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SUMMARY 

We develop two methods for imputing missing values in regression situations. We examine the standard 
fixed-effects linear-regression model y = XP + e,  where the regressors X are fixed and E is the error term. 
This research focuses on the problem of missing X values. A particular component of market-share 
analysis has motivated this research where the price and other promotional instruments of each brand 
are allowed to have their own impact on the total sales volume in a consumer-products category. When 
a brand is not distributed in a particular week, only a few of the many measures occurring in that 
observation are missing. 'What values should be imputed for the missing measures?' is the central 
question this paper addresses. This context creates a unique problem in the missing-data literature, i.e. 
there is no true value for the missing measure. Using influence functions, from robust statistics we 
develop two /oss functions, each of which is a function of the missing and existing X values. These loss 
functions turn out to be sums of ratios of low-order polynomials. The minimization of either loss 
function is an unconstrained non-linear-optimization problem. The solution to this non-linear 
optimization leads to imputed values that have minimal influence on the estimates of the parameters of 
the regression model. Estimates using the method for replacing missing values are compared with 
estimates obtained via some conventional methods. 

k t ~  M'OKDS Imputation Missing data Influence statistics Regression Market-response models 

1. INTRODUCTION 

In this paper we investigate an alternative method for dealing with missing data in fixed-effects 
linear-regression models. This problem arises in a number of contexts, but we develop our 
solution within the context of modelling brand sales. As described by Cooper and Nakanishi ' 
brand sales are often modelled as a function of a market share and a category-volume 
component-two separable processes: 

Sales for brand i = Market share for brand i x Category volume 

The appropriate technique for handling missing data in category-volume models has been 
a source of concern. For a brand-planning effort we would like to know the ability of each 
brand to expand (or shrink) the total store sales in a consumer-products category. Since most 
consumers may easily choose among stores, it is reasonable to assume that the same category- 
volume model applies to all stores in a trading area. However, each store can have at least a 
slightly different portfolio of brands stocked. The number of observations would be 
approximately the number of stores times the number of weeks; but since only a few, if any, 
stores are likely to stock all the brands in a category, many of the observations will have at 
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least a few missing measures. In the coffee-market case, which motivated this research (cf. 
Cooper and Nakanishi’), there were 234 observations, 179 of which had at least one missing 
brand. These missing data points are not generated randomly, but rather are the result of (non- 
random) store policy. Whereas procedures exist to  impute missing values when they are 
randomly generated, in a typical case missing values generated by non-random processes are 
simply ‘dropped’ from statistical analyses. With this treatment, the entire weekly observation, 
including the valid values of other brands’ marketing instruments, is discarded. Obviously, 
valuable information is being thrown out. 

Note that the missing data do not necessarily take the value zero. For example, if a brand 
is not distributed then it is not displayed and a value of zero for this categorical variable is 
fine. However, for a linear price term, a value of zero would incorrectly imply that a particular 
brand of coffee was sold for free during a given week! In this circumstance there is no true 
price that we can put in the missing datum’s place. Similarly for an asymmetric market-share 
model (Cooper and Nakanishi’) in which we assess the sensitivity of brands A’s market share 
to changes in brand B’s price, if brand B is not distributed in a particular week it would have 
no true price that might be divined and put in the place of the missing price. 

We propose new techniques that differ from previous procedures developed in the statistical 
literature. We believe that our treatment will best minimize the effect of missing data on the 
parameter estimates of the category-volume model or asymmetric market-share model, while 
not discarding useful information. 

The balance of this paper is organized as follows: In Section 1.1 the general notation is 
developed. In Section2 we review relevant research on the treatment of missing predictor 
variables in estimating statistical models. Section 3 discusses how the concept of influence 
functions can be used to develop an alternative approach to the missing-data problem. The 
computer implementation for our algorithm is described in Section 4. Section 5 presents the 
conclusion. 

1.1. Notation 

It will be convenient to  make occasional reference to the following linear model: 

y = X p + &  

Where y is an n x 1 vector of observations, X is an n x m data matrix, P is a vector of m 
regression coefficients to be estimated and E is an n x 1 vector of errors. The category-volume 
model we are interested in is a form (when log-linearized) of this general linear model. 

The specific category-volume model we are considering (for example, see p. 152 of Cooper 
and Nakanishi ’) is as follows: 

Note if the only marketing instrument used is price then the category-volume model reduces to 

where Tst is the category volume at store s in week t (st = 1,2, ..., n);  j = 1’2, ..., J is the 
number of brands; k = 1,2,  . . . , K is the number of marketing instruments; pjst is the price of 
the j th  brand in store s at time t ;  Xjksr is 1 if the kth marketing instrument (e.g. newspaper 
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feature or in-store display) is used for the j th brand in observation st and 0 otherwise; the p’s 
are the corresponding regression coefficients; and eSf is an error term. 

2. RELATED LITERATURE 

In this section we summarize the previous research on incomplete-data problems. In addition, 
the concept of an influence is discussed. While influence functions have been commonly used 
in data analysis, their use in methods for replacing missing data has not been considered 
previously. In positioning this paper it is important to discuss earlier missing-data-replacement 
techniques in some detail, so that the reader is aware of some of the restrictive assumptions 
and limitations of these techniques. We conclude this section with a description of influence 
functions and suggest how they may be applied in the analysis of missing data. 

2.1. Early work 

The statistics literature provides the main body of work that deals with missing-data 
problems in model estimation. Much of the preliminary work has been described by Afifi and 
Elashoff. 2 9 3  These authors list several approaches, each of which attempts to provide a single 
estimate of p .  The simplest method is to drop (delete) observations that contain missing values. 
The other techniques avoid dropping observations with missing data points in order to retain 
as much information as possible. The latter methods are consistent with our approach. 

Two types of method which avoid dropping observations have been discussed by Afifi and 
Elashoff. The first is a modified least-squares approach for substituting values for missing-data 
points. In this method, a multivariate-normal random-effects model is assumed. The second 
type of method uses maximum-likelihood techniques to estimate the covariance structure of 
X with non-missing values. Then the parameters of interest are estimated by least-squares 
procedures. 

When using either of the last two mentioned procedures, one of the key underlying 
assumptions is that the data points are missing at random (MAR). This means that the pattern 
of missing values is assumed to be a random process and does not depend on observed or 
unobserved values. Estimates can be severely biased if this assumption is violated (Little and 
R ~ b i n , ~  Simon and Simonoff 5 ) .  Current statistical-computing software makes wide use of 
these methods, however Little and Rubin4 provide more general techniques and recommend 
not using the methods proposed by Afifi and E l a s h ~ f f ~ , ~  except when only a small amount of 
data is missing. 

