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N O T E S  AND COMMENTS 

CORRECTNESS OF KRUSKAL'S ALGORITHMS FOR 
MONOTONE REGRESSION WITH TIES 

JAN DE LEEuw 

UNIVERSITY OF LEIDEN 

Kruskal has proposed two modifications of monotone regression that 
can be applied if there are ties in nonmetric scaling data. In this note we 
prove Kruskal's conjecture that  his algorithms give the optimal least squares 
solution of these modified monotone regression problems. We also propose 
another (third) approach for dealing with ties. 
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Introduction 

Most  of the algorithms for nonmetric scaling are based on the concept of monotone 
regresdon. A very good discussion of the various aspects of monotone regression (under the 
name "isotone regression") can be found in Barlow, Bartholomew, Bremner, and Brunk 
[1972]. We oidy give a brief introduction. Suppose x~, xs, "-- , x~ is a given vector of real 
numbers, wi , w t ,  . . "  , wn is a given vector of positive real numbers called weights, and 
~< is a given partial order on the index set { 1, 2, . . .  , n}. The monotone regression problem 
(for a given partial order, and a given vector of weights) is to find the vector ~1, ~l,  " ' "  , ~.,, 
which minimizes 

S(y) = ~ w,(x, - y,)~, 
i ~ l  

over all vectors yl ,  y~, - "  , yn satisfying the monotonicity condition, i.e., i ~ k - ,  y~ _< y~ • 
If ~< is a weak order, algorithms for finding the monotone regression ~2 , ~ ,  " "  , ~n 

are well known. One of the more efficient ones is discussed by Kruskal [1964]. In  nonmetric 
scaling the partial order ~< is derived from the data. For convenience we may assume that  
the data  is a vector z t ,  zs, - . .  , z~ of real numbers, arranged in such a way that  zl _< z~ _~ 
• . .  _~ z~. If i t  is true that  actually zl <: z2 ~ - . .  < z~, (i.e. if there are no ties) we can 
defing-'~< unambiguously by i ~ k ~ z~ ~_ z j ,  and apply the algorithm for the weak order 
case. If  the data contain blocks of ties, the situation is a bit  more complicated. A first 
possibility is to impose no order restrictions on the y, within tie blocks; a second is to 
require that  the y~ within tie blocks be equal. Kruskal [1964] calls these the primary and 
secondary approaches to ties. He also discusses two simple modifications of the monotone 
regression algorithm for weak orders, and conjectures that  these algorithms solve the 
monotone regression problem for the primary and secondary tie constraints. In  this note 
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we give simple proofs of both conjectures. We also discuss a new, third approach to ties, 
in which we require the means of the y~ in the blocks to be in the appropriate order. 

The Primary Approach 

We first treat the primary approach. In the case of ties there is a partition of the index 
set {1, 2, . . .  , n} into a number of tie blocks I~ , I~ , . . .  , I~ , with 1 < m ~ n. The 
partial order ~<v is defined by i ~<~ k if and only if there exist 1 <  j < l ~ ' m  such that  
i ~ I i  and k c I t  . For convenience we also define an equivalence relation on {1, 2, . .  • , n} 
by i --~ k if and only if there is a 1 _< j < m such that  i ~ I j  and k c I1 • Suppose Y is the 
set of all feasible solutions to the monotone regression problem (i.e., the set of all vectors 
satisfying the constraints), and suppose ~ , ~ ,  - . -  , ~= is the optimum solution (which 
is necessarily unique). 

Theorem. 

I f i ' - ~ k a n d x ~  < x ~ t h e n ~  < 2 ~ .  

Proof. 

Suppose ~ > ~ .  Then define ~ by ~ = ~ = (w~2~ -F w~2~)/(w~ A- w~) and ~ = "2~ 
for all v ~ i, k. Then ~ • Y, and 

w , w ~  (:~, _ ~)~ .  w ' - - w !  (x, - zk)(:~, - :~) + ~r~ + ~v~ 
S(~)  - S(~)  = - 2  w,'--W-w~ 

Thus S(~) < S(:Q, contradicting the optimality of ~. Thus ~i < £k • [ ]  

Now define the following extension <¢ of <~ : i ~v k --* i <~ k, i ~- k and xi < xk 
i ~<~ k. Suppose ~ ,  ~ ,  • • • , Z. is the solution of the monotone regression problem for the 
weak order ~<~. By applying the theorem repeatedly we find the following result. 

