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MONOTONE CORRELATION AND MONOTONE DISJUNCT PIECES*

DEVENDRA CHHETRY’, JAN DE LEEUW:, AND ALLAN R. SAMPSON

Abstract. Suppose X, Y are random variables taking values on the m n lattice x < < Xm
y < < y, with Q Prob (X xi, Y y.) }. Let pcMc(Q) and PDMC(Q) be the concordant and discordant
monotone correlations defined, respectively, by the maximum and minimum of correlation f(X), g(Y) over
all f, g increasing with nonzero variances. A number of results concerning pcuc(Q) and PDuc(Q) and their
evaluations are obtained. One result shows that pcuc(Q) 1, if and only if Q consists of at least two in-
creasing disjunct pieces, i.e., Q Diag (Q, Q2). Necessary and sufficient conditions are also given for
PCMC(Q) ODMC(Q).

Key words, maximal correlation, concordant monotone correlation, disjunct pieces, monotone disjunct
pieces
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1. Introduction. Let X and Y be two discrete random variables taking values in the
mnlatticeS T--{Xl<... <Xm} {Yl<"" <Yn}with

Q qij} Prob (X xi, Y= yj.) },

where we assume r qi > 0 for all and c qi > 0 for all j. There is a substantial
literature in statistics and probability dealing with measuring the association between
the random variables X and Y (see Goodman and Kruskal (1979), Haberman
(1982) or Raveh (1986)). One such measure of association introduced by Hirschfeld
1935 is the maximal correlation coefficient p’(X, Y) (or p’(Q)) defined to be the
max { p(f(X), g(Y)) }, where p denotes correlation and the maximum is over all f and
g with nonzero variances. Clearly, 0 _-< p’(X, Y) _-< 1.

The properties of p’(X, Y) have been extensively studied (e.g., Richter (1949),
R6nyi 1959 ), Lancaster 1969 ), Sarmanov (1958a), (1958b), and Hall 1969 )). One
of the interesting and important results is that p’(X, Y) 0 is equivalent to X and Y
being independent random variables, and p’(X, Y) is equivalent to Q consisting of
at least two disjunct pieces, where this concept is defined as follows.

DEFINITION 1.1 (Richter (1949)). The probability matrix Q is said to consist of k
disjunct pieces if there exist partitions $1, Sk of S and TI, Tk of T such that

(l.1) Prob ((X, Y)Sg Ti)>0, l, ,k,

and

1.2 Prob (X, Y) s Si T) 0 for all :/:j.
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Additionally, the probability matrix Q is said to consist of exactly k disjunct pieces, if
(1.1) and (1.2) hold, and Q cannot further consist of k + disjunct pieces. Richter
(1949) has extended this result concerning disjunct pieces utilizing Fisher’s canonical
decomposition of Q. Define Q* DTI/2QDT/2, where Dr Diag (r,..., rm) and
De Diag (cl, Cn). Then, assuming here for convenience m =< n, the spectral de-
composition of Q* can be written as Q* F[Diag (1, p, Pm-): Om,n-m]G’,
where F [D)/21m Il] and G [D/21n GI] are orthonormal matrices, Om,n_ m is an
m (n m) matrix of zeros, and >= -> >= O2m_ >- 0 are the eigenvalues of
Q*’Q*. Based on this spectral decomposition, Fisher’s (1940) canonical decomposition
can be written

Q= re’+ Dlr/2I’lDo(Dlc/2G1)’,
where Do [Diag (01, "", Pm-1) Om-l,n-m]. The values p, ..., Pm-1 are called
the canonical correlations of the distribution Q, where it is known that p’(X, Y) p.
(See Lancaster 1969, Chap. 6) or Chhetry and Sampson 1987 for further discussions
concerning the canonical decomposition and its interpretation.) The result obtained by
Richter (1949) is that Q consists of exactly k disjunct pieces if and only if pl

p-l= landor< 1.
Another related concept is the following one. If rn n and Q consists of rn disjunct

pieces, then X and Y are called mutually completely dependent (Lancaster 1969 )), and
there exists a one-to-one function h such that the random variablesXand Yare completely
related by Y h(X).

For the purposes of this paper we require a further refinement of the concept of
disjunct pieces. To define this refinement, we employ the notation that if U, V are sets
of real numbers, U < V means u < v for all u U and all v V.

