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INTRODUCTION

The method of path analysis was introduced by Sewall Wright
(1921, 1934), who initially applied the method to the field of
genetics. In 1925 he published Corn and Hog Correlations which
contains a path model of six equations with thirteen variables,
some of which were latent. According to Goldberger(1972) this is
the first econometric application of structural equation models,
at least the first of this size and complexity. It seems that
Wright(1931) was also one of the first to publish a social scien-
tific application. Although the title of the article may suggest
differently, it contains among others a causal model for the
explanation of child's IQ by such factors as heredity, parent's
IQ and environment. Although path analysis was extensively used
in population genetics, it remained an obscure method in the
other sciences for a long time,.

Structural equation models were, of course, widely being
used by econometricians, who also worked on the solution for such
problems as identification, maximum likelihood estimation and
correlated errors(Johnston, 1963). But Wright's work was seldom
mentioned, although he noticed several of these problems which he
solved in an ad hoc way(Goldberger, 1972).

In the sixties other social scientists started to use causal
modeling techniques, and this lead to the rediscovery of the work
of Wright. Blalock(1964) still leans on the econometric work on
structural equation models and mentions Wright only in an append-
ix. But Duncan(1966) gave an exposition of path analysis that
draws heavily upon Wright,.

The occupation of sociologists and psychologists with path



2

analysis lead to some new developments. One of these was the
systematic incorporation of latent variables in path models
(Hauser and Goldberger, 1971). This meant a combination of the
econometric approach, with its focus on the equations, and
psychometric theory(especially on factor analysis), with {its
emphasis on latent variables. It resulted in path analysis meth-
ods for the analysis of numerical and latent variables. Joreskog
(1973, 1982) introduced a maximum likelihood approach and Wold
(1975, 1982) developed a least squares technique for the estimat-
ion of these models.

Other developments focused on overcoming the deficient
measurement characteristics of many of the variables that are
used in the social sciences. In loglinear analysis for instance
the discrete character of most of these variables is taken as a
starting point(Bishop, Fienberg and Holland, 1975). And the
multiway table of the variables in a causal model is analysed and
decomposed. This implies that only relatively small models can be
analyzed, because of the empty cell problem. Recently Muthen
(1983) combined the maximum likelihood models with the discrete
approach into one framework.

In this paper an alternative approach and solution is pres-
ented. The classical method of path analysis will be combined
with the notion of 1least squares optimal scaling(Gifi, 1981;
Young, 1981), which means that non-numerical variables are quant-
ified in a way that is optimal in a least squares sense. By doing
so we obtain a very general method of path analysis in which we
not only can choose a suitable path model, but within the model
we éan also choose the measurement level of each of the variables

separately.



LEAST SQUARES PATH ANALYSIS

Suppose we deal with n observations on m standardized var-
iables xj,...,Xxpy. According to some theory these variables form a
path model. Path models can be represented in several ways. A
popular and attractive way is by means of an arrow diagram. In
such a diagram the variables are the corners, drawn as boxes, and
the relationships between the variables are the edges, represen-
ted as arrows. If there is an arrow from variable Xxj to xg we say
that x4y 1is a direct cause of Xy and variable xy is called a
direct effect of Xy If there runs a path from Xj to x) we shall
call Xj a cause of x1, while x; is an effect of X3 Figure 1

shows a simple path model with four variables.

X1

\>
o

X2

Figure 1. A four-variable recursive path model

Variables at which no arrows arrive are called exogenous,
all other variables in the model are endogenous. An important
class of path diagrams is transitive, which means that a path
starting in a corner never returns to that corner. The diagram in
fig. ! is transitive and the corresponding path model is called
recursive. This model would become non-recursive with an arrow
from x4 to x; and/or xj.

A second and more quantitative way of representing path

models is by specifying them as a set of linear structural equat-
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ions. Such a set of equations is formed by taking each endogenous
variable im turn and writing it as a linear function of its
direct causes plus an error term. The linear structural model
corresponding with fig. 1 is
x3 = b3y;x) + b3oxy + ej » (la)
x4 = bgyzxy + ey (1b)

Suppose E is a subset of the index set {1l,...,m} that indic-
ates those variables that are endogenous. In least squares path
analysis the path coefficients are computed by minimizing the

loss function

p m 2
o) = 1 llxg - I byl (2)
sek 1#s
B = {bjk}» the mxp matrix of path coefficients, is restricted by
requiring that byx = 0 (j,k = 1,...,m) if xy; is not a direct

cause of Xxj. Moreover, for recursive path models B will be lower-
triangular. Minimization of (2) 1is quite simple. We solve p
linear regression problems, one for each endogenous variable