2.2. Imputation-based procedures 

Another approach to the missing-data problem involves using imputation procedures. These 
procedures fill in the missing values and the resulting completed data are analysed by standard 
methods. Two commonly used techniques are the following: 

(i) Imputing unconditional means, where missing values in a column of X are replaced by 
the average of the non-missing values in the same column. 

(ii) Imputing conditional means (Buck’s method) where the sample mean and covariance 
matrix are estimated from the present data. Next, these estimates are used to calculate 
the linear regressions of the missing variables on the present variables. The observed 
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values of the present variables are substituted in the regressions (case by case) which 
yields predictions for the missing values (in the case). 

Missing-data techniques when the missing observations are in the dependent variable have been 
thoroughly discussed in the marketing literature (Malhotra6) and covered by Little and 
Rubin. 

To summarize, one of the key assumptions which must be made when using these types of 
procedure (i.e. those of Little and Rubin4) is that the missing predictor data is MAR. Little 
and Rubin also mention that it is preferable for the data to  be ‘completely missing at random’. 
CMAR data is composed of data that is both MAR and observed at random-OAR. 

In Chapter 8, Section 4, of Little and Rubin4 the authors discuss linear regression with 
missing values in the predictor variables. This corresponds to  our problem in that the X matrix 
in (1) may have missing values in a certain column because the brand corresponding to that 
column was not sold in a particular store for a given week. The authors make use of an 
expectation-maximization (EM) algorithm to get maximum-likelihood (ML) estimates of the 
/3 vector in (1) and the corresponding variances. By partitioning the X matrix into portions 
with and without missing data, a mechanism is provided to estimate the covariance matrix. 
Recall that in our case we are concerned with many observations that each have a few missing 
values. The partitioning method would place a great emphasis on the few (atypical) 
observations that are complete. 

Conceptually, the EM algorithm is a very general algorithm for maximum-likelihood 
estimation in incomplete-data problems. The algorithm is the formalization of an ad hoc 
approach to incomplete-data problems, which can be described as follows: 

(1) replace the missing values by estimated values; 
(2) estimate the parameters; 
(3) re-estimate the missing values assuming the new parameter estimates are correct; and 
(4) re-estimate the parameters and continue until convergence. 

In the E step we find the conditional expectation of the missing data given the observed data 
and current estimated parameters. We then substitute the expectations for the missing data. 
In the M step we perform maximum-likelihood estimation of the parameters just as if there 
were no missing data. 

Little and Rubin4 spend Iittle time discussing the analysis when missing values occur in the 
X matrix, focusing instead on missing values in the dependent variable. They mention that 
since levels of factors in an experiment are fixed by the experimenter, missing values, if they 
occur, do so far more frequently in the outcome variable, y ,  than in the factors, X .  Thus, 
analyses of the case where there are missing observations in y dominate the text. (The issue 
of missing values occurring in X is discussed in Chapter 10 for logistic regression and for 
categorical and continuous X s )  Also, Little and Rubin4 note that the EM algorithm converges 
very slowly when many data points are missing. 

2.3. Attempts to relax assumptions 

Simon and Simonoff’ derive limits for the values of the least-squares estimates of the 
coefficients, 0, and the associated t statistics when there are missing observations in one column 
of the X matrix. Extensions are also discussed to problems with missing observations in more 
than one column. These limits are developed subject to a constraint on the relationship of the 
missing data to  the present data. The more restrictive MAR assumption is replaced by an 
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unknown mechanism (MUM) assumption. This assumption indicates that the missing values 
occur according to a probability mechanism that is a function of the data values. Ultimately, 
the authors develop a technique that makes no assumptions about the nature of the missing- 
value process and simply requires the use of ordinary least squares. In addition, the 
development is based upon examining the usual fixed-effects linear-regression model as we do  
in our investigation. 

These authors suggest that their alternative considers the fact that the observed data have 
gone a long way toward providing results, regardless of the values the missing information 
assumes. This method provides upper and lower limits for the values in the 6 vector (and 
associated t statistics) as a function of the observed data and a measure of the non-randomness 
of the process that causes values to be missing. Unfortunately, while the authors do  mention 
extensions of their work, the analysis is restricted to the case when only one column of X has 
missing values. Problems with their method include: the mathematical tractability of the 
proposed algorithm and numerical problems with respect to the algorithm’s implementation 
on the computer. 

Before proceeding, we note here that a common approach of adding dummy variables 
indicating when brands are not available is not an attractive alternative for our problem. For 
example, one way this approach could be implemented would be to add a new column in X 
with a ‘1’ in the row corresponding to the observation with a missing value and ‘0’ elsewhere 
in that column. We would add one new column in X corresponding to each observation with 
at least one missing value. In our example problem, this would require 179 additional columns 
and necessitate the inversion of a 187 x 187 matrix (i.e. the dimension of X T X ) .  This approach 
is impractical. 

A second way to implement a dummy-variable scheme (see Method 2, Section 5) would be 
to add a single column for each brand with several 1’s corresponding to rows that have values 
missing for that observations and 0’s elsewhere. We have several pragmatic reasons for 
criticising this scheme. First, this dummy-variable scheme focuses on the entire observation 
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which has a missing value (i.e. X;,  the corresponding row in X ) .  We would prefer an approach 
that considers the influence of each missing X;j separately. Second, there will be a ‘clumping’ 
problem (which also occurs when one replaces the missing values with column means). The 
clumping problem occurs because, even though we include the dummy variable, we must still 
give values to the Xij that are missing. For example, suppose we had only one variable in X 
and there were some missing observations. A second column would be added to X ,  which 
contained only 1’s and 0’s. In order to run a least-squares procedure to  estimate 0, we need 
to  assign values to the Xi1 which are missing, say c (in our problem we have assigned the 
logarithm of the price for missing values equal t o  0, which corresponds to  a price of $1).  In 
3-space, these data would look like a scatter of points in the X-Y plane and a single line of 
points in the Y-Z, given by Z = 1 .O and X = c. This relation is shown in the Figure. We can 
see that the clump of points in the Y-2 plane could skew our parameter estimates. Finally, 
by quantifying all the missing data with the same value of c, all of them will be represented 
by the same regression weight as shown in 0. Intuitively, this seems to  suggest that all the 
missing data are missing for the same reason. Even in the marketing problem we are 
considering the missing data could occur because: 

(a) the store was out of stock; 
(b) an accident occurred and the data was lost; or 
(c) the brand of coffee was not distributed. 