DEFINITION 1.2. The probability matrix Q is said to consist of k increasing
(decreasing) disjunct pieces if there exists partitions S < $2 < < S of S and
Tl < (>) T2 < (>) < (>) Tk of T such that 1.1 and (1.2) hold.

We say Q consists of k monotone disjunct pieces if Q consists of either k increasing
or decreasing disjunct pieces.

Q consisting of k increasing disjunct pieces is equivalent to

Q=Diag(Q1, Qk),

where Qi is an mi rli matrix and Z mi m, ,
rti n. This also can be viewed as Q

being the direct sum QI (R) (R) Qk, when direct sum in this context is analogous to
the direct sum of square matrices (see MacDuffee (1949, p. 114)). If m n and Q
consists ofm increasing (decreasing) disjunct pieces the notion ofXand Ybeing mutually
completely dependent can be refined. In this case X and Y are related by h strictly in-
creasing (decreasing) and the probability matrix corresponds to a special class of
probability distributions called the upper (lower) Frrchet bounds (see Kimeldorf and
Sampson 1978 )).

In order to measure positive association between arbitrary random variables X and
Yand also to circumvent some ofthe difficulties pointed out by Kimeldorfand Sampson
(1978), Kimeldorf, May, and Sampson (KMS) (1982) introduced the concordant
monotone correlation PCMC (or alternatively PCMc(Q)), defined by

(1.3) PCMC max { p(f(X),g(Y)) }
where the maximum is taken over all increasing f and g with nonzero variances. Also
introduced by KMS is the discordant monotone correlation ODMc(Q) defined by (1.3)
where "max" is replaced by "min." KMS show that -1 =< PDMC =< OCMC =< 1, and
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0DMC OCMC 0 is equivalent to X and Y being independent random variables. Also
they provide an example where ODMC < 0CMC 0 and yet X and Y are dependent
random variables. It is also direct to show that 0DMC >- 0 (0CMC -< 0) if and only if
X and Y are positively (negatively) quadrant dependent (Lehmann (1966)), i.e.,
Prob (X -< x, Y _-< y) >= (-<) Prob (X =< x) Prob (Y -< y) for all x, y.

The purpose of this paper is to obtain some additional results in the bivariate discrete
setting concerning 0CMC and PDMC, and their evaluation.

2. Some results for ocmc. For a given probability matrix Q the notation used for
the correlation betweenf(X) and g(Y) is

pQ( f, g) f’(Dr- rr’) f)-l/2(g’(Dc-cc’)g)-/2( f’(Q- rc’)g),

where

r=(rl, ,rm)’, c=(cl, ,c,)’,

f =(f(x), ,f(Xm))’, g=(g(Yl), ,g(Yn))’,

and the denominator is nonzero.
Throughout we say the vector (w, wp)’ is nondecreasing if w -< -< wp;

and use ek to denote the kth coordinate unit vector of the appropriate dimension. Often
we use the simple fact that for every rn n probability matrix Q, there uniquely corre-
sponds an rn n cumulative distribution matrix defined by

F= Fo Prob (X<=xi, Y<= yj) },
i.e., F0 i= = qk.

THEOREM 2.1. A necessary and sufficient condition for
pcMc(Q) ODMc(Q)

is that Q consists ofat least two increasing (decreasing) disjunct pieces.
Proof The sufficiency follows immediately (see Kimeldorf, May, and Sampson

(1982, p. 120)).
To show necessity, suppose occ(Q) 1. Then, there exist two nondecreasing

vectors f0 and go, such that 0Q( f0, g0) and thus, Q consists of at least two disjunct
pieces. Assume that Q consists of exactly disjunct pieces, where >_- 2. Hence, there
exist permutation matrices P and P2 such that Q* PQP’z consists of exactly increas-
ing disjunct pieces, i.e., Q* Diag (Q, Q? ), where Q is an m nk matrix, such
that Z mk rn and Z n n. It then follows (see Richter 1949 or Bastin et al. (1980))

