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An alternating least squares method for iteratively fitting the longitudinal reduced-rank 
regression model is proposed. The method uses ordinary least squares and majorization sub- 
steps to estimate the unknown parameters in the system and measurement equations of the 
model. In an example with cross-sectional data, it is shown how the results conform closely to 
results from eigenanalysis. Optimal scaling of nominal and ordinal variables is added in a third 
substep, and illustrated with two examples involving cross-sectional and longitudinal data. 
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Introduction 

The linear model  and the reduced-rank regression model are generalized to situa- 
tions where  a dependence exists between observat ions on different occasions.  Thus,  
the techniques developed are intended for describing dynamic or longitudinal situa- 
tions, in contrast  to purely cross-sectional ones. The general f r amework  also includes 
spatial multivariate data, in which the input of  a given region influences not only the 
output  of  the region, but also the output of  adjacent regions, or regions in the immediate  
neighborhood.  In general,  our  models  are appropriate  for observat ions  ordered in some 
clearly defined way (time and space are merely  the most  obvious examples) ,  and when 
there is reason to suppose that close observat ions influence each other. 

Consider  the following empirical situation. At a number  of  occasions t = 1 . . . .  , 
T, we observe  two vector  variables x t  and Y t .  When Yt  is influenced by x t ,  (i.e., x t  is 
the cause o f y t )  , x t can be thought of  as an input variable,  and Yt  as an output variable. 
In econometr ics ,  x t is called exogenous,  and Yt  endogenous.  In psychometr ics ,  and in 
various other  areas of  applied statistics, x t is called the independent  variable,  and Yt  

dependent .  Thus,  we have two sets of  variables,  and the two sets play a somewhat  
different, asymmetr ic ,  role in our thinking. 

In multivariate analysis the occasions are often replications of  the same basic 
structure,  and the index t denotes  individuals or objects,  considered as a sample f rom 
some well-defined population. It  is assumed that there is no causal connect ion be tween 
variables with different indices. Thus x I influences Y l,  x2 influences Y2, and so on, but 
there is no influence o f x l  on x2 or on Y2- This is called the independence assumption.  
Another  important  aspect  of  this type of model is stationarity,  where  the influence o f x  I 
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on y I is supposed to be the same as that o fx  2 on Y2, and so on. Such models are at the 
basis of regression analysis, and of linear models generally. 

There is also a slightly more complicated class of independent and stationary 
models, which goes under various names: reduced-rank regression models, growth 
curve models, MIMIC models, or errors-in-variables models. Here, the influence of x 
on y is mediated by an unobserved latent vector variable z, with x determining z, and 
z determining y. In general, the number of latent variables in z is smaller than the 
number of variables in x or y, and in this sense, z filters the relationships between the 
two sets of variables. We call the space of the variables in z the latent or state space, 
and we use p for its dimensionality. For various versions and applications of reduced- 
rank regression, we refer to Anderson (I 951, 1984) and Jrreskog and Goldberger (1975). 
Alternating least squares algorithms for fitting reduced-rank regression models have 
been discussed by de Leeuw and Bijleveld (1987). 

If the independence assumption is dropped in the reduced-rank regression models, 
the dynamic generalization we discuss is obtained, which as pointed out below is 
identical to the state space models studied in mathematical systems theory (Kalman, 
Falb, & Arbib, 1969). State space models have been discussed recently in the context 
of covariance structure models by MacCallum and Ashby (1986) and Otter (1986). 
Because we have social and behavioral science applications in mind, however, a quite 
different algorithm is developed in this paper that does not rely on the assumption of 
multinormal errors and allows for optimal scaling of the input and output variables. 

State Space Models 

To simplify the discussion, we shall use several concepts borrowed from factor 
analysis. Explicitly, in factor analysis, m variables in the vector y = ( y 1 ,  • • • , Y m ) '  are 
observed that are correlated. It is assumed that there exist p unobserved variables or 
factors in the vector z = (z l, • • • , Z p ) '  that "explain" the association between the 
observed variables, in the sense that the observed variables are independent given the 
factors. In the reduced-rank regression model, the dependence of the output y on the k 
variables in the input vector x = (xl . . . . .  xk)' is decomposed into dependence of the 
output y on the latent factor z, and dependence of the latent factor z on the input x. In 
the dynamic case, there is the unobserved state variable z to mediate the influence of 
the input x on the time-dependent y. This dependence of the output variables is ac- 
commodated by assuming that all influence of the past on the present is mediated by the 
present state variables. This first and basic assumption renders the model Markovian. 

