
JSS Journal of Statistical Software
February 2005, Volume 13, Issue 7. http://www.jstatsoft.org/

On Abandoning XLISP-STAT

Jan de Leeuw
University of California at Los Angeles

Abstract

In 1998 the UCLA Department of Statistics, which had been one of the major users
of Lisp-Stat, and one of the main producers of Lisp-Stat code, decided to switch to S/R.
This paper discusses why this decision was made, and what the pros and the cons were.

Keywords: software, Lisp.

1. Introduction

The UCLA Statistics Department had invested much in XLISP-STAT. And the same thing
is true for me personally. The department used XLISP-STAT for graduate teaching (under-
graduates use Stata). Some of us extensively used XLISP-STAT in our research. Much of the
Gifi software was re-written in XLISP, and Ker-Chau Li wrote his SIR programs in XLISP as
well. The department maintained a large repository of Lisp software relevant for statistics,
still available at the hidden location http://www.stat.ucla.edu/xlispstat/code/. And
some of us, me in particular, contributed a large number of statistics and utility programs to
the XLISP archive. This was both intended as a service to the community and as a way to
make the acceptance of XLISP-STAT more widespread.

Then, about 5 years ago, we started noticing that more and more work was done in S/R
and less and less in XLISP-STAT. The gap between the actual XLISP-STAT implementation
and the available documentation was growing. Updates to the basic distribution came with
larger and larger time intervals, and then stopped alltogether. People started looking more
and more startled when you told them XLISP was your main language. And, on a somewhat
larger scale, the Lisp user community was not growing much either, and much of what was
done in Lisp was now done in newer (an leaner) interpreted languages such as Perl, Python,
or Ruby. All in all, the developments did not seem to indicate a healthy state of affairs.

Something had to be done. In 1998 we decided to switch from XLISP-STAT to R.

http://www.jstatsoft.org/
http://www.stat.ucla.edu/xlispstat/code/


2

2. Why we had to do it

It is obvious now, and it was obvious then, that S was rapidly becoming the lingua franca of
statistics. When JSS was started in 1996 it seemed likely that many of the submissions would
be written in XLISP, and indeed in the first few years many of them were. In the RFC phase of
JSS, some people warned us to open up the journal, and not to restrict it to “XLISP Jockies”.
Although JSS publishes materials written in many languages, the only jockies around at this
point are R jockies.

It is very important for a discipline to have a common computer language. Engineering and
numerical analysis have MATLAB, and statistcs has S/R. But, at a higher level, sociologists
have LISREL, psychologists have SPSS, business has SAS and Excel. It makes communica-
tion easier if files are portable and various computer terms mean the same things to the
same people. The more important the computer becomes, the more important it becomes to
standardize.

We also felt we could not ignore the fact that most statistics software, certainly at the research
level, was now written in S/R. My current personal R binaries at http://gifi.stat.ucla.
edu/pub/ come with close to 500 add-on packages, implementing a great number of both
standard and esoteric statistical techniques, as well as a great many utilities.

And it was not very responsible to teach our students XLISP-STAT, if we were one of the few
places in the world where they could actually use it and share it with their colleagues. We
were not teaching a marketable skill. It is already difficult enough to get open source projects
such as R accepted by industry and business, but there at least we have the excuse that all
of statistics uses it. Moreover there is the commercial product S-PLUS which comes with the
usual guarantees and support contracts. XLISP-STAT would not have a chance.

3. Why it hurt

Learning a new programming language every once in a while is both necessary and refreshing.
Professional programmers are sometimes advised to learn at least one new language each year.
It is seldom pleasurable, however, to switch one’s main language, for the same reason why it
is stressful to move to another country in the middle of one’s life. This must be one of the
reasons why a language such as FORTRAN refuses to die. It does its job well, and people
have no reason to switch. I was not so fortunate, since I had to give up PL/I in the seventies,
APL in the eighties, and now Lisp in the nineties.

Switching to S from Lisp was painful for other reasons. Although the R implementation of S is
based internally on Scheme, a Lisp dialect, the two languages are quite different. People either
love or hate Lisp, and I happened to love it, parentheses and all. It is a nice clean language,
interesting from the mathematical point of view, and with a ANSI standard available as
well. S is an evolving language, obviously specialized for statistics, which huge chunks still
being added. There is no byte compiler yet (although it’s on its way), namespaces were put
in recently, there are two competing systems for OOP, there are competing ways to link in
compiled C or FORTRAN, and so on.

As I mentioned above, we had written a large amount of code in XLISP, and that became
virtually useless and had to be translated or reprogrammed. Not only that, but there is an
enormous amount of Lisp code available on the net that can be made to run in XLISP-STAT

http://www.jstatsoft.org
http://gifi.stat.ucla.edu/pub/
http://gifi.stat.ucla.edu/pub/


Journal of Statistical Software 3

with minor changes. We lost that too. Together with the Lisp community, the mailing lists,
and so on. Also, of course, major projects developed by us and others became threatened. No
matter how vigorously you develop SIR, ViSta, Arc or Gifi, it remains true that the runtime
engine and the support code is no longer updated and may not keep up with hardware
developments. As this special issue of JSS shows, there are still some courageous people
keeping up the good work, but in the back of their minds they may fear that they are rapidly
heading for oblivion. More rapidly than the rest of us, I mean.