2.4. Making use of an influence function 

A somewhat different approach to our missing data problem is suggested by the work 
described by Hoaglin and Welsch,9 Belsley et al. lo, Pregibon” and Welsch’2”3. In 
the paper by WelschI2, the author notes that regressions are constructed using prior 
knowledge, data, models and some form of estimation scheme. It is important to know 
whether our results depend significantly on prior knowledge, a small portion of the data or the 
estimation method we choose. Techniques that Belsley et al. lo describe are concerned with 
determining whether an observation has a disproportionately large impact on the analysis: the 
authors use the idea of an ‘influence function’ in their work. 

The purpose of an influence function, which is to  measure what happens when a single 
observation is added to  a sample, was introduced by Welsch.12 An observation is called 
influential if its deletion would cause major changes in the various statistics constructed. 
Influential observations are usually outside the patterns set by the majority of the data in the 
context of a regression model. These observations usually arise from errors in observing or 
recording data, structural-model misspecification (e.g. using a linear model instead of non- 
linear) and legitimate extreme observations. 

Welsch’ procedures use data deletion to  measure influential points. Influential data are then 
flagged and carefully examined. While there are many ways to  measure influence, the authors 
conceptually describe one way as follows: we can think of all the data except the ith 
observation as ‘good’ and treat the ith observation as ‘strange’. We should like the influence 
measure we use to ascertain whether the ith observation is really a cause for concern. A useful 
measure for this is the influence function: 

b - b(i)  (4) 

where b is the vector estimate of 0 in ( 1 )  and b(i)  is the vector of parameter estimates obtained 
by dropping the ith observation. The authors note that influential observations will lead to an 
influence measure greater than some magnitude (depending on the scaling used). 
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2.5. Hat matrix 

and Hoaglin and Welsch9 identify H ,  the hat matrix, as the key component in terms 
of understanding the influence of an observation. H =  X ( X T X ) - ' X T  is a function of the 
explanatory variable matrix or design matrix, X, only. t From the equation 9 = Hy, we see that 
H maps the observed values y into the fitted values 9.  Hoaglin and Welsch9 note that this 
relationship allows us directly to interpret elements in H as indicators of how much influence 
a particular observation has on the fit of a model. suggests that H can be used to 
detect non-homogeneous spacing in the observations which could lead to the identification of 
data deficiencies. While there is a consensus on the importance of the hat matrix as a diagnostic 
tool for detecting extreme points, Pregibon l 1  points out that the usefulness for assessing the 
impact an  observation has on various aspects of fit (e.g. parameter estimates, fitted values, 
goodness-of-fit measures) is not clear-cut. However, the author goes on to point out that 
various functions of H and the elements in H can be very useful in determining whether 
individual observations unduly influence the overall fit of a model. 

3 .  METHOD DEVELOPMENT 

The two methods we propose make fundamental use of influence functions similar to the one 
described by Belsley et al. lo W e l s ~ h ' * , ' ~  and others are mainly interested in the problem of 
identifying the influential data and presenting the information in a way that will be useful to 
the analyst. Their work assumes that although the data may be anomalous, they are not 
missing. Our objective is to obtain 'good' estimates of 0, influenced as little as possible by the 
missing values in an  observation. This objective adheres more closely to the ideas described 
by Little and Rubin4 and Simon and Simonoff.' 

3.1. Loss-function: Q 

In the development of our loss function it will be convenient to use the following definitions 
(with X an  n x m matrix of n observations and rn marketing variables, and y an I? x 1 vector 
of observed category volumes): 

C ( X )  = XTX 
D ( X )  = C - ' ( X )  = ( X T X ) - '  

G ( X )  = D ( X ) X T  = ( X T X ) - ' X T  

H ( X )  = X C ( X )  = X ( X T X ) - ' X T  (8) 

Let hi be the ith diagonal entry of matrix H ( X )  =Hi;. 

show that the j t h  component of DFBETA; can be written 
In Chapter 2 of Belsley et al. lo the authors define DFBETA; as the expression in (4). They 

gji ei bj - bj(i) = - 
1 - h; 

(9) 

where gj; is the jith entry of the matrix G above. Thus, our first loss function is obtained by 

t From a computational point of view, both Hoaglin and Welsch9 and Belsley et a/. l o  mention computing H as the 
product, LRLT where L is orthogonal (obtained using Householder transformations) and R is upper triangular. 
Alternatively, they suggest using a singular value decomposition of X into LEV'. This leads to computing H a s  U U T .  



220 L. G. COOPER, J .  DE LEEUW AND A. G. SOGOMONIAN 

taking the sum of the square of the expectations of the DFBETAi,, that is 

where we have used the formula E(ef)  = a2(1 - h i )  for the residual variance. By taking 
expectations, the loss function Q avoids using information about the dependent measure to 
influence the treatment of the independent data. (Note that since o2 is constant it will not affect 
the optimization of the loss function Q.) In order to  minimize this loss function with respect 
to  the missing elements of X ,  we differentiate Q with respect to the missing elements. This 
leads to 

using the rule for derivatives of a quotient, we have 

We represent ahr/axlJ and ag,,/dx, in terms of basic components in Appendix I. 
While minimizing Q addresses our initial problem, its applicability to other problems is 

limited because of the following unattractive features: Firstly, suppose we have a case with 
only one xIJ missing and let the estimate of x,  be large. The corresponding gJl will be small, 
h, will not change much and Q will become small. This implies that in this special case we can 
minimize Q by making the missing data dominant, which is not what we desire. Secondly, Q 
is not invariant under linear transformations. This could lead to a situation where, if the scale 
of a variable (i.e. a column in X )  with no missing values were changed, Q would change and 
in turn the missing-data estimates would change. However, we note that the marketing 
problem which has motivated this work typically does not require the scaling of variables via 
linear transformations. In order to have alternatives that avoid these potential problems we 
consider a second loss function. 