Corollary. 

2, = ~ f o r a l l i  = 1,2,  . . .  , n .  

Since the construction we have described is the one used by Kruskal, this proves the 
correctness of Kruskat 's first algorithm. I t  must  be emphasized that  our theorem is a very 
special case of a general theorem given by Var~ Eeden [Note 1, p. 27, theorem 1.i; 4]. 

The Secondary Approach 

The secondary approach is easier. We now define the partial order <,  by i ~<~ k if 
and only if either i <v k or i ~ k. I t  follows tha t  if i ~--- k we require y~ = y~. Suppose 
again that  2~ , 22 , " "  , ~. is the solution to the monotone regression problem for the 
secondary approach. We now define a new, closely related, monotone regl'ession problem 
without ties. Let, for each j = 1, 2, • • • , m, 

and 

§ 
x,  = ~ {w ,x ,  l i ~ I ~ } / ~ v ~  ~. 

Define the weak order ~<b on {1, 2, . .  • , m} b y j  ~<b l i f  and on|y i f j  < l, and let 

be the vector that  minimizes 
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S~(y ~) ~ w~(x~ ~ ~ o 
i=l 

over all y~, y:~, . . .  , y,,,~ sat isfying j <b l --~ y~ _< yt • 

Theorem. 

I f i ~ I j t h e n ~  = ~i ~. 

Proof. 

Suppose  y l ,  Y~, • • ' , y~ satisfies yl = yk for all pairs i, k for which i --~ k. Le t  Yi denote  
the  common vMue of the  y~ in the  t ie-block I j  . T h e n  

i=1 i~] 

T h e  first  t e rm is i ndependen t  of ~t , ~2,  - "  , ~ .... and the  second te rm is minimized by 
tak ing  ~ = 2i ~. [ ]  

The  procedure implied by this theorem is to solve a mono tone  regression problem 
with  a weak order defined over  the  block averages.  This  is precisely Kruskal ' s  second algo- 
r i thm,  which is consequent ly  also correct.  

A Third Approach 

I t  is clear t ha t  the  condit ions on the  y~ defined by the  p r imary  approach are weaker 
than  those of the secondary  approach.  We now define an even weaker  approach,  which is 
inspired by  the work of Bradley,  Ka t t i ,  and Coons [1962], and Hayash i  [1974]. For  this 
th i rd  approach  we require t ha t  the  weighted means  of the  y~ in the  t ie-blocks arc increasing, 
b u t  we do not require the  previous monoton ic i ty  condit ion.  T h u s  if 

§ 
Yi = E {w~y, l i* l i } / W l  §, 

t hen  we require 

§ y~ _< y~§ < . . .  _< y,~. 

Observe tha t  the  quadra t ic  p rogramming  problem defined by these condit ions is 
no t  s t r ic t ly  a monotone  regression problem as defined in the  first, section. I t  is, however,  
closely re la ted  to mono tone  regression, and the  following theorem shows tha t  we era1 find 
the  ~ for this approach  to ties by  using the  a lgor i thm for the  secondary approach.  We 
define ~ t  as in the  previous section. 

Theorem. 

If  i ~ l j  then  2~ = x~ + (2i~ - -  xi~). 

Proof. 

We have  the  par t i t ion  

S(y )  = ~ , w ~ ( x ,  ~ -  y f)2+ ~ ~(u,,{(x, - x~ § ) -  (y, - y~)}~ [i,I~). 
i=I  i=I  

The  first t e rm is minimized under  the  order  restr ic t ions by  set t ing y~ = ~ ;  the  second 
te rm vanishes (and is consequent ly  minimized)  if we set  y~ = xi + (y~ - x~)  for all 
i e I~ . Thus  the overall m i n i mu m is a t t a ined  if we use 2i as s ta ted  in the  theorem.  [ ]  
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ComputationaUy, this third approach is very easy to implement. We use the algorithm 
for the secondary approach to compute the optimal block means, and then adjust all y~ 
within the block by the same constant so that they have the appropriate mean. 
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