The state space model can be written as follows: 

Zt = F z t - I  + Gxt  + Et,  (1) 

Yt = Hzt + ~t, (2) 

with F the p by p matrix containing parameters specifying the influence of the past p 
states z t -  1 on the present p states zt, G the p by k matrix with parameters specifying 
the influence of the k input variables x on the p state variables z, and H the m by p 
matrix with parameters specifying the influence of the p state variables z on the m 
output variables y. The errors terms et and 8t are needed since we do not expect a 
perfect fit to real data. 

In the multivariate normal situation the random variables e t and 8t each have 
independent centered multivariate normal distributions, where e t has covariance ma- 
trix Q and 8 t has covariance matrix W. The maximum likelihood method can be used 
to estimate the structural parameters of the system (e.g., Hannan& Deistler, 1988; and 
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Ljung, 1987), which can be viewed as an attempt to approximate the distribution of the 
series as closely as possible. In contrast, our emphasis is on approximating the actual 
matrix of observations, and the fitting of the structural parameters in the matrices (F, 
G, H) combined with optimal scaling of the variables. It is possible, under fairly re- 
strictive assumptions, to combine optimal scaling with maximum likelihood (de Leeuw, 
1988, 1989), but the algorithms for (alternating) least squares estimation are simpler, 
and developed in much more detail. 

Fitting (1) and (2) to data implies finding Z and (F, G, tt) such that 

Z = B Z F '  + X G ' ,  (3)  

Y = ZH' ,  (4) 

with Z the T by p matrix of latent states from time 1 up to time T, BZ the T by p matrix 
of latent states from time 0 up to time T - 1, X the T by k matrix of input variables, and 
Y the T by m matrix of output variables, both from time 1 up to T. Thus, B is the T by 
T shift matrix, also familiar from the ARMA approach to time series analysis. The shift 
matrix B constructs the state at time 0, z 0, as a weighted sum of the states from time 1 
to time T, {Zl . . . .  , zr}. In the following we always choose B such that z0 = zl ; choices 
such as z 0 = 0, or z 0 = mean (zl, • • • ,  ZT) are possible too, and have no effect on the 
algorithm itself (see Bijleveld, 1989, pp. 83-85). 

It is a key result in system theory that a smallest value of p for which (3) and (4) 
are solvable can be found by algebraic means, and that the solution corresponding with 
this value of p (the so-called minimal realization of the system) can also be computed 
exactly (Kalman, Falb, & Arbib, 1969, especially chapter 10, pp. 288-308). There are 
many algorithms that compute the minimum realization, but in social science situations 
with high error levels, these algorithms will yield spuriously high estimates of the 
dimensionality (comparable to finding the number of common factors needed for an 
exact fit). Thus, we are not interested in computing the minimum dimensionality needed 
for an exact solution, but in computing an approximate solution in a given dimension- 
ality. The considerations here are the same as in ordinary factor and component anal- 
ysis. 

There is a special case of (3) and (4) which occurs quite often. If there is no input, 
the state space model is written as 

z = BZF' ,  (5) 

Y = ZH' .  (6) 

Models without measured input are sometimes called dynamic factor analysis models 
(Immink, 1986; Molenaar, 1981). Because we do not explicitly model errors, and con- 
sequently, do not distinguish common and unique factors, it is more appropriate to call 
(5) and (6) a dynamic component model. Also, the special case of (3) and (4) with F = 
0 gives the (cross-sectional) reduced-rank regression models studied earlier with similar 
techniques by de Leeuw and Bijleveld (1987). 

Defining the Loss Function 

The techniques presented in this paper choose the unknowns Z and (F, G, H) in 
such a way that the sum of the squares of the prediction errors is as small as possible. 
In later sections we shall also consider the case in which the input X and the output Y 
are partially unknown (for instance, known only up to monotone transformations). The 
computational problem we consequently discuss is the minimization of 
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o',o (Z, F, G, H) = ~o2SSQ(Z - BZF '  - XG')  + SSQ(Y - ZH ' ) ,  (7) 

where SSQ(.) stands for the sum of  squares, over all its arguments. 
The weight ~o can be used to adjust for the relative importance of predicting the 

output. If  w = 0, the first term in (7) becomes irrelevant, and minimizing (7) degenerates 
to the principal component analysis of the output. The limiting case with w--> m is more 
interesting. To study it properly, observe that the first part of the loss function can 
always be made equal to zero (even if F and G are fixed at known values). We merely 
need to choose z 0 arbitrarily, and then recursively compute zt = Fzt-1 + Gxt. Thus 
z{ = Fz 0 + Gx i, z 2 = F2z0 + FGx 1 + G x  2 ,  and so on. I f z  0 is fixed to make things 
simple, Z is a function of  F and G, which can be written as Z(F, G). Define 