3.2. Loss-function: P 

Let 

b ( X ,  y )  = ( X T X ) - ' X T y  ( 1 3 )  

z ( X ,  y )  = X ( X T X ) - ' X T y  (14) 

z i = z i +  ( 1  - / ~ i ) - ' ( z j - , ~ j ) / ~ i  ( 1 5 )  

be the least-squares estimates of the regression coefficients, and 

be the fitted or predicted values. The perturbed value of z may be written as 

The difference between the kth predicted value, Zk, and a(;) the kth predicted value made 
without using the ith observation, can be written 

(16) zk ( i )  - z k  = (1 - hi)-'(zi -yi)Hik 
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To aid in the intuitive understanding of the second loss function, we can draw an analogy 
with both the jack-knife method and modern cross-validation. Recall that in the jack-knife 
estimate (see of a parameter 8 we systematically delete each observation of the 
population of size n and recompute B = f ( the  original data less one observation). The bulk of 
the remaining analysis (e.g. parameter estimation, interval estimation) is carried out with the 
‘psuedo-values’, 8, (the value of 8 obtained with all but the ith observation) i = 1, ..., n. In 
cross-validation (for example, see WeisbergI6), the data are divided into n overlapping subsets, 
each subset consisting of n - 1 cases. Estimates from the n - 1 cases can then be used to predict 
a value for the deleted point. This idea leads to PRESS? (PREdiction Sum of Squares) (see 
all en"^'*) which is related to our second ‘loss function’. 

Taking expectations of the squared change in predicted values we arrive at our loss function: 

i = l  k = l  

Recalling the formula for the variance of a residual E(z; - 

Since H is an idempotent matrix, i.e. H H =  H ,  we have 

(where xi is the ith row of 
summing as the fraction of 
predicted values, x;b( i ) .  

Huber l 9  uses the equation 

y ; ) ’ =  a2(1 - hi) we rewrite (18): 

(19) 

z ( x ~ ,  y i )  = (1 - hi)xTb(i) + hiyi (21) 

X and y; is the ith observed value) to describe the term we are 
the fitted value, z;, due to y; divided by the fraction due to the 

In order to minimize the loss function with respect to the missing elements of X we 
differentiate P with respect t o  the missing elements. We can write 

As mentioned above, we represent ah,/dxij in terms of its basic components in Appendix I .  
There are several points worth emphasizing. Firstly, we can see from (11) and (12) that the 

t PRESS is defined as the sum of the squared differences between the observed value and the prediction of this value 
without the ith observation. The formula for PRESS is related to our loss functions, particularly P .  Both Allen” and 
WeisbergI6 have commented on the usefulness of PRESS as an important diagnostic statistic in regression analysis. 
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only terms which will contribute to  the minimization of Q ( X )  are those x;j that correspond 
to missing values in X .  Similarly, we can see from (22) and (23) that the only terms that will 
contribute to the minimization of P ( X )  are those x;j that correspond to missing values in X. 
Recall that these loss functions? are aggregate measures of the influence that the missing values 
have on the estimates b of 0. Secondly, the terms h, in the loss function and in the derivative 
of the loss function are complex non-linear functions of the missing values xij in X .  Thirdly, 
matrix derivatives (for example, see Graybill,20 Tatsuoka,21 or Browne22) may be used to 
suggest a compact and computationally tractable representation of the objective function and, 
more importantly, of the analytic derivatives of this complex function.$ In Appendix I1 we 
give an example which presents the objective function P and derivatives for a small missing- 
value problem. It is apparent that obtaining these derivatives without using matrix calculus is 
cumbersome. In the next section we discuss the software we are using to implement our 
procedure. 

4. IMPLEMENTATION 

This section discusses the computer implementation of the algorithm. The basic components 
include: 

(1) missing-data initialization; and 
(2) unconstrained non-linear optimization of the loss function. 

Consider the data in a matrix X .  The locations where data are missing are all replaced by the 
geometric mean of the observed values within the corresponding column (the geometric mean 
is used because the elements in the data matrix X are logged prices). That is, for each column 
of X we make the following assignment to  x,j: 

( I I : = , X ~ ~ ) ’ ’ ~  
Xi j  

if the ith element of column j missing 
if  the element of column j not missing 

x; j=  [ 
The geometric means serve as initial values used by the non-linear optimization algorithms as 
they search for the replacement values of the x;j which will minimize the objective function. 
These locations are also marked, because the only non-zero derivatives (i.e. elements that can 
be perturbed to allow us to  make gains in the objective-function value) will correspond to 
positions in X that have missing values. Once the data are read in, the two basic components 
of the non-linear-optimization software begin to work. The first part is the function-generation 
component which evaluates the objective function and the derivatives at a particular point. The 
second part of the software is the component which does the optimization. 

The non-linear-optimization software is used to  modify the missing values so as to minimize 
the objective function. We have performed the investigation using two types of Optimization 
software. The first is a conjugate-gradient algorithm (see Shanno and P h ~ a ~ ~ )  and the second 
is an algorithm based on solving a sequence of local linear programs (the LLP- algorithm of 
Professor Glenn Graves, UCLA, 24). The fundamental difference between these two 
approaches is in how the derivatives are computed. The conjugate-gradient approach used the 
formulae we have developed to evaluate the exact derivatives at any point. In contrast, the 
LLP method relies on numerical derivatives. 

t With respect to the loss function P, it might be interesting to  look at  the imputed values obtained by considering 
the loss function, +(h,/l - h,) (where 
$ I f  the second derivatives of P or Q with respect to missing values could be obtained analytically and represented 
conveniently, then it may be possible to investigate the performance of second-order methods. 

is the logarithm or sine function, for example). 
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The conjugate-gradient algorithm uses the projection vector to evaluate the objective 
function and the derivative vector t o  obtain the direction of the search for new values. The 
new values will be those that minimize the influence function. This algorithm makes use of the 
analytic derivatives and at each step new values are obtained for the missing data. These new 
values are computed by modifying the current values using a linear combination of the current 
gradient (vector of derivatives) and the preceding direction vector. The algorithm can be 
summarized as follows (see L ~ e n b e r g e r ~ ~ ) .  Starting at any xo in R" let do = - go (initial vector 
of derivatives). 

(25) x k  + 1 = x k  + ffkdk 

In this algorithm, xo is obtained by replacing the missing values with the corresponding 
geometric mean, as described earlier. Also, g k  = Q X k  - b, Q is a symmetric matrix and Qx = b. 
Thus, we can see that the first step is a steepest-descent step (i.e. in the direction of the gradient 
vector - go) and the succeeding steps move in a direction d k +  I equal to a linear combination 
of the current gradient ( g k + l )  and the preceding direction vector dk.  

The LLP software is a general-purpose algorithm that solves problems of the form 

g ' ( y )  < 0 i = 1, ..., m - 1 

minimize g m ( y )  
subject to 

where y is a vector in R", and g ' ( y )  ( i =  1, ..., m )  are differentiable functions. 
The algorithm is referred to as a 'local gradient stepwise' correction descent algorithm. 

