
Vol. 1/3, September 2001 2

Porting R to Darwin/X11 and Mac OS X
by Jan de Leeuw

Mac OS X

Earlier this year Apple officially released OS X,
its new operating system. OS X now comes pre-
installed on all Macs, although by default you still
boot into MacOS 9.x. But soon OS X will be the de-
fault.

OS X is not an incremental upgrade, it is a com-
pletely new operating system. It has a layered ar-
chitecture. The lowest layer is Darwin, which con-
sists of the Mach 3.0 kernel and a version of BSD 4.4.
Thus OS X is, among other things, a certified and
POSIX compliant Unix. Darwin is (certified) Open
Source, and it can be downloaded from the Apple
servers. One surprising consequence of the above
is that soon Apple will be the largest distributor of
Unix, and that soon OS X will be the most popular
Unix on the planet, although most users will be bliss-
fully unaware of this fact.

On top of Darwin there is a lot of proprietary
software, used to generate the user interface com-
ponents. The main libraries are Apple’s version
of OpenGL for 3D, QuickTime for multimedia, and
Quartz for printing and screen drawing. Quartz re-
places Display Postscript in earlier versions of the
system, using PDF as its native format.

Application environments

On top of the three graphics engines are no less than
five application environments that developers can
use.

Classic For the foreseeable future it will remain pos-
sible to boot into OS 9.x, and to run older Mac-
intosh programs in the Classic environment
with OS X, which emulates an older Macintosh
with OS 9.x. Some of the more powerful pro-
grams for the Mac, such as Office and Photo-
shop and SPSS, still have to run in Classic, al-
though Carbon versions have been announced.

Carbon The classical Mac Toolbox API has been
cleaned up and extended. This now makes it
possible to write applications that run natively
on both OS 9.x and OS X. Netscape, MSIE, R,
Stata, AppleWorks have all been carbonized. It
is of some interest, however, that there are two
types of Carbon applications. Those that can
run on OS 9.x are under the control of the Code
Fragment Manager and use the PEF executable
format. If run on OS X, they run on top of a
layer that translates CFM/PEF to dyld/Mach-
O. Mach-O is the native format for OS X, and

program control is exercised by the dynamic
linker dyld. The other type of Carbon applica-
tion is dyld/Mach-O, which means it does not
run on OS 9.x.

Cocoa This is the native OS X API, inherited from its
NeXTStep and Rhapsody parents and grand-
parents. Applications using these interfaces
use optimally the capacities of the OS. Cocoa
applications are still comparatively rare, be-
cause they have to be written from scratch, ei-
ther in Objective-C or in Java. But there are
already fine browsers, spreadsheets, editors,
graphic tools, and TeX systems in Cocoa.

Java The JDK (including runtime, JIT compiler,
AWT, and Swing) is integrated with OS X, and
Java libraries are available to write Cocoa ap-
plications. Swing, of course, has the native OS
X look-and-feel. Of course anything you write
in Java on OS X is (at least in principle) com-
pletely portable.

BSD Darwin comes with optimized Apple versions
of the GNU tools. Since the application en-
vironment for Darwin is FreeBSD, porting of
Unix programs is a breeze. It can be made even
easier by using Fink (see below). In particular,
it is trivial to install an X server, in fact a com-
plete X11R6, using Xfree86, and a large number
of different window managers. There are ports
to Darwin of all of gnome, including the Gimp
and Guppi, of various Matlab like programs
such as octave, scilab, yorick, and of all the
standard X graphic tools such as xfig, tgif, xpdf,
xdvi, xv, ghostview, gnuplot, grace, xgobi.

User experience

The Mac OS X user, of course, will not notice any of
these under-the-hood changes. The obvious change
is Aqua, the new look-and-feel, often described as
“lickable”. Windows and the menu bar look differ-
ent, there is a “dock”, and so on. The Aqua interface
is automatic for all Cocoa and Carbon applications
that use Quartz to draw to the screen.

The user will notice greatly increased stability of
the OS. This is mostly provided by the Mach ker-
nel, which provides protected and advanced virtual
memory, as well as preemptive and cooperative mul-
titasking and threading. OS X will run forever with-
out crashing, and applications that crash don’t take
down the OS with them any more. The need to re-
boot has virtually disappeared.

Moreover, OS X promises speed, although not in
the early versions. The OS is written to take full

R News ISSN 1609-3631



Vol. 1/3, September 2001 3

advantage of multiprocessing, and multiprocessor
Macs are becoming more and more common. Ru-
mor has it that the G5 will even be multicore. Many
graphics programs, including Quartz and OpenGL,
are optimized for the Altivec vector processor on the
G4 chip. Recent builds of the OS show great speed.