o-~(F, G, H ) =  S S Q ( Y -  Z(F,  G)H' ) ,  (8) 

and o-~(*, *, *) as the minimum of (8). Write F~, G~, H~ for the minimizers. Thus, 
minimizing (8) amounts to a principal component analysis of the output, with restric- 
tions z t = Fzt-!  + Gxt on the component scores. Invoking the general theory of 
penalty functions (Zangwill, 1969, pp. 254-261) immediately gives the following result, 
where a(oJ) is the minimum of o'~o over F, G, H, and Z, and F(w), G(w), I-I(w), and Z(w) 
are the minimizers of  (7). 

Theorem 1. If  oJ --> 0% then 4 0 )  ~ ~r~(*, *, *), F(o) --> F~, G(w) ---> G~, H(w) --> 
H~, and Z(w) --* Z(F~, G=). 

If  0 < w < ~, the situation becomes a bit more complicated, since unconstrained 
minimization of (7) over F, G, H, and Z is not useful, as Theorem 2 indicates. We first 
discuss an auxiliary result. Defining o-* = min SSQ(Y - ZH'),  o'* can be found from the 
singular value decomposition of  the output Y. 

Theorem 2. Inf o-,o(Z, F, G, H) = or*, and the infimum over F, G, It, and Z is only 
attained in very special cases. 

Proof. It is clear that o-o,(Z, F, G, H) -> o-*. Now, take F 0 and Go arbitrary, Z0 and 
H0 from the singular value decomposition of Y, and, choose (G, H, Z) = (~G o, o~-lH 0, 
o~Zo). Then, o-o~(Z, F, G, H) = ~2SSQ(Z0 - BZoF0 - XG~)) + o'*, and letting a--> 0 
makes O-oj(Z, F, G, H) ~ w*. The minimum is attained if and only if F and G are chosen 
such that SSQ(Z0 - BZoF' - XG') = 0, which is possible if and only i fZ  0 is in the space 
spanned by the columns of BZ 0 and X. []  

Thus, unrestricted minimization of (7) is not a good idea, because iterative proce- 
dures will produce a trivial solution with a very large H proportional to H0, a very small 
Z proportional to Z0, and an arbitrary, but also very small, value of  G. Therefore,  we 
impose the normalization restrictions Z 'Z  = I. This is not merely a choice of  identifi- 
cation conditions, it is a significant restriction on the scores. It is chosen because of the 
similarity to the restrictions used in factor and component analysis, and in other forms 
of  nonlinear multivariate analysis (Girl, 1990). It also corresponds with an intuitive idea 
that we should look for independent factors. Observe that in (3) and (4) it causes no loss 
of generality to require Z 'Z  = I, because orthogonalization of  Z can always be com- 
pensated by suitable modification of (F, G, H). 

Minimization of  (7) will be carried out using alternating least squares. Thus, we 
alternate the solution to two types of problems: first (7) is minimized with respect to F, 
G, and H for given fixed Z, and then over Z for fixed current F, G, and H, under the 
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restriction that Z'Z = I. The first type of  problem is then reconsidered,  and so on. The 
general theory of alternating least squares shows that this process  is convergent .  It is 
clear  that the subproblem of  the first type,  solving for F, G, and H for given Z, is a linear 
problem that is fairly easy  to solve. The subproblem of  the second type is much more  
complicated,  however .  

Algorithm 

Ordinary Least Squares 

Consider  the problem of  minimizing (7) over  F, G and H, for given current  Z. The  
solution for  H is straightforward,  since from (4), I:I' = Z ' Y  is the solution for  which 
SSQ(Y - Z H ' )  is minimal. 

Write R for the part i t ioned matrix: 

R = . 

G'  

From (5) it can be seen that this matrix may be writ ten as: 

R : ( B Z I I X )  + Z ,  

where "11" stands for horizontal concatenat ion,  and " ( B Z I t X ) + "  stands for the gener- 
alized inverse ((BZII X)'(BZII X)) - ~ (BZII X)'. Thus,  for F est imated as the t ranspose  of  
the first p rows of  R, and G est imated as the t ranspose of  the last k rows of  R, SSQ(Z 
- BZF'  - XG')  is minimal. 