Stepwise refers to the fact that, given a yo in the domain of the g's, a correction vector Ay 
is obtained and the new point y = yo  + kAy is used in the proceeding step. The method is local 
because the correction direction Ay and its length (determined by the scalar k )  depend on the 
system's behaviour in a 'small' neighbourhood of the current point yo. Finally, the algorithm 
is a gradient technique in that the gradients of the functions g ' ( y )  play a major role in 
determining the correction direction. 

Both algorithms will terminate based on user-supplied criteria including: 

(a) a detector for small changes in the objective function; 
(b) a detector for small changes in the model variables which enter the objective function; 

(c) a detector for the maximum number of iterations. 
and 

5 .  RESULTS 

In this section we compare various parameter estimates and statistics obtained from five 
different methods. In addition, we present the results of jack-knife estimates obtained for four 
of the methods. The fundamental regression model used in this section is 

8 

j= 1 
log TSr = C Pp, log Pjst  + est (29) 
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In Method 1, observations are deleted if they have any missing values. In this case, the 
original data set has a total of 234 observations (3 stores x 78 weeks) for 8 brands of coffee; 
313 missing values occurred, for either brand 4, brand 6 or brand 7 (i.e. a single observation 
could have up to 3 missing elements), in 179 different observations. This reduces the data set 
to  only 55 observations with price data for all 8 brands of coffee. We can quickly note 
that 313 missing values represents 17% of the total of 1872 (234 x 8) values. Method 1 analysis 
makes use of only 55 out of 234 observations, or 23.5% of the data. This means that 
76.5 - 17 = 59.5% of the available data is not used in the statistical analysis! 

Method 2, suggested by Little, 26 hypothesizes that the missing values are not truly missing. 
From this point of view, a more appropriate method would be to  include a dummy variable 
which would be set to one i f  the brand did not appear in a store for a given week or set to 
zero otherwise. The corresponding value for the logarithm of price would be set to zero when 
the brand was absent. This would increase the number of columns in the X matrix by m, 
(where rn, is the number of brands that have a missing value). Thus, Method 2 adds three 
dummy variables to (29), which leads to  

8 

j =  1 
log T s ~  = Pp, log Pjsi + 64404 + 6 6 0 6  + 6 7 0 7  + e,t (30) 

where Di is a dummy variable such that 

1 if data are missing for brand i 
0 if the data are present 

Di = 

In Method 3, all the missing values are replaced by the geometric mean of the remaining 
non-missing data within a particular column. In Method 4 the missing values are replaced by 
those values which minimize the loss function P. In Method 5 the missing values are replaced 
by those values which minimize the loss function Q. Parameter estimates and diagnostic 
statistics are shown in Tables I, I1 and 111. 

In addition to reporting information about the parameter estimates and model statistics, we 
also present information about the influence of each observation. In particular, we present 
aggregate information about the following statistic (see Belsley lo): 

where s(i)  is the sample standard deviation computed after deleting the ith observation and the 
other terms are as defined earlier. DFBETASij represents the influence of the ith observation 
in the determination of the j th  coefficient. In our analysis, we considered DFBETAS;j for j = 1 
to  8 and only those 179 i’s that had a missing value (for the price of brand 4, 6 and/or 7). 
RMSI is defined as the root-mean-square influence computed for all coefficients over those 
observations with a missing value. These statistics give us an impression of the influence on 
the coefficients of only the observations with missing values. We should be aware that by 
imputing for missing values in X we may indirectly alter the influence of observations without 
missing values on the coefficients. To emphasize this point, suppose we replace a missing value 
by 1,000,000 (when the average of the remaining data in X was 10) then the corresponding 
observations would have a large influence on the coefficient estimates. 

Two important points are worth noting. Recalling that the loss functions are the sums of 
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Table I. Comparison statistics for Methods 1-5 
~ ~~ 

Method 1 Method 2 Method 3 Method 4 Method 5 

param. std. param. std. param. std. param. std. param. std. 
Variable est. err. est. err. est. err. est. err. est. err. 

Intercept 8.79 1.93 8.91 1.03 6.56 1.37 10.81 0.71 10.22 0.70 
Log Price 1 -1.54 0.28 -1.45 0.21 -1.87 0.30 -1.66 0.28 -2.00 0.28 
Log Price 2 -1.80 0.29 -1.89 0.20 -1.90 0.30 -1.79 0.28 -2.01 0.28 
Log Price 3 -1.48 0.72 -0.11 0.38 -0.14 0.55 -0.06 0.52 -0.29 0.53 
Log Price 4 -0.92 0.58 -0.24 0.22 -0.53 0.31 -0.62 0.26 0.02 0.006 
Log Price 5 -1.92 0.50 -2.00 0.23 -0.89 0.31 -1.08 0.29 -1.08 0.29 
Log Price 6 1.11 0.91 1.40 0.74 1.11 0.92 -0.33 0.06 0.002 0.005 
Log Price 7 2-65 1.81 -0.90 0.70 2.40 0.92 0.18 0.04 -0.03 0.005 
Log Price 8 2.30 1.09 3.04 0.15 2.30 0.20 1.53 0.17 2.00 0.16 
Dummy 4 -0.10 0.21 
Dummy 6 0.84 0.87 
Dummy 7 -0.68 0.57 

Root MSE 0.227 0.246 0.358 0.336 0.340 i. 55 234 234 234 234 

Method R-square 0.72 0.80 0.58 0.63 0.62 
statistics RSSt 2.48 13.47 28.87 25.41 25.94 

t RSS is the sum of the squared residuals. 

Table 11. Comparison statistics for Methods 1-5 (part 2) 

Method i Method 2 Method 3 Method 4 Method 5 

Variable T t  P r b t  T Prb T Prb T Prb T Prb 

Intercept 4-55 0.0001 8.62 0.0001 4.80 O*OOOl 15.24 0.0001 14.66 0.0001 
Log Price 1 -5-47 0.0001 -6.89 0.0001 -6.26 0.0001 -5.93 0.0001 -7.07 0.0001 
Log Price 2 -6-29 0.0001 -9.26 0.0001 -6.45 0.0001 -6.47 0.0001 -7.18 0.0001 
Log Price 3 -2.06 0-0450 -0.28 0.7797 -0.26 0.7922 -0.11 0.9104 -0.55 0.5854 
Log Price 4 - 1.59 0.1176 - 1.07 0.2862 - 1.70 0.0908 -2.34 0.0204 2.55 0.0116 
Log Price 5 -3.81 0-0004 -8.76 0.0001 -2.83 0.0050 -3.75 0.0002 -3.68 0.0003 
Log Price 6 1.23 0.2265 1.90 0.0588 1.21 0.2296 -5.83 0.0001 0.41 0.6858 
Log Price 7 1.46 0.1512 -1.28 0.2028 2.61 0.0096 4.58 0.0001 -5.74 0-0001 
Log Price 8 2 . 1 1  0.0398 20.00 O.OOO1 11.48 0*0001 9.16 0.0001 12.74 0.0001 