Finally, remember that OS X is first and foremost
a Unix, i.e. a multitasking and multiuser OS. You
have to login, you can allow others to login, and peo-
ple can login remotely. Although you can use the sys-
tem as a dedicated single-person desktop OS, that is
only one of its uses. There are many people who log
into the Cube in my office.

Porting problems

Darwin/X11 programmers must take into account
some important differences with the more usual ELF
based Unix systems. Most of those are due to the
Mach heritage. All these peculiarities had to be taken
into account in building R, and in modifying the
autoconf configure files.

In the first place, Darwin maintains a strict dis-
tinction between two types of shared libraries. There
are bundles, which can be loaded at runtime into an
application using the appropriate dynamic loading
interface. Also, there are dynamic libraries, that are
used at link time when building applications or other
libraries. Different compiler and linker switches are
needed to build the two different types of libraries.
For ELF systems the two types coincide. Building R
as a shared (dynamic) library, which can be linked
against other application programs, will be available
in R-1.4.0 and does not work yet in R-1.3.1. The mod-
ules and packages which use bundles of object code
that are loaded at runtime work fine.

Second, the Darwin dynamic linker dyld is very
intolerant, and does not allow multiply defined sym-
bols at all. The static linker is much more tolerant.
Thus one must make sure not to include a file with
definitions more than once, and so on.

Third, the API for dynamic loading is very differ-
ent from the more usual dlopen() interface in ELF
systems.

And finally, some of the necessary components
needed for building R (X11R6, a Fortran compiler)
are missing from the current version of Darwin.

Fink

The task of porting BSD and X11 software has been
made easy by the existence of Fink (see http://
fink.sourceforge.net). This is a package manage-
ment system for Darwin setup by Christoph Pfis-
terer, and maintained by a group of volunteers.
There are now more than 300 packages in Fink, and
you can say fink install foo to download, con-
figure, compile, and install package foo, and then

fink update foo to update the package when it has
changed in the Fink central location. Of course such
package management systems exist for Linux, De-
bian, FreeBSD (and actually for R and Stata), but it
is good to have one for Darwin as well.

What do you need from Fink for building a Dar-
win version of R? In the first place Xfree86. The
Darwin version has been modified with a Cocoa
front end called XDarwin that let’s you choose be-
tween full-screen and rootless mode, where in root-
less mode the X11 windows exist on the same desk-
top as the Aqua windows of the OS X Finder. Second,
you can install all of gnome, which can be used for
the (experimental and unsupported) gnome module
in R. Third, Fink has ATLAS, an optimized BLAS li-
brary for OS X. Fourth, there is dlcompat. This wraps
the dyld API for dynamic loading in the familiar ELF
dlopen API, so you can continue to use the standard
calls in the R sources. Fifth, there is tcl/tk, for the
tcltk package in R. And finally there are various
other libraries, which are either not in Darwin or are
more recent versions. Examples are libjpeg, libpng,
libz, and libreadline. There is also a g77 in Fink,
but it does not work with the configure scripts in R,
so all our builds so far use f2c.

In fact, R-1.3.1 base and recommended are both in
Fink. The info scripts and patch files are maintained
by Jeffrey Whitaker (jsw@cdc.noaa.gov). This pro-
vides you with yet another way to install R on your
Mac.

R

Combining all this new knowledge makes it possi-
ble to describe what we have on CRAN and what
we still need. We have a CFM/PEF Carbon version
of R, made by Stefano Iacus, and described in the
first issue of R-News. It uses a Carbon version of the
Macintosh QuickDraw driver. We also have a Dar-
win/X11 version, with support for Tcl/Tk, GNOME,
and ATLAS, maintained by Jan de Leeuw (me).

The Carbon version runs on both OS 9.x and OS
X, but we have seen that it needs a dyld/Mach-O
layer to run on OS X, so it’s not really native. There is
no support in the Carbon version for Tcl/Tk, and the
internet-based R package update and install system
is not available. There are no free tools to build this
version in OS X; you have to build it in OS 9.x, or buy
an IDE from Metrowerks or Absoft.

The Darwin/X11 version is dyld/Mach-O, and is
consequently native in that sense, but it does not use
the native Quartz library and Cocoa interfaces at all.
If you run the X server in full-screen mode, your Mac
looks just like a Linux or Solaris machine. This is
somewhat disappointing for Mac people.