Majorization 

Consider  the problem of  minimizing (7) over  Z, with Z'Z = I, and with the param-  
eters F, G, and H (temporari ly) regarded as known constants .  Write Z = Zol d + A, with 
Zold the current  best  solution, and define A = Z - Zotd- Now,  o-,o(Z, F, G, H) equals 

to2SSQ{(Zold - BZoldF'  - X G ' )  + (A - BAF')}  + SSQ{(Y - ZoldH'  ) -- AH'} .  

I f  P1 = Zold - BZoldF' - XG'  and P2 = Y - ZoldH' are the two matr ices of  residuals 
for  the previous solution, then 

t r , , (Z ,  F,  G,  H) = tr,o (Zold, F, G,  H) - 2to 2 tr  A ' ( B ' P I F  - P l )  - 2 tr  A ' P 2 H  

+ to2SSQ(A - B A F ' )  + S S Q ( A H ' ) .  (9) 

N o w  suppose  a bound can be found of  the form 

o~ 2SSQ(A - B A F ' )  + S S Q ( A H ' )  -< TSSQ(A) ,  (10) 

where  3' depends on B, F, and H, and define 

S = 3 , - I ( to2B 'P1F  + P2H - to2p1). (1 1) 

Then 

tr,o(Z, F, G,  H) ---< cr,0(Zola, F, G,  H) + 3,SSQ(A - S) - TSSQ(S) .  (12) 

But SSQ(A - S) = SSQ(Z - ( Z o l  d + S) ) .  An iteration step of this algorithm consists  
of  minimizing SSQ(Z - (Zold + S)) over  Z satisfying Z'Z = I. This is a simple Pro- 
crustes problem (Cliff, 1966), whose solution is well-known. I f  Zol d + S = KAL '  is a 



438 PSYCHOMETRIKA 

singular value decomposition, then Zne w = KL' is the solution of the minimization 
problem. If Zne w = Zold, the algorithm can be stopped. After computing Znew, set 
Zol d = Znew,  and repeat the computations. Thus, instead of minimizing the complicated 
loss function (9) itself, (9) is minimized indirectly through a majorization algorithm, in 
which the simpler toss function at the right hand side of (12) is minimized, of which it 
is known that its values are always higher than or equal to those of (9). 

Theorem 3. The algorithm Zne w = KL', with (Zol d + S) = KAL' and S given by 
(11), converges to a stationary point (i.e., to a point satisfying Zne w = Zold)-  

Proof. The convergence proof of the procedure is based on the chain 

o',o(Znew, F, G, H ) =  

min{o'o~(Zold, F, G, H) + ySSQ(Z - (Zold + S)) - ySSQ(S)[Z'Z = I} < 

O'~ (Zo ld ,  F, G, H) + y S S Q ( Z o l  d - (Zol d + S) - ySSQ(S) = o-,,, (Zold, F, G, H). (13) 

Thus, the transformation Zol d -'---> Zne  w decreases the loss function (strict inequality 
actually exists in (13) because the process is stopped if Zol d = Znew). Because the 
transformation is generally continuous (excluding the degenerate case of zero singular 
values) it follows from Zangwill (t969, chap. 4, pp. 89-94) that convergence occurs to 
at least a stationary point. []  

Thus, the method for estimating F, G, H, and Z goes as follows. Start with initial 
values for, for instance, Z. Compute optimal values for F, G, and H using ordinary least 
squares; given these estimates, compute optimal values for Z using the iterative ma- 
jorization procedure outlined above; compute the loss. This constitutes one step of the 
algorithm. Start the second step using the latest estimates of Z to estimate new optimal 
estimates of F, G, and H, compute new estimates of Z, and so forth. Instead of using 
the iterative majorization procedure to estimate Z, it might be better (in terms of overall 
speed of convergence) to alternate a noniterative single Zold --> Znew substep with the 
(F, G, H) substep. 

Now consider what happens if not Zne w is used, but rather Z n e w M ,  with M an 
arbitrary rotation matrix. Denoting by stars arguments over which minimization oc- 
curs, it follows that tr(Zne w , *, *, *) = o'(ZnewM, *, *, *). Thus, the decrease of the loss 
function as a result of the two substeps taken together will be the same, and is inde- 
pendent of M. It follows that an update can be computed (much more cheaply) by 
setting Zne w = GRAM(Zotd + S), with GRAM(') the Gram-Schmidt orthogonalization 
(see Girl, 1990). 

There is one step in the actual implementation of the algorithm that is still unclear. 
This is the choice of y in (10). Write Amax(') for the largest singular value of a matrix, 
and define A as the partitioned matrix of order T(p + m) by Tp: 

A = I ® H  " 

Theorem 4. If ~/-> A2ax (A), then (10) is true. 