Dummy 6 0.97 0.3331 

- 

Dummy 4 -0.49 0.6245 

Dummy 7 -1.19 0'2337 

t T statistic for Ho: parameter = 0. 
4 Probability that j TI is at least this extreme when HO is true. 

the two influence measures ( P  or Q) for each observation, neither of these influence measures 
is the same as DFBETASij shown in (31); however, Q is the expectation of DFBETASij. This 
means that the imputed values we find may not be those which minimize the sum of 
DFBETASi, over the observations. Secondly, while DFBETAS,j might be a reasonable 
alternative loss function (i.e. the sum of the influence measures reported in the SAS output 
over the observations) we instead choose to use the expectation of this value. The main reason 
for this is that DFBETASij is a function of ei, thus it is a function of the dependent variable 
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Table 111. Comparison statistics for Methods 1-5 (part 3) 

Variable RMSIt Method 2 Method 3 Method 4 Method 5 

Log Price 1 
Log Price 2 
Log Price 3 
Log Price 4 
Log Price 5 
Log Price 6 
Log Price 7 
Log Price 8 

0-054059 
0.0473 13 
0.062984 
0.072068 
0.077 167 
0.025989 
0.067914 
0.083258 

0.046269 
0.040795 
0.068833 
0 * 077229 
0.077564 
0 * 06068 
0.07629 
0 * 060265 

0.04852 
0.03901 7 
0.063117 
0 -07 1222 
0 *07619 1 
0.083582 
0 * 077823 
0.06860 1 

0.0421 8 
0.03673 
0.06243 
0*07015 
0-07354 
0.05608 
0.05817 
0.05679 

Total 0-49075 0.50792 0.52807 0.45607 
Dummy P4 0 -076797 
Dummy P6 0.02573 
Dummy P7 0 * 067501 

Total 0.17003 

t RMSI is defined to be the root-mean-square influence computed for all coefficients over 
the 179 observations which had at least one missing value. 

(by taking expectations, as is done in the development of Q, ej falls out). We prefer that the 
dependent variable should not affect the values we impute for the independent variables. 
Intuitively, since we use a regression model to  predict the dependent variable with a function 
of the independent variables, we should not use information from the dependent variables to 
impute the missing independent values. (Note that while the dependent variable does appear 
in either of the loss functions-see (16) and (17)-upon taking expectations it is a function of 
only the h; terms, for P, or the h; and g; terms, for Q, which only depend on the independent 
variables. The constant a* is a property of the dependent variables and represents the 
contribution of y to P) .  

The pattern of coefficients in Table I may be interpreted in the light of the considerable 
amount of study this market has received (cf. Cooper and Nakanishi’). The market is 
dominated by two national brands (brands 1 and 2)  and a major regional brand (brand 5) .  
These are the brands that have the ability to expand the market using their price and 
promotional policies. In addition, brand 8 is an aggregate of the premium label, private brands 
which tend to raise their prices during times of high demand and tend not to compete with the 
market leaders on the basis of price. Thus we expect to  see a pattern with significant negative 
coefficients for brands 1, 2, and 5, and a significant positive coefficient for aggregate brand 8. 

Method 1 results in parameters which seem to overstate the impact of the minor brands. 
Brand 3 has a significant negative coefficient that seems out of line, and only very large 
standard errors keep the other minor brands from also achieving an unwarranted significance. 
The great reduction in the available degrees of freedom that comes from deleting observations 
that have any missing values seems to have a very deleterious effect on the interpretability of 
the resulting parameters. Method 2 has an acceptable pattern of significance, but the ‘clumping 
problem’ may have contributed to  values for brands 6 and 7 that seem too large (though not 
statistically significant). Replacing missing values with the geometric mean (Method 3) also 
seems to lead to overestimates of the impact of brands 6 and 7 on the market. Brand 7 ,  in 
particular, is represented as having a significant effect in the wrong direction. Method 4 
(criterion P )  has a very reasonable set of parameters for the brands known to impact the 
market. The impact of brand 4 may be overstated, and even though the parameters for the 
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other minor brands seem within reason, their significance seems to be exaggerated by very 
small standard errors. The jack-knife estimates of these standard errors might be more 
realistic. Method 5 (criterion Q) produces the most a priori reasonable set of parameter 
estimates, only the very small standard errors for the minor brands seems questionable. Again, 
the jack-knife estimates of these standard errors should be better. 

Using aggregate measures (R’, RSS and RMSE) Method 2 does well (perhaps because it has 
the most parameters) and Method 1 does well (perhaps because it has the highest ratio of 
parameters to data points), followed by Methods 4 and 5 (which have nearly identical R’), and 
Method 3 does the worst. The SAS influence measures-computed only for the observations 
with missing values (Table 111), suggest that in the aggregate, Methods 2, 3 and 4 all perform 
about the same while Method 5 ,  which was designed to minimize the influence of the missing 
values, performs best on this criterion. In the analysis using only the observations that had 
missing values, the sum of the RMSI was lowest for Method 5 ,  followed by Methods 2 and 
3 ,  then Method 4. Decomposing the sum of the RMSI over eight coefficients, Method 4 had 
four out of eight coefficients with Iower influence than in Methods 1, 2 or 3.  In addition, most 
of the increase in the sum of the RMSI for Method 4 over Methods 2 and 3 is due to the 
contribution of RMSI from the sixth coefficient. Method 5 outperforms Method 4 in all cases 
and compared to all other methods is superior 23 out of 24 times. Only the influence of the 
missing components of an observation are directly affected by the imputation procedure. Thus 
minimizing the influence of an observation basically minimizes the influence of the missing 
components of that observation. 

5.1. Jack-knife estimates 

In this section we discuss the results of the jack-knife estimates of P ,  using Methods 2, 3 ,  
4 and 5 (Method 1 was not analysed because there were too few data points). The main purpose 
of jack-knifing has been to obtain valid estimates of the standard errors (Miller 1 4 ) .  