(Wold, 1954). Let bg be column s of B having kg unrestricted
elements, and let Ug be the nxkg matrix of the X j that correspond
with the unrestricted part of bg. Then the solution for bg is

given by

Ty (3)
s

T -
by = (UsUs) s

s
So the parameters of a system of equations such as (1) are fitted
by single equation ordinary least squares. And the fit of the
model is given by the average of the squared multiple correlat-

ions.
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The exposition of path analysis so far applies to numerical(
or quantitative) variables only, because the computation of
multiple correlations is somewhat problematical when (some of)
the variables are non-numerical. in order to be able to use non-
numerical variables in path analysis we will have to code them,
but then the size of the multiple correlations will depend on the
particular coding chosen. Since in many applications non-numer-
ical variables will occur, we must either use only numerical
variables or accept the fact that the solutions will depend on
the particular codings chosen. In our approach we shall be look-
ing for codings of non-numerical variables which are optimal in a

well-defined sense.

OPTIMAL SCALING

In this paper we shall deal only with variables that can
take a finite number of values, very often much smaller than the
number of observations. Besides, we shall also only be interested
in discrete transformations, by which we mean that observations
with the same original score will receive the same transformed
value. With these preliminaries in mind we can start our descrip-
tion of optimal scaling,.

As stated above in many applications of path analysis,
especially but not only in the social sciences, we encounter non-
numerical variables. We speak of an ordinal variable when the
variable consists of a set of ordered classes. While nominal
variables are classifications made up of just a set of equival=-

ence classes. We may call these types of variables partly known.
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We know the class or category to which an observation belongs,
and for ordinal variables we know the order between the classes
too, but we do not know what numerical valuezs to associate with
each of the classes.

Sometimes path models even countain variables that are comp-
letely unknown(Hauser and Goldberger, 1971). This means that we
know the place of the variable in the path model, but we do not
have any observationz on it. Variables which are unknown in this
sense are called latent or unobserved. They can both be endogen-
ous and exogenous. Variables which are not latent are called
manitest, fegardless of their measurement level. Our approach is
to make ordinal, nominal and latent variables suitable for path
analysis by optimally scaling these variables.

The general idea behind optimal scaling 1is to scale the
variables in a way that optimizes an objective criterion, which
in the case of path analysis would be an appropriate version of
loss function (2). A scaling (or quantification, or transformat-
ion) of a variable is a real valued function defined on its
values. We shall use the notation Sj: X3 -> R. The type of scal-
ing that is employed will be determined by what we know or assume
about a variable, i.e. which measurement level we associate with
a variable.

For latent variables this implies no extra constraints on
their scaling, simply because we have no observations for this
type of variable. We only require that the scaling of a latent
variable conditionally minimizes the loss function.

If we are dealing with a nominal variable we require the
transformation of such a variable to maintain the equivalence

structure of the original values. Let '<>' be the relation 'has



the same value as', then we can express this restriction as

Xi§ <> Xyj => Sj(xij) = Sj(xkj)

For ordinal variables we require in addition that the trans-
formations be monotonous with the order of the original values.
If '<' denotes the empirical order relation, the additional

constraint for ordinal variables becomes

Xij < Xij => Sjlxi4) < Sj(xky)

For a more elaborate treatment of measurement levels and
optimal scaling the reader is referred to Gifi(1981) and Young
(1981). The treatment of latent as another, very low, measurement

level is due to De Leeuw(1984).

DEFINITION OF PATHALS

As before we start again with a path model containing m
standardized variables, which are collected in the nxm matrix X.
Beside for every variable in the model we take its assumed
measurement level into account too. In least squares path anal-
vsis with optimal scaling we now have to minimize the loss funct-
ion

2
Slyl|| (&)

with B as before and Y the nxm matrix with optimally scaled
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observations, i.e. yj = Sj(Xj) (3 = 1,...,m). This loss function
has to minimized over B and Y under the restrictions
UTYj = 0
y3Tyy = 1
yJ-iZCj y 1= 1,c0.,m.
Here u is a nxl vector with only ones. The first condition guar-
antees that the variables are in deviations from their means, and
the second restriction gives every variable a variance equal to
one. Although these restrictions seem trivial, they are necessary
for obtaining a unique solution. The notation yj ¢ Cj indicates
that there may be scaling restrictions for variable 3.