Proof. Define 8 = vec(A). Then the left-hand side of (10) can be written as 8'A'AS, 
from which 8'A'A8 --< 8'SA2ax(A). 
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By using the results on Theorem 4, in combination with the earlier results, a 
monotonically convergent algorithm is obtained for minimizing (7) over F, G, and H, 
and all Z such that Z'Z = I. This does not guarantee, of course, that convergence is fast 
enough for practical purposes, and certainly not that the solutions found by the algo- 
rithm will be satisfactory. This will have to be studied by extensive numerical studies, 
and by the analysis of practical examples. 

Comparison of Eigenanalysis and ALS Results 
Several analyses were performed to show the effect of the choice of w, and to 

compare results obtained through the alternative method of eigenanalysis with results 
obtained with the proposed method. For this purpose we consider data on the fifty 
states of the USA. These data are cross-sectional for which it can be assumed that there 
is no dependence between subsequent measurements. Using cross-sectional data is, in 
a sense, not really what we are interested in, but their use simplifies some of the limiting 
results derived above, and similar results can be expected in the time-dependent case. 

We have used a version of these data taken from Meulman (1986, pp. 48-54), in 
which there is a total of twelve variables. The first seven variables are to be considered 
as input. They are, respectively, percentage of blacks (BLACK), percentage of his- 
panics (HISPA), ratio of urban to rural (URBAN), per capita income in dollars (IN- 
COM), life expectancy in years (LIFE), homicide rate (HOMIC), and unemployment 
rate (UNEMP). The last five variables are output variables, having to do with intellec- 
tual and educational achievement in the fifty states. They are: percentage high school 
graduates (HIGHS), percentage public school enrollment (PUBLI), pupil to teacher 
ratio (PUPIL), illiteracy rate (ILLIT), and failure rate on the selective service mental 
ability test (FAILU). 

Observe that for cross-sectional data, F = 0. Substituting in (7), and minimizing 
over G and H, shows that o-o~(Z, 0, *, *) = ¢0 2 tr Z'(I - X(X'X)-IX')Z + tr Y'(I - 
ZZ')Y, implying that the minimization problem is equivalent to the eigenvalue problem 
of maximizing the quadratic form tr Z'{YY' - o~2(I - XX')}Z over Z'Z = I, where X = 
GRAM(X). If ~o is large, then the penalty term forces the Z corresponding with the 
largest eigenvalues to be in the column space of X. Thus, the seven largest eigenvalues 
converge to those of X'YY'X, and the last five eigenvalues converge to the largest 
eigenvalues of X'__YY'X'_, with X_ a basis for the orthogonai complement of the 
column space of X (de Leeuw & Bijleveld, 1987). We computed the solution for o~ equal 
to 0, 1, and 10. Table 1 gives the ordered eigenvalues, when o~ is equal to 0 , 1 ,  and 10, 
with oJ z subtracted for the seven input variables. Convergence in fact was reached 
fairly rapidly. 

Next, the correlations were computed between the eigenvectors corresponding to 
the five largest eigenvalues, and the input and output variables X and Y. For o~ = 0, 
these eigenvectors are the principal components of the output; if oJ increases, they 
become related more and more to the input, and for large w they are in the space of the 
input variables. 

The same data were analyzed with the alternating least squares algorithm de- 
scribed above, for which we had written a program named DYNAMALS (linear DY- 
NAMic systems analysis by Alternating Least Squares). Again, the analyses were 
performed for co = 0, 1 and 10. The normalized fit of the respective DYNAMALS- 
solutions was: 1, .856 and .996. In each case, the results conformed closely to the eigen 
solutions. Also, the correlations of the input and output variables with the DYNA- 
MALS-estimated state variables z I to z 5 were approximately the same as those com- 
puted by the eigenanalysis: for the first dimension of the state zl no differences were 
found between the correlations from the eigen- and DYNAMALS-solutions, from z 2 
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TABLE 1 

Eigenvalucs for Various Values of t~ 

O~ 

eigenvalue 0 1 10 

1 2.674 2.543 2.245 
2 1.331 .685 .267 
3 .526 .223 .166 
4 .323 .076 .050 
5 .146 .036 .028 
6 .000 .000 .000 
7 .000 .000 .000 

8 .000 .703 1.166 
9 .000 .385 .528 

10 .000 .182 .269 
11 .000 .108 .209 
12 .000 .058 .071 

towards higher and less important dimensions of the state differences appeared, with 
the largest absolute difference found equaling .005. 