Even more importantly, Lisp was so well documented. It had the Common Lisp ANSI standard,
and the definite book by Steele (1990). The best computer programming book (Abelson,
Sussman, and Sussman 1985) in the world used Scheme as its language. The books by Norvig
(1992) and by Graham (1994, 1996) were masterpieces of programming style, and they use
Common Lisp. There were books on how to do OOP in Lisp, how to write compilers and
interpreters, and so on. We gave up compilers from FORTRAN to Lisp, or from Lisp to C.
None of this is really available for S/R. The brown, blue, white, and green books (Becker and
Chambers 1984; Becker, Chambers, and Wilks 1988; Chambers and Hastie 1992; Chambers
1998) to a large extent focus on statistics, not so much on programming, and they describe
a slowly evolving and not obviously converging language. The books by Venables and Ripley
(2000, 2002), however excellent, are severely handicapped by the fact that they cover at least
two competing dialects, and that they will rapidly become outdated.

I also should mention that I very much liked the idea of taking a general purpose programming
language, such as Lisp, and adding the statistics on top as a library or a set of plug-ins. There
are now various more or less satisfactory attempts to put S/R on top of Java, Perl, and Python
but they have the major disadvantage that they involve mapping two competing systems.
Imagine the situation in which R was actually written in a combination of Python and C.
There would be no need to replicate the general purpose programming tools and functions
already available in Python. Thousands of Python extensions and hundreds of books and
tutorials would immediately become available. We would be back in the situation that we
were in with Lisp-Stat.

As I said, having a common language is important for a discipline. That does not mean it
is necessarily optimal from a more global point of view. As we know, most new research
is interdisciplinary and as a result some of the researchers in a project will use MATLAB,
some will use R, and in some projects some of them may even use Excel or SAS. Thus a
reorganization of research implies that the language problem arises again. This is one main
reason why putting the scientific software on top of a general purpose programming language
(in the same way as we used to put subroutine libraries such as IMSL on top of FORTRAN
and C) is still a good idea, maybe even a better idea than developing special-purpose little
languages.

It is also important not only to standardize on a language, but even on a GUI and a runtime
system. That is why it is unfortunate that we still have two major and incompatible imple-
mentations of the S language, S-PLUS and R. One of the main tasks of the S/R community
in the immediate future is to make sure R and S-PLUS will become different interfaces to the
same language.

The academic origins of S/R have the usual unfortunate anarchistic corollaries – there are
now maybe 25 different GUI’s and more and more are being developed. Somebody should be
in charge here. Also, for similar reasons, R suffers from the curse of unfinished projects which

http://forrest.psych.unc.edu/research/
http://www.stat.umn.edu/arc/


4

is very common in academia. Many pieces of software, especially some of the very interesting
bridges to other languages, are proofs of concept. In the relatively low-pressure academic
situation it is more rewarding to go on to the next proof of concept, instead of finishing and
documenting the previous one. Because of standardization, commercial input, and a much
larger community of both developers and users, more got finished in the Lisp environment.

We also had to give up some XLISP-STAT components which still have not been replicated in
R. Dynamic graphics, for instance, and the byte compiler. R has to do its dynamic graphics
by making calls to the standalone xgobi or ggobi programs, and it does not have tools to do
dynamic graphics programming yet. I am sure this will come at some point in time, and it
also seems dynamic graphics is not as hot a topic any more as it was in the late eighties,
but it has still not been possible to create something as complex and as satisfactory as the
Arc or the ViSta packages in R. It may be possible to do something similar with the right
combination of plugins and helpers, but so far nobody has taken the time to actually try it.

4. Conclusion

The main difference between Lisp-Stat and S/R is that between a set of commands added
to a large and popular general purpose programming language and a special-purpose little
language for statistical computing. My personal opinion is that it is unfortunate that the
statistical community made the choice that it made, because more was given up than was
actually gained. If Lisp-Stat had been developed as actively, and by as many people, as R
has been over the last 15 years, then perhaps we would have a more satisfactory product at
this point in time. Nevertheless, as soon as the statistical community had made its choice,
departments such as ours really had no choice, and had to promote R (or become sectarian).

Of course one can still argue that Lisp-Stat has its place as research software, or to do dynamic
graphics, but we interpreted it from the start as a tool to teach statistics to graduate students
and to communicate statistical techniques to others. As a common language for statistics,
that is. Clearly it no longer is a candidate for that position.

References

Abelson H, Sussman G, Sussman J (1985). Structure and Interpretation of Computer Pro-
grams. MIT Press.

Becker R, Chambers J (1984). S: An Interactive Environment for Data Analysis and Graphics.
Wadsworth.

Becker R, Chambers J, Wilks A (1988). The New S Language: A Programming Environment
for Data Analysis and Graphics. Wadsworth.

Chambers J (1998). Programming with Data: A Guide to the S Language. Springer.

Chambers J, Hastie T (eds.) (1992). Statistical Models in S. Wadsworth.

Graham P (1994). On Lisp: Advanced Techniques for Common Lisp. Prentice Hall.

Graham P (1996). ANSI Common Lisp. Prentice Hall.



Journal of Statistical Software 5

Norvig P (1992). Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann.

Steele G (1990). Common Lisp: The Language. Digital Press.

Venables W, Ripley B (2000). S Programming. Springer.

Venables W, Ripley B (2002). Modern Applied Stastistics with S. Springer, 4th edition.

Affiliation:

Jan de Leeuw
Deparment of Statistics
University of California at Los Angeles
Los Angeles, CA 90095-1554, United States of America
E-mail: deleeuw@stat.ucla.edu
URL: http://gifi.stat.ucla.edu/

Journal of Statistical Software Submitted: 2004-06-23
February 2005, Volume 13, Issue 7. Accepted: 2005-01-05
http://www.jstatsoft.org/

mailto:deleeuw@stat.ucla.edu
http://gifi.stat.ucla.edu/
http://www.jstatsoft.org/