In this approach to path analysis not only the path coeffic-
ients but also the scalings of the variables are parameters that
have to be estimated. Because a variable will generally occur in
more than one equation we cannot use single equation least squar-
es techniques anymore, the scaling of the.variables links the
equations. This can be illustrated with tﬁe simple structural
model (1). If we express the equations in the notation of this
paragraph they become

Y3 = b31y] + b3pyy + ej3 (5a)

L}

Y4 = b4a3y3 + ey (5b)
We see that variable ¥y3 occurs 1in both equations, which are
consequently not independent anymore.

Note that a latent variable which occurs in only one equat-

ion is not very useful. This equation can always be fitted perf-

ectly and the corresponding term drops out of the loss function.




ALTERNATING LEAST SQUARES

The computer program that implements our method of path
analysis minimizes loss function (4) by using an iterative algor-
ithm based on the principle of alternating least squares (ALS)
(Young, 1981; Gifi, 1981). This principle involves the partition-
ing of the parameters into sets: the model parameters B and the
scaling parameters Y. We then proceed to minimize the loss func-—
tion by alternatingly optimizing it with respect to one of the
subsets. At each stage of the algorithm this gives the condit-
ional least'squares estimates of cone of the subsets, while keep-
ing all the other parameters fixed at their current value. Once
we have obtained the conditional least squares estimates of a
subset we replace the old estimates of these parameters by the
new ones. We then switch to another set of parameters and repeat
the process. By cycling through the sets of parameters in this
way we obtain a convergent algorithm. In the PATHALS problem each
variable defines a set of scaling parameters and each path equat-
ion defines a subset of model parameters. This means that 1in

minimizing (4) two basic subproblems have to be solved.

SUBPROBLEMS

Estimating the path coefficients for fixed scalings of the
variables is again done by single equation ordinary least squar-
es, This means that for every equation of the path model we have
to solve

m 2
l[ys -7 bslyllf , seE (6)
1#4s
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for the unrestricted part of bg, with bg as before. Let Ug now be
the nxkg matrix of the ¥j that correspond with the unrestricted
elements of bs. The solution is
T -1, T
- 7

bs (UsUs) Usys (7)
This result clearly gives the conditional least Squares estimates
of the path coefficients.

Finding a solution for the scaling parameters is a bit more

complicated. Observe that loss function (4) can be rewritten as

o(BiYY - Zm Hyj -0 Cjkyklfz (8)
j=1 k#j

In (8) every variable in the path model, whether endogenous or

eéxogenous, is expressed as a linear combination of those variab-

les with which it is connected through an arrow in the path

diagram. The second subproblem can now be formulated as follows. )

For every variable Yj minimize for fixed scalings of the other

variables y{,...,yj_l,yj+1,...,ym and fixed path coefficients B
My = 1 ey I1? R S (9)
J k#j J

subject to the constraints
uTy]- = O

YjTYj =1

Problem (9) is a4 normalized cone regression problem(Gifi,
1981), that can be solved by first computing an unnormalized

solution and subsequently normalizing it(De Leeuw, 1977). The
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unnormalized cone regression problem involves two Ssteps. First we
minimize the loss with respect to Yj unrestricted. This gives fj.
Then we perform the appropriate type of regression of ;J on x;.
The type of regression depends on the measurement level that ig
imposed on a variable. With ordinal restrictions we do monotone
regression(Kruskal, 1964; Gifi, 1981), With nominal variables
identity regression is performed(Gifi, 1981). Latent variables do
not enter this substep. Al1 variables are subsequently standard-

ized.

THE ALGORITHM

The computer Program that implements the iterative algorithm
is called PATHALS. 1t is written in SAS/IML. The programs comp-
utes an initial angd final solution using the same basic algor-

ithm, which consists of the following main steps,

Iterate until 0(B;Y) fails to decrease;

For j = 1 to m Do;

~
L
]

Frgeanvas

OS(§j);

~
[
L]

yj = §j(9jT9j)’1/2;
End For Loop;

For s = 1 to p Do;
bg = (USTUS)-IUsTys;
End For Loop;

End Iteration Loop;
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The first For Loop performs the optimal scaling(0S) of the
variables. The unrestricted update of Yj 1s denoted as fj. The
optimally scaled }j is indicated as §j, while Yj 1s the ultimate
standardized update. In the other For Loop the path coefficients
are computed. The iteration process is stopped as soon as O(B;Y)
decreases by less than a predetermined criterion.

