Yorprotected; + Sy; (2)

and,
B1; = Mo + yuiprotected; + 045, (3)

where reef-level errors dp; and 0, are uncorrelated with each other and the
transect-level errors.

The intercept is now a random variable with vy the mean diversity for
unprotected transects, vy the change in average diversity in the protected
transects, and dy; the source of the uncertainty. The slope is now also a ran-
dom variable with vy; the slope in unprotected transects, 7;; the change in
the slope in protected transects, and d;; the source of uncertainty. Whether
the reef is protected is allowed to affect both average species diversity and
how the composition of the ocean floor translates into species diversity. Sub-
stituting equations 77, 77 into equation 77,

diversity,; = (Yoo + Yoiprotected; + do;) +
(710 + Y11protected; + 61;)sandy;; + €, (4)

which simplifies to

diversity;; = oo + Yorprotected; + yipsandy;; +
Y11 (protected; x sandy;;) + (d1;5andy;; + doj + €i5)- (5)

Equation ?7? is a conventional linear regression with a main effect for the
composition of the ocean floor and for whether the reef is protected, and an
interaction effect between composition of the ocean floor and whether the
reef is protected. As such, there is nothing mysterious. However, the er-
rors no longer have constant variance because of the product of sandy and



the reef-level errors associated with the first-level slope parameter. Applying
least squares to equation 77 will produce unbiased estimates of the two re-
gression coefficients and intercept, but because of the usual constant variance
assumption, get the estimates of the standard errors wrong. However, there
are a wide variety of consistent estimators that do a much better job with
the standard errors.

3 Some Generalizations

The multilevel framework can be generalized beyond this simple example
in a number of ways. Perhaps most obviously, one can include a number
of predictors at each observational level. The risk is high levels of multi-
collinearity. When multilevel models are constructed, it is rare for reserchers
to do the substitution illustrated in equation ??. It may then not be appar-
ent how many interaction terms are being added to the model and how much
instability can be generated as a result.!

A second elaboration of the bacic model is to employ a mix of random and
fixed effects for different coefficients. A major hurdle is to make the case that
random effects are sensible. It is one thing to assert as a technical matter
that the model’s intercepts, for instance, behave as if drawn independently
and at random from a particular distribution, but quite another to make a
convincing case that nature happens to operate in so convenient a manner.
One must argue from subject-matter knowledge that such an account makes
good sense. Typically this will be very difficult to do.

A third elaboration is to employ response variables within the framework
of the generalized linear model. Common examples are binary response vari-
ables and count response variables. While moving beyond the normal linear
regression model to the binomial or the Poisson may be relatively small step
conceptually, for multilevel models it complicates enormously the estimation
procedures. One consequence is that there may be more than one solution
to the estimation problem so that the algorithm may converge to a local, not
global result. It is vital, therefore, that the output be carefully examined to

Tt is often very useful to do those substitutions and estimate the resulting model
with ordinary least squares. Recall that the estimates of the regression coefficients are in
principle unbiased. Then, one has easy access to all of the usual regression diagnostics,
including those for multicollinearity. Careful examination of those diagnostics can be very
enlightening and rather humbling.



determine if it makes scientific sense. It can also be helpful to estimate the
model’s parameters several times using different start values. If all of the
results look about the same, all is probably well. If not, one would need to
decide which results to accept and at the very least, report that there seem
to be several sets of plausible parameter estimates.

Finally, there is the matter of how to represent dependence among the
disturbances. Here we will focus on spatial autocorrelation, although the
same basic issues are raised by temporal autocorrelation. Note that there
are two sets of disturbances, one at the level of the transect and one at the
level of the reef. If in both cases, of the disturbances are not independent
(i.e., if they are spatially correlated), and one fails to take that formally
into account, the estimated regression coefficients can be unbiased, but the
standard errors will be wrong. To fix this problem, spatial dependence needs
to be part of the model.

There are two options. The first is capture as much of the spatial de-
pendence as possible in the predictors. This can be done with variables that
would be included on scientific grounds alone, or variables that are functions
of location per se. For example, if there are spatial coordinates, functions of
these can be included as predictors at both levels. Ideally, the functions will
have some instructive scientific interpretation. And there is the added ben-
efit that special software may not be needed (e.g., for a fixed effects model,
the usual software for the generalized linear model will suffice). Of course,
high multicollinearity can still be an important complication.

The other option is to build the spatial dependence into the variance-
covariance matrix of the disturbances. Most commonly this would be done
at first level (e.g., at the level of the transect) but in principle, it can be done
at either level or even both levels. Within each cell in the matrix is some
decreasing function of Euclidian distance; observations farther apart are less
alike. An exponential function is one popular approach. The reciprocal of
the distance is another. But, perhaps the key point is that the dependence
is being treated as a nuisance. There is no desire to extract a scientific story
about the role of distance per se.

Whether a researcher decides to capture potential dependence among
the disturbances in the structural part of the model or in through one or
more disturbance covariance matrices, there are never an guarantees that
the dependence is eliminated. There is rarely any theory or past research
providing a convincing formulation for how the disturbances are related over
and above the effects of the predictors. In the end, the decision about how



best to proceed may legitimately be a matter of convenience. In particular,
the choice could depend on the available software and how it performs with
different models. And it is probably true in general that representing the
spatial dependence in the structural part of the model will lead to more
reliable computation.

In the model we estimate below, we address the spatial autocorrelation
through the variance-covariance matrix of the disturbances at the first level.
We focus on the first level because the the first level units (e.g., sites) can be
quite close to one another. The second level units (e.g., reefs), in contrast
are often too far apart for spatial autocorrelation to be an issue.