For Methods 2 and 3, the jack-knife estimates of 0, PJ are obtained as follows: for Method 
2, each row of the independent variable matrix X and the dependent variable vector y is 
deleted (one at a time) from the n (= 234) total rows. With the (n - 1) remaining observations, 
P - i  is estimated using least squares. The n P - i ’ s  are used to obtain PJ (which equals the average 
of the P-,’s) and usJ, the estimated standard deviation. For Method 3, the missing values are 
replaced by the geometric mean of the corresponding column. PJ is then computed by 
constructing the P-,’s in the same fashion as just described. For Methods 4 and 5, the jack- 
knife estimates are constructed in two steps. First, one of the n observations is deleted and the 
missing values are replaced by values which minimized the loss function ( P  or Q). Next, p- ,  
is obtained using least squares with the (n - 1) values. PJ and uo, are then computed as 
previously described. Thus, constructing the jack-knife estimates for Methods 4 and 5 requires 
running each optimization algorithm n times. Table IV shows the jack-knife estimate PJ for 
Methods 2, 3, 4 and 5 .  Also reported are the root-mean-squared errors based on the difference 
between PJ and the standard least-squares estimate of P .  

Comparing the entries in Table I and Table IV we can see the jack-knife provides much 
more reasonable standard errors for all the methods. The major brands have the expected 
significant effects using all the methods, but Methods 2 seems to overestimate the impact of 
brand 6 and Method 3 seems to overestimate parameters for both brands 6 and 7. Methods 
4 and 5 have perfectly acceptable patterns of significance. Method 5 seems superior in that it 
gives larger estimates for the major brands and smaller estimates for the minor brands. 

We might expect a priori that Methods 2 and 3 would lead to smaller RMSEs than Methods 
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Table IV. Jack-knife statistics for Methods 2-5 

Method 2 Method 3 Method 4 Method 5 

Variable Meant S.E.$ Mean S.E. Mean S.E. Mean S.E. 

Intercept 
Log Price 1 
Log Price 2 
Log Price 3 
Log Price 4 
Log Price 5 
Log Price 6 
Log Price 7 
Log Price 8 
Dummy 4 
Dummy 6 
Dummy 7 

Root MSE$ 

8.29 
- 1.43 
- 1.87 
- 0.09 
-0.30 
- 1.94 

1.31 
-0.18 

3.09 
-0.16 

0.78 
-0.10 

0.324 

0-92 
0.27 
0.21 
0.43 
0.24 
0-26 
0.76 
0.12 
0.17 
0.24 
0.90 
0.09 

6.56 
- 1.87 
- 1-90 
-0.14 
-0.53 
- 0.89 

1.11 
2.40 
2.30 

0.002 

1 *43 
0.31 
0.27 
0.67 
0.37 
0.38 
1 a 0 5  
1.01 
0.17 

10.67 
- 1.79 
- 1-89 
-0.20 
-0.49 
-0.99 
-0.36 

0.17 
1.84 

0.145 

1-02 
0.38 
0.29 
0.72 
0.43 
0-38 
0-47 
0.34 
0.23 

10-22 
- 1.98 
- 1.98 
-0.31 

0.04 
- 1.09 

0.01 
-0.07 

2.00 

0.021 

1 *22 
0.38 
0.40 
1.14 
0.12 
0.50 
0-03 
0.23 
0.24 

t Jack-knife estimate over all observations. 
$Standard errors of the pseudo-values. 
0 Root-mean-square error, where errors are differences between jack-knifed estimate and standard least-square 
estimate. These are averaged over all the parameters. 

4 and 5 because Methods 2 and 3 are static with respect to  how the missing values are handled 
(i.e. to construct the jack-knife estimate for Methods 4 and 5, the missing value replacement 
algorithm must be run to obtain the p-j's). We can see that Method 3 leads to the smallest 
RMSE followed by Methods 5, 4 and then 2 .  

6 .  CONCLUSIONS 

The replacement of missing observations with values that minimize an influence function has 
been investigated. The missing-value problem we have considered is somewhat special, in terms 
of the mechanism which creates the missing values. This missing-value generation mechanism 
severely violates many of the assumptions required to  use traditional missing-value 
replacement techniques. In order to address our problem, we have developed two intuitively 
appealing loss functions whose minimization provides imputed values to  replace missing 
values. These methods will allow us to make more 'efficient' use of all available data. In 
addition, the methods lead to parameter estimates which have been minimally affected by the 
fact that in order to achieve greater efficiency we had to  develop 'machinery' to allow us to 
carry out least-squares estimation (i.e. we had to  impute values in order to use least-squares 
techniques). Method 5 (criterion Q) which was designed to address a specific problem in 
modelling category volume, seems to have resulted in the most appropriate parameter 
estimates for that problem. Method 4 (criterion P )  comes very close to Method 4 and is 
designed to be applicable to a much broader class of missing-data problems, since it is not 
affected by linear transformations of the explanatory variables. 
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APPENDIX I 

In this appendix we derive: 

ahr 
a xjj 

Since H =  XG we can write from (33), 

n 

I =  1 
hr= C xrlgrr 

where 6ri  is the Kronecker 6 

1 i f i = r  
0 i f i z r  

6,. = 

Recall that G = ( X T X ) - ' X T .  Browne" shows that 

= -(XTX)-'Q(XTX)-' a ( xTx) - 

a x;j 

and 
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(33) 

(35) 

Q =  J ~ X +  X ~ J  (36) 

where J is an  N x K matrix with a '1' in the ij position and a '0' elsewhere. Taking the partial 
derivative of G with respect to xij, we have 

_- ac a((xTx)-'xT) - a x;j a x;j 
(37) 

axT 
= - ( X T X ) - ' Q ( X T X ) - ' X T  + (XT 'x ) -  - a x;j 

= - ( X T X ) - ' J T X ( X T X ) - ' X T  - ( X T X ) - ' X T J ( X r X ) - ' X T  (38) 

For the partial derivative of the lrth element of G with respect to XQ we have 

where the lower case variables represent particular elements in the respective matrices. 
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Equation (40) can now be substituted into (34),  which yields 

Case 1 

When i = r (42) leads to 

Case 2 

When i # r (42) leads to 

n 

I =  I 
= - g . h .  j r  ri + (6ri - hr i )  C X r d j  

- - - h .  rigjr . - g . h .  j r  ri 

= -2g..h j i  rr . 

Thus, combining (43) and (44) we have the following formula for dhr/dxij: 

APPENDIX I1 

(44) 

In this appendix we present the computations necessary for a small problem where X i s  4 x 3 
and has two missing values-at positions (1.2) and (3,3).  The missing data are designated 
x12 = x and x33 = y.  Using the imputation technique we have developed, we find values for x 
and y which minimize the loss function. The reader should observe that the use of matrix 
calculus makes it straightforward to compute the analytic derivative of the objective function 
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when many missing values occur (the necessary formulae have been developed in Appendix I). 
To make these calcuiations without the special formulae would be a significant task for all but 
the smallest of missing data problems. Lower case letters represent particular elements in the 
respective matrices. 