To summarize the influence of the weight ~o, Figure 1 provides the development of 
the correlations of the input and output variables with the states for to equal to 0, 1 and 
10. In the figure the dots are the correlations for to = 10; from these dots lines go to the 
solutions for to = 1 and subsequently to = 0. 

As expected, Figure 1 shows that the correlations of the seven input variables with 
the state increase for increasing to; the correlations of the five output variables with the 
state decrease. The correlations of the variables with the second dimension of the state 
change most; apparently this second dimension is less stable than the first. 

Optimal Scaling 

The alternating least squares techniques discussed in this paper can be combined 
easily with optimal scaling of the variables. This is illustrated, for example, in de Leeuw 
(1988). Instead of two substeps in a main iteration, one for updating F, G, and H for 
given Z, and one for updating Z for given F, G, and H, there are now three substeps: 
in the third substep the scaling of the variables in X and Y is updated, for given Z, F, 
G, and H. 

For the loss function (7) and for given Z, F, G, and H, the only part that depends 
on variable yj is of the form ssq(yj - ~j), where yj = Zhj. It follows that the update of 
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variable yj is of  the form yj +-- norm(proj(yj)), with proj denoting the projection on the 
cone of  admissible transformations and norm denoting the normalization to unit length. 
There is a norm in the update formula, because the transformed output variables are 
required to have mean zero and unit length for purposes of  identification. This, again, 
is the usual practice in nonlinear multivariate analysis. We use ssq and norm in lower 
case, because they are now applied to vectors and not to matrices. The admissible 
transformations can be the cone of monotone transformations,  the subspace of  nominal 
transformations,  a subspace of  spline transformations, and so on. For  details, we refer 
to the optimal scaling literature mentioned above. 

For  updating input variable xi, the situation is a bit more complicated. The relevant 
part  of  the loss function can be written as SSQ((Z - BZF' - X / G / )  -- xig~), with gi the 
i-th column of  G. Here ,  XiG~ contains the contributions of  the input variables except  
xi. I f  Xi = ( Z  - -  BZF' - XiG})gi/ssq(gi), ssq(xi - 'xi) has to be minimized, giving 
x i +- norm(proj(Xi)). Cycling over  the variables, changing them one at a time, gives the 
third alternating least squares substep. 
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Many variations of this algorithm are of course possible. Cycling over the scaling 
of X and Y can be performed various times before the update of Z and F, and G and H. 
The updating of Z and F, and G and H can be iterated until convergence before com- 
puting a new scaling of the variables. The general experience so far is that small 
improvements in each substep lead to simple computations and overall convergence at 
an acceptable rate, but no formal proof for this general statement is available. It is 
mainly based on practical experience, and on comparing the various combinations in 
other situations. 

Examples 

Analysis o f  Cross-Sectional American States Data 

The American states data, that were already analyzed above, were again analyzed 
with the DYNAMALS program; this time the seven input variables were treated ordi- 
naUy. This analysis was carried out with five dimensions for the latent state; the weight 
~0 was set at I. Compared to the numerical solution with w = 1 that was illustrated 
earlier in Figure 1, the normalized fit improved to .948 with ordinal treatment of the 
input variables. 

A picture of the American states' scores on the first two state variables, together 
with the correlations of the input and output variables with these state variables is in 
Figure 2. The correlations of the variables with the dimensions of the latent state are 
represented as vectors. The abbreviations used in the picture are NV (Nevada), UT 
(Utah), WA (Washington), CO (Colorado), CA (California), WV (West Virginia), GA 
(Georgia), OR (Oregon), WY (Wyoming), NC (North Carolina), AL (Alabama), MS 
(Missouri), SC (South Carolina), LA (Louisiana), KY (Kentucky), IA (Iowa), AR (Ar- 
izona), KS (Kansas), NE (Nebraska), NJ (New Jersey), NY (New York), AK (Arkan- 
sas), ND (North Dakota), and RI (Rhode Island). While all American states participated 
in the analysis, only those American states that had scores in the periphery were plotted 
in the Figure. 