The disturbance variance-covariance matrix of the level one units is n; x
n;, where n; is the total number of first level units within second level j. That
is, we allow for a different disturbance variance-covariance matrix for each
second level unit. We use the reciprocal of the Euclidian distance between
these units as the representation of the role of distance. More formally,

€; = HI/V]'E]' + ij (6)

where (; is a conventional regression error term assumed to behave as if
drawn independently and at random from some specified distribution. We
standardize W so that all of the rows and columns add to 1.0. Thus, 6 can
range from -1 to 41, and can be thought of as a single “autoregressive” pa-
rameter. Positive values imply that the spatial autocorrelation is positive
(the usual case) while negative values imply that the spatial autocorrelation
is negative. Values near 0 imply that spatial autocorrelation was either never
an important problem or that the spatial autocorrelation has already been
absorbed by the predictors in the model. Equation 7?7 denotes that each dis-
turbance at the first level is a) a linear combination of all other disturbances
within that level two unit, weighted by the reciprocal of the distance between
them and b) a new, conventional disturbance.?

4 Empirical Example

We have data from coral reefs along Olango Island in the Phillipines. There
are 33 sites with 4 transects in each. There are 14 sites in areas that are
protected; fishing is prohibited. There are 19 sites that are in unprotected

2The weight assigned in W to a disturbance with itself is 0.



areas; fishing is allowed (and is common). And the fishing can include such
very distructive practices such as poisoning fish. The data we analyze is an
aggregate or average over 4 equally spaced observations along each transect.
Thus, transects are our lowest level, and the second level is sites in the
multilevel spatial model.

To keep the exposition simple for now, we use the same formulation shown
in equations ?? through ??. The only difference is that the specific response
is the number of different fish species. Whether a reef is protected is coded
1 if the reef is protected and 0 otherwise.?

Predictor Coefficient | Std. Error
Protected (7y01) 5.58 3.75

% Sandy Bottom (710) -0.18 0.04
Protect X % Sandy (711) 0.05 0.08
Constant (go) 27.6 2.10

6 (AR parameter) 44 —

Table 1: Model for Species Counts Estimated by Augmentation Algorithm
(N=132)

Focusing first on the regression coefficients From Table 77, one can see
that if a reef is unprotected there are on average nearly 28 distinct fish species
at a site. At these unprotected sites, for each addition percent of the bottom
that is sandy, the number of species drops by .18; for every additional 10%,
the number of species drops by 1.8. In the protected sites, the number of fish
species is greater by 5.58. Finally, in the protected sites, the the negative
impact of a sandy bottom on the number of species is a bit less pronounced.
The regression coefficient of -.18 is now -.13. For every 10% increase in sandy
bottom, the number of species is reduced by 1.3.

The autogregressive parameter is .44, which is of moderate size. There is
some meaningful spatial autocorrelation in the residuals. When this is taken
into account, we see that the percent of the bottom that is sandy is easily
twice the standard error. The impact of a protecting a reef about 1.5 times
its standard error, statistically significant at the .10 level for a one-tailed test.
The coefficient for the interaction effect is less than its standard error. One

3Also, where as before we talked about reefs and transects, now we talk about sites
and transects. Earlier, there seemed no point in getting into details of the data collection.



should treat any formal tests with great caution, in part because the data
were not collected by random sampling, and there is no compelling model-
based sampling alternative. But if one chooses to take formal tests seriously,
the interaction effect is certainly be discarded.*

Predictor Coefficient | Std. Error
Protected (7y01) 3.14 3.39

% Sandy Bottom (v10) -0.12 0.04
Protect X Sandy (7y11) 0.09 0.08
Constant (yoo) 25.52 1.54

0 (AR parameter) - —

Table 2: Model for Species Counts Estimated by Ordinary least Squares
(N=132)

Table ?? shows the results when ordinary least squares is applied. From
a descriptive point of view, the results are about the same. But even though
the standard errors are (incorrectly) smaller in the OLS case,” the coefficient
for protecting the reefs is now smaller than its standard error. Hence the
case for protecting the reefs is not nearly a strong.

5 Conclusions

Multilevel models can be constructed for ecological data so that in many cases
the model corresponds better than conventional regression models to how the
data were generated. Multilevel models can also be more elegant and techni-
cally interesting. However, there is a price. The added complexity can lead
to a number estimation complications with the result that computer output
cannot be taken at face value. This is particularly true if formal statistical
inference is an important part of the enterprise. An important recommenda-
tion, therefore, is that conventional least squares regression should be applied
along with multilevel models. If the results are not dramatically different,

4A normal-normal plot of the residuals suggested that we were not terribly far off base
assuming normal errors.

5The standard errors that look the same are actually smaller in the next decimal place,
which is not report in the table.



the multilevel formulation may be preferred. If large differences are found,
the multilevel results must be treated with great caution.

There are a number of decisions the researcher has to make as multilevel
models are built. When are random effects preferred to fixed effects? If
random effects make sense, which particular formulations are most appropri-
ate. When there is concern about spatial dependence, how should that be
addressed, in the structural part of the model or in the variance-covariance
matrix of the errors? These concerns and others are beyond what one would
normally address in a regress analysis. With greater flexibility comes more
model specification decisions. And commonly, these decisions will have to be
made with very little guidance from subject-matter theory. There is the real
risk that arbitrary decisions will be made with the the results that findings
will be arbitrary as well.
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