MATRIX EQUATIONS 

Notation 

C ( X )  = xTx 
D ( X )  = P ( X )  = (XTx)-I  

G ( X )  = D ( X ) X T  = ( X T X ) - l  XT 
H ( X )  = X G ( X )  = X ( X T X ) - ' X T  

where hi is the ith diagonal entry of matrix H ( X )  = Hii 

Objective function 

'C.D.I.M.' 

hi 
(1 - h i )  

N 
P = a 2  c - 

Small example data matrix 

x = [ ~  -; X -;I 
c ( x ) = x T x = [ :  - 1  1 1  ; -jl[ i -; -3[ x-l 4 x2+3 x-1 "'II 1 - 1  

X 

1 - 1  y+l x + y  y2+3 
1 - 1  1 

adj C 
det C 

D ( X )  = c-'(x) = - 

x-1 x2+3 
y + l  y z + 3  X + Y  

det C ( X )  = 2x2y2 + 4xy2 + 6x2 + 2y2 - 8xy + 4x - 8y + 30 

c11 c2l c3l 

c13 c23 c33 



232 L. G .  COOPER, J. DE LEEUW AND A. G .  SOGOMONIAN 

x - 1  x 2 + 3  
c13 = 

Note that C;j is ijth cofactor 

= - x 2 y + x y - x - 4 y - 3  

c 2 2  = I = 3 y 2 - 2 y +  11 ly+i 
c33 = = 3x2 + 2x+  11 

adj( XT X )  1 
det( XT X )  

D ( X )  = P ( X )  = (XTX) - '  

x2y2 + 2x2 + 2y2 - 2xy + 9 
- xy2 + 2y2 + xy - 2x + y + 3 

c2 I 

3y2 - 2y + 1 1 
- x ' ~ + x J ' - x - ~ J J - ~  - x y - 3 ~ - 5 ~ -  1 3x2+2x+11 

G ( X )  = ( X T X ) - ' X T  

Note that if we let k =  l/det C ( X ) ,  then 

gii = k(2xy2 + 2y2 + 2x - 4y + 6)  
8 1 2  = k ( x 2 y 2  + x2y + xy2 + 2x2 - 4xy + 3x + 3y + 9) 

g13=k(2x2-2xy-22X-2y+ 12) 

g14 = k(X2y2 - x2y  + xy2 + 2x2 - 2Xy + X - 5-V + 3 )  
g21= k(2xy2 + 2y2 + 6x - 4y + 2) 
gz2 = k(  - Xy2 - y 2  + x + 8y - 7) 

g23 = k (  - 2xy - 2~ - 2y + 14) 
g24 = k (  - xy2 - y 2  + 2xy - 5x - 2y - 9) 

g31 = k(  - 4x.v - 4y + 8 )  
g32 = k (  - x2y  - 3x2 + y - 1 3 )  

g33 = k(2x2y + 4xy - 4x + 2y - 4) 

g34 = k ( - x 2 y  + 3x2 + 4x+  y + 9) 
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H ( x )  = X G ( X )  = X ( X T X ) - ’ X T  
hi1 = k(2x2y2 + 4xy2 + 6x2 + 2y2 - 8xy + 4 ~ -  8y + 14) 

h21= k(4xy - 4~ + 4y - 4)  
h3l = k(8x + 8 )  

h41= k (  -4xy - 4 ~ -  4y + 12) 

hi2 + A21  

h22 = k(x2y‘ + 2x2y + 2xy2 + 5x2 + y 2  - 4xy + 2~ - 6y + 29) 
h32 = k (  -2x2y + 2x2 - 4xy + 4 ~ -  2y + 2)  

h42 = k ( x 2 y 2  + 2xy2 - x 2  + y2 - 4xy + 2x - 4y + 3 )  
h13 = h3l 
h23 = h32 

hj3 = k(2x2y2  + 4xy2 + 2x2 + 2y2 - 8xy - 4~ - 8y + 26) 
h43 = k(2x2y + 2x2 + 4xy - 4~ + 2y - 6 )  

h14 = h41 
h24 = h42 
d34 = h43 

h44 = k ( x 2 y 2  - 2x2y + 2xy2 + 5x2 + y 2  - 4 x ~  + lox - 2y + 21)  

In order to find the minimum of the objective function, we differentiate P first with respect 
to x and then with respect to y .  We are able to obtain the values of x and y that minimize 
the influence measure. Since Hi, is a function of both x and y we can write the following: 

similarly, 

g= (1  -h i )  + hi ah; - 
ax (1 - hi)2 ax 

Using the formula for ah i lax~  derived in Appendix I, we can write out (46) as 

To confirm the formulae developed in Appendix I, we can compare ahl/ax computed using 
the formula versus normal differentiation. 



234 

Formula 
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__- ah1 3 
ax - a ~ , ~  

= 2g21(1 - hl) 
= 2k2(2xyZ + 2y2 + 6~ - 4y + 2)(16) 

Normal differentiation 

a 2x2y2 + 4xyz + 6x2 + 2yz - 8xy + 4x - 8y + 14 
ax 2x2y2 + 4xy2 + 6x2 + 2y2 - 8xy + 4x - 8y + 30 

- (4xy2 + 4y2 + 12x- 8 y  + 4)(16) - 
(2x2y2 + 4xy2 + 6x2 + 2y2 - 8xy + 4~ - 8y + 30)2 

= 2k2(2xy2 + 2y2 + 6~ - 4y + 2)(16) 

(49) 

The remaining partial derivatives can be validated similarly. There are three optimal solutions 
for this problem at (x, y) = (1,3), (- 3, - 1) or (1, - 1) all with objective function values of 
12. These solutions are obtained depending on the initial values of (x, y). Both optimization 
techniques gave identical results. 

With the compact method for generating the objective function and its derivatives, we can 
use non-linear optimization software to  search for values of the missing data that minimize our 
influence .measure. Also, examination of the objective function in (49, reveals that the highest 
order term in h; is of the form axbx& for a problem that has missing values at the (i, j )  
positions (where a is an arbitrary scalar constant). This function is a fourth-order polynomial 
(because the D(X) term in H(X) is a third-order polynomial). The functional form of our 
objective function is important when using non-linear optimization software. In particular, 
raising a small number (or large number) to  a high power will lead to numerical/computational 
instabilities. Since the loss function under consideration behaves like a sum of low-order 
polynomials, our method should produce a good solution. 
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