From the Figure, on the first dimension, the vectors of ILLIT, BLACK, FAILU,  
and HOMIC point in approximately the same direction; in the opposite direction point 
INCOME, LIFEX, and HIGHS. On the second dimension, PUPIL and PUBLI load 
positively. The correlations of HISPA and UNEMP with either dimension were low, so 
they will not be considered in the interpretation. The first dimension may be interpreted 
as a poverty dimension; states with high scores on this dimension have high percent- 
ages of blacks, illiteracy, failure on the Selective Service mental ability test, high 
homicide rate, small percentage of high school graduates, low life expectancy, and low 
income. The vectors for HOMIC and INCOM/LIFEX are at almost opposite angles. 
The second dimension may be interpreted as an education dimension; while PUBLI and 
PUPIL are the variables that load on this dimension, they are at an angle of approxi- 
mately 50 degrees. States with low scores on this dimension like North Dakota, Ne- 
braska, and Arkansas on the left-hand side, and Rhode Island, New Jersey, and New 
York on the right-hand side have low pupil to teacher ratio's and small public school 
enrollment. States with high scores on this dimension like Nevada and Utah are marked 
by high public school enrollment. The results may be summarized as follows. Southern 
states such as Missouri, South Carolina, Louisiana, Alabama, and Georgia, situated in 
the right-hand part of the picture, are poor states; rich states are Wyoming, Iowa, 
Washington, Nebraska, Kansas, Oregon, and Colorado. States with high educational 
achievements are Nevada, Utah, Washington, Colorado, and California; on the oppo- 
site end are Rhode Island, New York, North Dakota, and New Jersey. 
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FIGURE 2 

Correlations of the variables with the latent states and latent state scores of the American states. 

Analysis of Time-Dependent Blood Pressure Data 
We present an example of the application of our technique in the analysis of 

time-dependent data, analyzing the relation between medication and blood pressure 
from data obtained for a 57 year old white male under medical treatment for hyperten- 
sion. For 113 days this patient recorded every morning and every evening, under more 
or less standardized circumstances, his diastolic and systolic blood pressure. Two other 
series of data were available. The first, called MEDICATION, registers the various 
medicines the patient took. As the patient was under medical treatment for hyperten- 
sion, blood pressure can be expected to decrease under the influence of the medicines 
prescribed. For the first 52 days of the recording period, the patient took 400 milligrams 
(mgs) a day of metoprololtartraat, abbreviated as "meto. 400 mg"; the patient then 
switched to 240 mgs a day of sotalolhydrochloride, abbreviated as "sota. 240 mg". 
After I1 days, a daily diureticum was added, abbreviated as "sota. 240 mg + diureti- 
cum",  and after another 16 days, the dosage of sotalolhydrochloride was lowered to 160 
milligrams a day, abbreviated as "sota. 160 mg + diureticum". The other series, called 
WEEKDAY, records the day of the week on which blood pressure was measured. As 
blood pressure can be influenced by stress and other factors, blood pressure might be 
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FIGURE 3 
Diastolic and systolic blood pressure measurements from day 1 to day 113. 
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expected to be generally lower in the weekends, and higher during the working-week. 
The diastolic and systolic blood pressure data are in Figure 3. 

Medication and weekday were thus the input variables; as no ordering of the 
categories is apparent for either of the two, they were treated as nominal variables. The 
diastolic and systolic blood pressures served as the output variables, and were treated 
numerically. Several analyses were carried out, for the morning and evening blood 
pressure measurements separately. The prescribed medication was not expected to 
take effect immediately, so for both morning and evening measurements, analyses were 
carried out for various lags for the medication variable. (For instance, for a lag of  one 
day for the medication variable, the relation was analyzed between medication from 
day I to day II2, weekday from day 2 to day 113, and diastolic and systolic blood 
pressures also from day 2 to day 113.) In all instances, one latent state variable was 
modeled, and the weight ¢o set at 1. 

The results from the analyses for morning and evening data with the various lags 
were fairly similar. The fits of the different solutions ranged from .854 to .879, and the 
interpretations were identical for all solutions. As an example, the solution for the 
evening measurements will be discussed, with a lag of one day for medication, which 
happened to be the solution with the best fit. The algorithm had converged in 17 
iterations to a normalized fit of .879. The correlations of input variables and blood 
pressure variables with the one-dimensional state are in Table 2. 

Weekday correlates barely with the states, but medication does. Systolic blood 
pressure correlates stronger with the state than diastolic blood pressure, which is 
somewhat contrary to expectation, as the diastolic blood pressure is always thought to 
be more reliable and important of the two; however, both correlations are fairly high. 
The transition matrix F (which, incidentally, is a I by 1 matrix here) equaled .78I, 
pointing to a moderate to strong effect of the prior state on the present state. To 
evaluate the effects of the various medicines, and of the days of the week, the category 
quantifications of the categories of medication and weekday are presented in Table 3. 