ksUs, where Us em + + ms-that OQ, f, g3) if and only if f3 Z
emt+...+ms, andg Ys=l (aks +/3)vs, where v enl+...+ns_+l + + ent+...+,s,
and where there exists <j such that )k :/= j and a > 0. It is direct to show that
oo( fo, go) if and only if fo P’ f and go Pg3 for any f3, g3, which satisfies
OQ*( f3, g3 1. For each vector f 6’, g$ of the preceding form, let i* >= 2 be the first
value such that ,i. 4: kl; the existence of i* follows from ),i 4: ,j for some < j. Because
fo is nondecreasing and fo P’I f3, it follows that P1 Diag (PI 1), PI2)), where
is an m* m* permutation matrix and PI2) is an (m m*) (m m*)permutation
matrix, where m* ,*__- ink. Similarly, P2 is in block diagonal form and, hence Q
consists of at least two increasing disjunct pieces.

Now suppose oDIc(Q)=-1. Use the preceding argument and the fact that
PDMc(Q) -ocrc(Q*) where Q* Q(e,, el) to get the result.

KMS show that monotone correlation 0 * (Q), introduced by Kimeldorfand Samp-
son (1978), is also given by o*(Q) max { occ(Q), --0DMc(Q) ). From Theorem 2.1,
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it immediately follows that o * (Q) if and only if Q consists of at least two monotone
disjunct pieces.

While Theorem 2.1 deals with the case p’(Q)= 0CMc(Q)= 1, more gener-
ally we have o’(Q)>= 0CMc(Q). However, in some cases Schriever (1983) shows
that o’(Q)= 0CMc(Q) without their necessarily being unity. We observe that o’(Q)=
ocMc(Q) means that there exists at least one pair of nondecreasing functions f0 and go
such that o(fo(X), go(Y)) o’(Q). For a further discussion of Schriever’s results we
need the following Definition due to Lehmann (1966).

DEFINITION (Lehmann (1966)). A random variable X is said to be positively
regression dependent (PRD) on Y if Prob(X>xlY=y) is nondecreasing in y
for all x.

In terms of the probability matrix Q, the condition that X is PRD on Y can be
written as follows: For all 2, m 1, j < j’ implies ’f= qo/cj <= ’f= qo’/cj,.

THEOREM 2.2 (Schriever (1983)). IfX is PRD on Y and Y is PRD on X, then
p’(Q) pCMc(Q).

We note that it is easily shown if Q corresponds to Y being PRD on X (X being
PRD on Y), then every has the same property, where is obtained from Q by adding
together (which is equivalent to statistically collapsing data categories) any sets of adjacent
rows or adjacent columns. As a consequence of this fact and of Theorem 2.2, it follows
that Q corresponding to Y is PRD on XandXis PRD on Yimplies that p’() 0CMC()
for every collapsed . However, Chhetry and Sampson (1987) provide an example that
the conditions of Theorem 2.2 are not necessary for p’(Q) PCMc(Q).

In the study of bivariate dependence concepts, it oftentimes is of interest to con-
sider P(r, e), the class of all m n probability matrices with fixed row and column mar-
ginals, r and e, respectively. It is well known that (see Schriever (1985, Ex. 4.2.3))
PCMc(Q+) -> PCMc(Q) for all Q P(r, e), where Q+ is the probability matrix uniquely
corresponding to the cumulative distribution matrix of the upper Fr6chet bound, which
has F+ {(min (Fi, G))}, where Fi ;=l rk and G Z=I ck. If the random
variables X and Y are both continuous, the CMC for the correspondingly defined upper
Fr6chet bound is one (see Kimeldorf and Sampson (1978)). However, in the discrete
situation it is not always the case that pcMc(Q+) is one. In the following theorem we
provide a necessary and sufficient condition for pcMc(Q+) in terms of the marginal
row and column sums.

THEOREM 2.3. A necessary and sufficient condition for pcMc(Q+) is that there
exist s < m and < n such that F Gt.

Proof In view of Theorem 2.1, we need to show that Q+= Diag (Qi, Q-)
if and only if Fs=Gt, where Q is st and Q is (m s) (n t). Ob-
viously, Q+ Diag (Qi, Q) implies that Fs Gt. To prove the converse assume that
Fs Gt. Let F be the (i, j)th element of F+; then it can be easily checked that

Fi ifi=l,2,...,sandj>_-t,

F= Gj. ifi =s,andj<t,

G; ifi>s, j<=t.