For the computation of the initial solution all manifest
variables are treated a4s numerical and the latent variables are
initialized with random values. The program then proceeds to
compute the parameters of the 1latent variables and the path
coefficients iteratively. If the path model does not contain
latent variables only the second For Loop is executed once in
this phase. It immediately gives the initial solution, which 1in
this case is a solution to loss function (2) given the original
codings of the variables,

The initial solution serves as the starting point for the
computation of the final solution. For this solution the imposed
scaling restrictions on the variables are taken into account. The
result of this phase consists of the path coefficients and the
optimal scalings of the variables. The global convergence of the

algorithm has been shown by De Leeuw(1986).

MISSING DATA

For the computation of the 1initial solution the missing
observations on each variable are given the average value of the
non-missing observations.

There are many ways of treating missing data according to




13

optimal scaling theory(Gifi, 1981), two of which have been imp-
lemented in the program. If on chooses missing multiple the
missing observations °n a variable are treated 2s unique and
every missing score gets its own quantification. On the other
hand when the missing observations are treated as equivalent they
will receive the same quantification. Ve call this option missing
single.

For the computation of the parameters the inclusion of
missing data has minor consequences. The missing data do not
enter into the optimal scaling step of the first For Loop, but
are treated the same way as the non-missing observations in the

other two substeps.

COMPARISON WITH SOME OTHER APPROACHES

The partial least squares(PLS) approach to path analysis of
Wold(1975, 1982) has some things in common with PATHALS, but also
differs from it 1inp Some essential respects. What the two techniq-
ves have in common is that they are both based on least squares,
Moreover, the algorithms of the ALS and PLS programs are very
similar. 4 good description of the principles underlying the PLS
or NIPALS algorithms can be found 1in Wold(1966). 1t basically
comes down to the computation of the parameters by iteratively
cycling through non-overlapping sets of parameters.

But these similarities introduce at the Same time one of the
main differences between the two approaches. In the ALS approach
one single global criterion, loss function (4), is optimized. On

the other hang several separate least Squares solutions are
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computed in PLS. Every path model is divided into a measurement
model for the computation of the latent variables, and a struct-
ural model in which only the path coefficients are the paramet -
ers. Both models are fitted separately, which results in least
squares solutions for the subproblems. But this does not guarant-
ee, of course, that these solutions are optimal in an overall
sense. On the contrary, this will generally not be the case(Dijk-
stra, 1981; Wold, 1981).

A second important difference occurs by the fact that 1in
PATHALS the measurement levels of the variables are systematic-
ally 1incorporated by applying optimal scaling theory. 1In the
LVPLS version(Lohmoller and Wold, 1982) the treatment of categor-
ical variables seems 1less systematic. Every category of such a
variable becomes a dichotomous variable in the measurement model.
And the weights that are obtained by estimating this model are
used as the quantifications of the variables.

Another popular method for the estimation of path models is
LISREL(Joreskog, 1982; Joreskog and Sorbom, 1984). Its emphasis
is on numerical and latent variables, and on estimation by means
of maximum likelihood. In its latest version the program contains
options for least squares solutions. This makes a certain treat-
ment of ordinal variables possible. The suggestion is to compute
polychoric or polyserial correlations instead of product moment
correlations when ordinal variables are involved, and to amnalyze
the in this way obtained correlation matrix by means of unweigh-
ted least squares(Joreskog and Sorbom, 1984).

Algorithmically the ALS and ML approach can hardly be comp-
ared. The LISREL program computes its solution on the basis of

the Fletcher-Powell version of the Raphson-Newton method., Al-
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though in LISREL the distinction between measurement and struc-
tural model is also made, it does estimate the parameters of both

simultaneously by optimizing the global likelihood function.

AN EXAMPLE

Our illustration of the PATHALS technique refers to a so
called MIMIC model(Joreskog and Goldberger, 1975). In MIMIC
models there are two sets of manifest variables. The exogenous
variables influence the endogenous variables through the mediat-
ion of on or more latent wvariables. Figure 2 shows an arrow
diagram for a simple MIMIC model., Latent variables are drawn as

circles in stead of squares.