As the blood pressures have negative correlations and medication has a positive 
correlation with the state, medicines with a negative quantification had a-relatively- 
negative influence on the blood pressures, that is, they increased or did not decrease 
blood pressure. Blood pressure was lowered by the medication category with positive 
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TABLE 2 

Correlations of Input and Output 
Variables with the Latent State 

MEDICATION .861 
WEEKDAY -.051 

DIASTOLIC BP - .914  
SYSTOLIC BP -.943 

quantification. Especially during the first period when metoprololtartraat was used, 
blood pressure was high. The change to sotalolhydrochloride introduced a substantial 
lowering of blood pressure, but the diureticum had the largest impact on blood pres- 
sure. When the change from 240 mg to 160 mg of sotalolhydrochloride a day was made, 
only a small further improvement of the blood pressures occurred. The quantifications 
of weekday show that generally there was a slight increase of blood pressure through 
the working week, from low on Mondays to high over the weekend, but as the corre- 
lation of weekday with the states was rather low, no conclusions should be drawn from 
this. Summarizing, it may be said that a contribution to the lowering of this patient's 
blood pressure was made by the medication administered. The diureticum substanti- 
ated the decrease in blood pressure started by sotalolhydrochloride, after which the 
patient's blood pressures could be maintained at an acceptable level by a lower dosage 
of the same medication. The fact that blood pressure was not substantively lowered by 
the introduction of sotalolhydrochloride itself, but only when this medicine was given 
in conjunction with a diureticum, is in accordance with the experiences from the med- 
ical practice. 

TABLE 3 

Category Quanfifications of MEDICATION and WEEKDAY 

meto 400 mg -.095 
sota 240 rag. -.014 
sota. 240 mg+ diureticum .102 
sota. 160 mg+ diureticum .105 

Monday -. 145 
Tuesday -. 100 
Wednesday -.024 
Thursday .012 
Friday .014 
Saturday .095 
Sunday .147 
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Discussion 

The technique presented here is a very general one. The cross-sectional versions 
constitute various forms of errors-in-variables analysis, such as redundancy analysis or 
reduced-rank regression (de Leeuw & Bijleveld, 1987). The versions without input 
define various forms of dynamic principal component analysis. The possibility exists of 
weighting the importance of the input and the dynamics relative to weighting the output 
by choosing to, and the option is available to use the various variable transformations 
allowed by the Girl system of nonlinear multivariate analysis. This implies a consider- 
able gain in generality compared with existing techniques and programs, but, of course, 
this comes at a price. The first price is that there is no testable criterion to choose the 
dimensionality of the state space; secondly, the proposed method does not provide 
stability information. In the context of dynamic systems analysis there are two com- 
peting techniques. The first is the algebraic minimum realization method discussed 
extensively in Kalman, Falb and Arbib (1969); the second is the maximum likelihood 
method discussed, for instance, in Ljung (1987). In the algebraic method, the problem 
of finding the dimensionality of the state space is solved in a satisfactory way, at least 
from a theoretical point of view, and the problem of stability does not arise. The method 
will be quite unsuitable for practical social and behavioral science problems, however, 
which have high levels of errors and uncertain interpretation of state space variables. 
The maximum likelihood method yields stability information by employing suitable 
versions of the central limit theorem and law of large numbers, but of course for this 
method to apply we must assume normally distributed disturbances, which is often 
unrealistic. 

There are a number of interesting compromises between stability and realism. We 
do not suggest that we have seen them all, because, in particular, the engineering 
literature is so vast and difficult to translate into statistical terms. The most interesting 
alternative techniques, from our point of view, are the canonical analysis techniques of 
Akaike (1976) and Aoki (1987). It will be necessary in the future to compare the DY- 
NAMALS method with those developed on the basis of their results. Also, of course, 
additional experimentation and theory development is needed to study the stability of 
DYNAMALS solutions, and various problems related with choice of dimensionality. 
Such studies will be set up in the same way as the comparable stability and cross- 
validatory studies for other linear and nonlinear multivariate analysis programs. 

There is one problem that is, in a sense, specific to dynamic modeling. Solutions 
can be stable or unstable, depending on what is basically the size of F. If Amax(F) < 1, 
the values of the latent states would, with no influence from outside, converge to zero, 
a condition called stability. If one of the eigenvalues is larger than one, the values of the 
latent states would be ever-increasing, a condition of explosiveness. This is a different 
form of stability than the form studied in statistics, for instance by bootstrapping or by 
computing confidence intervals, but it is important for the interpretation to check if the 
solutions computed by the technique are stable or not. An unstable solution for F can 
be compared, in many respects, to a Heywood case in factor analysis, or a negative 
variance in variance component analysis. Further study is needed to assess the seri- 
ousness of this "improper solution" problem in the DYNAMALS technique. 
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