This implies that the corresponding Q+ is of the required form. Vq

To motivate the next theorem, consider first the simple case when Q is a 2 2
probability matrix. Then it is trivial to show that pcMc(Q) PDMc(Q); additionally,
PCMc(Q) (PDMc(Q) if and only ifqll q22 0 (q12 q21 0). The analogous
results do not continue to hold when m > 2 or n > 2, as we now show.
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THEOREM 2.4. Ifm > 2 or n > 2, then PCMc(Q) PDMc(Q) ifand only ifX and
Y are independent.

Proof Suppose 0CMc(Q) ODMc(Q) 7/ 0 (if rt 0, independence follows).
Without loss of generality assume m > 2, so that we can choose three nondecreasing
functions al, a2, and b such that (i) o(a(X), a2(X)) < and (ii) Var [a(X)]
Var [a2(X)] Var [b(Y)] 1. Then, by the assumption that OCMc(Q) ODMc(Q),

7 o(a(X)+ a2(X),b(Y)) 2rt(2 + 20(al(X),a2(X))) -/2,

which implies that o(al(X), a2(X)) 1, a contradiction.
COROLLARY 2.5. Ifm > 2 or n > 2, then OCMc(Q) > -1 and ODMc(Q) < 1.
The proof of Corollary 2.5 is obvious.

3. Some results concerning evaluation. While the quantities o’(Q) and 0CMc(Q)
are of interest in their own right as measures of association, the vectors at which these
maxima occur play an important role in rescaling of the values of the random variables.
These notions are particularly useful in statistically analyzing both nominal and ordinal
contingency tables (e.g., Nishisato (1980)). The vectors that maximize o’(Q) can be
derived from certain results of statistical correspondence analysis (e.g., Benzecri 1973
and Hill (1974)). The increasing vectors that yield OCMC(Q) can be interpreted as either
providing dual scalings for ordinal contingency tables or a form ofordinal correspondence
analysis. However, their evaluation is substantially more complicated than the nonordinal
case (e.g., see KMS, or Breiman and Friedman 1985 ), and the comments of Buja and
Kass 1985 )). Chhetry and Sampson (CS) (1987) provide an approach that simplifies
somewhat the calculation of OCMc(Q) and the maximizing vectors. We briefly discuss
that approach and then detail how to employ it effectively when the ordinal table is
collapsed, i.e., when neighboring row or columns are added. The latter issue is important
for the statistical modeling using hierarchies for ordinal tables in which collapsing is used
for model simplification.

For every rn n probability matrix Q, CS define the (rn + n 2) (m + n 2)
matrix Z(Q) (denoted where there is no ambiguity as Z) by

0 Dr Q
(3.1, 2:(Q,=(;’ /,)(Q, D)(; ;)’
where A (Ira lmlD)m, B (I, I,I,D)I’,, and I’p is the p (p matrix
whose (i,j)th element is zero, if -< j, and 1, otherwise. Let Zl A’DA, ,12 A’QB,
Z22 B’DcB, and 221 Z’12. CS also show that 21 and Z22 are positive definite and
is a nonnegative-definite matrix. For any Q, let Z be given by (3.1) and define for
ott.Rm-I 6Rn-I

(3.2) re( O,B (O’2110)-I/2 Ott Z 12/) (/’ Z22B) -1/2

where a 4:0 and/3 4: 0. Then CS show that the maximal correlation coefficient and the
two monotone correlation coefficients can be evaluated as follows:

(3.3a) o’(Q) max rQ(a,B),

(3.3b) 0CMc(Q) max rQ(a,B),
a_ 0,_ 0

(3.3c) ODMc(Q) min rQ(a,/3).
_0,/3_ 0
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The relationships of (3.3a)-(3.3c) can be viewed as simplifying computation by
reducing dimensionality. Also note that if a0 and/30 optimize any of (3.3a), (3.3b), or
(3.3c), then the corresponding maximizing vectors f0 and go defining the left-hand sides
are related by f0 Aao and go B30. For example, if re(a,/3) is maximized at a0,/30,
then 0a( f, g) is maximized at fo Aa0 and go B/30.