X3 \ xg

Figure 2. A simple MIMIC model

We used ecological data taken from Van der Aart and Smeenk-
Enserink(1975), who reported abundance data for 12 species of
hunting spiders in a dune area in the Netherlands. A total of 28
sites were studied, which were also described in terms of a
number of environmental variables. We have used a selection of 6
of these made by Ter Braak(1985):

WwC Water content, percentage dry weight,
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BS Percentage bare sand,
CM Percentage covered by moss layer,
LR Reflection of s0il surface at cloudless sky,
FT Percentage covered by fallen leaves or twigs,
CH Percentage covered by herbs layer.

Ter Braak made thesge variables discrete into 10 Categories, coded
as 0 through 9,
The vesults of a MIMIC analysis with tyo latent variables

are given in table 1. The environmental variables are exogenous

. Weights Residual variances
linear monotone linear monotone

weC -.82 .10 -.96 -.20

BS -.06 .11 -.56 .39

CM 13 .21 ~.14 -~ 33

LR -.02 .56 .28 .12

FT 272 ~.24 <22 ~.15

CH -.29 .10 -.71 43

S1 -+.79 -.09 -.89 .22 .39 21
S2 .04 ~,79 .30 -.87 .36 .21
S3 -.85 ~.35 -.88 ~.16 22 .16
S4 -.95 -.10 -.99 .21 .13 .04
S5 -.97 ~.06 -.99 .22 .08 .04
S6 ~.91 -.13 -.95 .19 .21 .10
S7 -.93 -.48 ~.98 .01 .07 04
s8 -.77 ~.11 -.85 .00 <43 .27
S9 ~-.36 ,52 74 <48 .53 .32
S1o0 18 .88 .07 .90 .25 .16
Sl1 .52 .71 .48 71 .36 .18
S12 53 .53 .57 .54 54 31

Tabie 1. Hunting spider data: linear and monotone solutions

and the Species, denotes asg Sl,...,SlZ, endogenous, The results
of a linear analysis, using the codings of Ter Braak, and of an

analysis that computed optimal monotone transformations are both

depicted.
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Figure 3 shows the optimal transformations of the variables.
The X-axis contains the original category numbers and the Y-axis
the optimal scalings. We see a large variety of shapes, roughly
linear, two-step, convex, and so on. We shall not give a detailed
analysis here, but merely point out some technical aspects and
compare the two solutions.

We see from table ! that the residual variances of the
abundance variables decrease considerably. This is also the case
for the latent variables, which are not given in the table. For
the linear analysis the residuals are .06 and .14, while for the
monotone analvsis they are .0l and .0l. This means that they are
almost completely 'explained' by the monotone transformed envir-
onmental varjables. The interpretation of the latent variables is
facilitated by correlating them with the transformed variables.
If we do this we find that the first latent variable correlates
~.75 with both WC and CH, while the second one correlates ,80
with LR and -,80 with FT.

The analysis shows the advantage of the PATHALS technique.
By optimally scaling the variables we need fewer dimensions to
account for a large proportion of the variance, because much of
the remaining varfation after a linear analysis is taken care of
by the transformations. Beside, the optimal transformations often

give useful additional information about the data.

DISCUSSION

The method of path analysis described in this paper is an

extension of classical Jleast squares path analysis. The data
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analyst can now not only choose an appropriate path model, but
also within the model for each variable a suitable class of
transformations from which an optimal o¢ne must be chosen. This
enhances the applicability of path analysis. At the same time
this can lead to new problems. The scaling of the variables
Creates new parameters which have to be fitted, while there are
fewer restrictions on the data. This may lead to chance capital-
ization and triviality, dangers against which we have to guard
ourselves. It isg necessary to investigate the stability of the
sclutions, and we must also be able to give interpretations for
the Fesults,

The PATHALS technique and program, as described here, will
soon be provided with Some new options. One of these shall compr-
ise the possibility of a more continuous treatment of numerical
data. In the hunting spider example, for instance, the continuous
environmental variables were made discrete before they could be
analyzed. This means that we ignored the prior information that
these varjables were continuous. Consequently all observations
within an interval got the same quantification and the fact that
the intervals are connected was ignored. Our theory can be gener-
alized 1in such a way that it will take the smoothness of transf-
ormations into account. A fundamental role in this extension is
plaved by the "B~spline basis'(cf. pe Leeuw, Van Rjjckevotsel,
Van der Wouden, 1981; van Rijckevorsel, 1982). Computationally
this new option does not create any trouble. We must introduce a
new subproblem into the alternating least squares cycles of

PATHALS(cf. Coolen, Van Rijckevorsel, pe Leeuw, 1982).
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