There are various ways in which the current sit-
uation can be improved. Stefano is working on a
Quartz driver for the graphics. It would be useful

R News ISSN 1609-3631

http://fink.sourceforge.net
http://fink.sourceforge.net
mailto:jsw@cdc.noaa.gov


Vol. 1/3, September 2001 4

to have a dyld/Mach-O Carbon version, truly native
to OS X. The Quartz driver also brings us closer to
a Cocoa version of R, which could be implemented
initially as a Cocoa shell around the Darwin version
of R.

Much will depend on the reception of OS X, and
on how many Mac users will switch from 9.x to X.
If your hardware supports OS X, I think switching is

a no-brainer, especially if you program, develop, or
compute. As I have indicated above, the possibilities
are endless.

Jan de Leeuw
University of California at Los Angeles
deleeuw@stat.ucla.edu

RPVM: Cluster Statistical Computing in R
by Michael Na Li and A.J. Rossini

rpvm is a wrapper for the Parallel Virtual Machine
(PVM) API. PVM (Geist et al., 1994) is one of the orig-
inal APIs for extending an application over a set of
processors in a parallel computer or over machines
in a local area cluster. We discuss the PVM API, how
it is implemented in R, and provide examples for its
use. rpvm provides a quick means for prototyping
parallel statistical applications as well as for provid-
ing a front-end for data analysis from legacy PVM ap-
plications.

Introduction

PVM was developed at Oak Ridge National Laborato-
ries and the University of Tennessee starting in 1989.
It is a de facto standard for distributed computing
designed especially for heterogeneous networks of
computers. The notion of “virtual machine” makes
the network appear logically to the user as a single
large parallel computer. It provides a mechanism for
specifying the allocation of tasks to specific proces-
sors or machines, both at the start of the program as
well as dynamically during runtime. There are rou-
tines for the two main types of intertask communi-
cation: point-to-point communication between tasks
(including broadcasting) and collective communica-
tion within a group of tasks.

The primary message passing library competi-
tor to PVM is MPI (Message Passing Interface). The
biggest advantage of PVM over MPI is its flexibility
(Geist et al., 1996). PVM can be run on an existing
network consisting of different platforms (almost all
platforms are supported, including Microsoft Win-
dows 98/NT/2000 systems). Tasks can be dynam-
ically spawned, which is not supported in MPI-1
upon which most MPI implementations are based.
Hosts can be dynamically added or deleted from the
virtual machine, providing fault tolerance. There are
also a visualization tool, xpvm, and numerous debug-
ging systems. MPI has advantages of speed as well
as being an actual standard. However, for prototyp-

ing and research, it isn’t clear that either of these are
critical features.

PVM has been successfully applied to many appli-
cations, such as molecular dynamics, semiconductor
device simulation, linear algebra (ScaLAPACK, NAG
PVM library), etc. It also has great potential in statis-
tical computing, including optimization (expensive
or large number of function evaluations; likelihood
computations), simulations (resampling, including
bootstrap, jackknife, and MCMC algorithms; integra-
tion), enumeration (permutation and network algo-
rithms), solution of systems of equations (linear, PDE,
finite-element, CFD).

This article presents a new R package, rpvm, that
provides an interface to PVM from one of the most
powerful and flexible statistical programming envi-
ronments. With rpvm, the R user can invoke either
executable programs written in compiled language
such as C, C++ or FORTRAN as child tasks or spawn
separate R processes. It is also possible to spawn R
processes from other programs such as Python, C,
FORTRAN, or C++. Therefore rpvm is ideal for pro-
totyping parallel statistical algorithms and for split-
ting up large memory problems. Using rpvm, statis-
ticians will be able to prototype difficult statistical
computations easily in parallel. The rest of the article
which follows looks at installation, features, a pro-
gramming example, and concludes with issues for
on-going development.

Installation

PVM source code can be downloaded from http:
//www.netlib.org/pvm3/pvm3.4.3.tgz. Binary dis-
tributions exist for many Linux distributions (see in-
dividual distributions) as well as for Microsoft Win-
dows NT/2000/XP. However, the Windows imple-
mentation of rpvm is untried (it is possible to com-
municate with C or FORTRAN processes running
under Microsoft Windows). The following proce-
dures refer to UNIX-like environments.

R News ISSN 1609-3631

mailto:deleeuw@stat.ucla.edu
http://www.netlib.org/pvm3/pvm3.4.3.tgz
http://www.netlib.org/pvm3/pvm3.4.3.tgz