An additional advantage of the problem formulation given by (3.2) and (3.3) is
that these optimization problems can be reformulated analogously to the problem of
finding the canonical correlation for the multivariate normal. A good discussion con-
cerning traditional multivariate normal canonical correlations is given in Anderson 1984,
Chap. 12). For the p-dimensional multivariate normal distribution with positive-definite
covariance matrix 2;, canonical correlation analysis involves a study ofthe determinental
roots and solutions for 2;212;-: 2;12 }k22;22, where 2;11, 2;12, 2;21, 2;22 are a partitioning
of 2; with the dimension ofZ being Pl < P. A description of the relationship between
our problem and traditional canonical correlation analysis is given in the following lemma
whose proof follows from Lemma 4.1 and Theorem 4.2 of CS.

LEMMA 3.1. The positive square root of the largest eigenvalue o2 of
2;-: 2;122;- 2;21 (or _J 2;212;]-: 2;12) is pt(Q). If or (1) 4=0 and 0 (1) 40 satisfy the equa-
tions

(3.4a) Z -11 2122; -21 2;2 lt3t
(1)

0O (1)

and

(3.4b) /3 (1)= 2; -21 2;210! (1),

then pQ(a(I), 3(1)) p’( Q). Moreover, p’( Q) ocMc(Q) ifand only ifthere exist non-
negative vectors a (1) and 13 (1) satisfying (3.4).

We now relate the computation of the maximal correlation and the monotone
correlations for collapsed contingency tables to the original uncollapsed tables. Recent
discussions on the general issue of collapsing nonordinal contingency tables are given by
Gilula and Krieger (1983) and Gilula (1986). The following definition is useful in our
discussion.

DEFINITION 3.2. An m n matrix P { Pij }, m =< n, is said to be a C-matrix if
(a) the rank of P is m; (b) each column of P has one and only one nonzero element,
and the nonzero element is unity; and (c) ifpij Pik for k > j implies Pie for all
e=j+l,...,k-1.

Obviously, in the above definition, if m n then P is a permutation matrix;
and if m < n then appropriate multiplication of a probability matrix by P collapses
sets of adjacent rows or columns. Suppose Q is transformed to by ( PIQP, where
PI and P2 are, respectively, s m and n C-matrices. Then, is an s prob-
ability matrix obtained from Q by collapsing and with row and column marginals

Plr (/1, /s)’ and z P2c (tl, tt)’, respectively. Moreover, if De
Diag (?1, ?s) and De Diag (1, ct), then De P1DrP’ and De P2DcP’2.

In the following theorem, we establish the relationship between 2;(Q) and 2;().
THEOREM 3.3. IfQ P1QP’2, where PI and P2 are, respectively, s m and n

C-matrices, then

2;(0) Diag (K,, K,) 2;(Q) Diag (Km, Kn),

where Km A’mP’ Xs, Kn A’P’2 qt, and Ap is the p (p matrix

(e2-el,ea-e2, ,ep--ep-l).
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Proof From CS (Lemma 3.2 (i))

’P Q- re’)P’2 ,.
From the quadrant dependence decomposition (CS (equation (3.4))), we obtain

12(0) II/P1 Am12(Q)k%P,
K,z(Q)K,.

The relationship concerning Z(0) and Z22(0) are established similarly. H
Note that the results of Theorem 3.3 also hold ifP and P2 are more general in that

they collapse nonadjacent rows and columns; however, such matrices would not be
meaningful for ordinal tables. The usefulness of Theorem 3.3 especially when used in
conjunction with Lemma 3.1 can be seen in the following example.

Example 3.4. Let P and P2 be C-matrices of orders (m-s)X m and
(n- t) X n, respectively, where

P(e,..-,e,e2,’-.,em_) and Pz(e,...,e,ez,...,e,_t).

Then, the matrices, Km and K, defined in Theorem 3.3 reduce to the form

(3.5) K=(O,Im_s _)) and K%=(02,I,--))

where 0 and 02 are zero matrices of orders (m s 1) X s and (n 1) X t,
respectively. Hence, using (3.5) in Theorem 3.3, we obtain

Z(0) [1,2, ,s; 1,2, ,s],

and

22(Q) 22[1,2, ,t; 1,2, ,t],

where Ell[l, 2, i; 1, 2, k] is the submatrix obtained from 2;ll(Q), by deleting
the first rows and the first k columns, etc.
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