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NOTES A N D  COMMENTS 

A NOTE ON P A R T I T I O N E D  D E T E R M I N A N T S  

JAN DE LEEUW 

UNIVERSITY OF LEIDEN 

A formula for the determinant of a partitioned matrix, possibly with singular submatrices, is 
derived and applied to some psychometric and numerical problems. 
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Introduction 

Suppose 

where A is m x m, B is m x n, C is n x m, and D is n x n. If .4 is nonsingular then Schur 
[1917] has proved that 

det (M) = det (A) det (D -- C A -  1B). (2) 

In this note we derive more general results which can be used if A is singular. From the 
review of Ouellette [Note 1] it appears that these results are new. In our last section we 
briefly indicate some possible applications in psychometrics, more specificially in gener- 
alizations of canonical analysis. 

First Reduction 

We distinguish a number of different cases. In case I the matrix A is nonsingular, and 
formula (2) applies. In case II the matrix A is singular, of rank m - r, say. The singular 
value decomposition of A is 

A = K~C~LI, (3) 

with K~ and L 1 columnwise orthonormal m x (m - r) matrices, and with f~ diagonal with 
nonzero diagonal entries. Also define the columnwise orthonormal m x r matrices K o and 
L 0, satisfying K 6 K  1 = L 6 L  1 = 0. We now use 

det (M) = det rio i Io0 '" t K~ 0 A B L o 0 = d e t  0 0 K ~ B  (4) 
0 I C D 0 I 

CL I CL  o D 

where we assume that the signs of ~ and the columns of K and L are chosen in such a 
way that the determinants of K and L are equal to + 1 (and not to -1) .  Because t) is 
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nonsingular  we can apply Schur 's  theorem, and we find 

det (M) = det (t)) det I 0 K6 B 
I CLo D - CA÷B ' 

with A ÷ the Moore-Penrose  inverse of  A. 

(5) 

Second Reduction 

Suppose the r x n matrix K~ B has rank s, and the n x r matrix CL o has rank t. In 
case I Ia  we suppose that  either t < r or  s < r or  both. It follows directly f rom (5) that  in 
this case det (M) = 0. For  case l ib  we suppose that  t = s = r. 

Again case I Ib  has two distinct special cases. In I l b l  we have n = t = s = r. Thus 
both  K~ B and CL o are square and nonsingular.  N o w  

de t l  0 K~ B I 
CL o D - C A + B  = ( - 1 ) ' d e t  

Thus we find in case I lb l  that  

K ~ B  

D - CA+B 

0 I [ = (--  1) r det (K~ B) det (CLo). 
CLo 

(6) 

det (M) = (--  1)" det (f~) det (K~ B) det (CLo). (7) 

The remaining case is IIb2, in which n > t = s = r. We now use the two singular 
value decomposi t ions  

K~ B = P'PQI, (8) 

CL o = RIOS'. (9) 

In (8) and (9) both  P and S are square or thonormal ,  the matrices Qx andR1 are n x r and 
columnwise or thonormal ,  we also define the n x (n - r) matrices Qo and Ro,  which are 
columnwise o r thonormal  and satisfy Q~Q1 = R~R~ = 0. We also write T for the gener- 
alized Schur  complement  D - CA + B. N o w  

, IP, 0 
d e t l  0 K oB = d e t  0 R[ 0 

I , CLo CL o T 0 R o 

0 0 

Q, Oo 

0 • 0 
= d e t  • R~ TQI R'~ TQo , (10) 

0 R ~ T Q i  R ~ T R  o 

where the signs in the singular value decomposi t ions  are chosen in such a way that  the 
determinants  of  P, Q, R, S are all + 1. The (2r) x (2r) matrix in the upper  left hand  corner  
of  the last expression is nonsingular,  and we can apply Schur 's  theorem again. This gives 

d tl° CLo = (--  1)' det (~)  det (O) det (R; TRo), (11) 

and thus, for case IIb2, 

det (M) = ( -  1)' det (f~) det (W) det (O) det {R;(D - CA + B)Qo}. (12) 

A Single Formula 

Provided that we use the convent ion that  ( -  1)" = 1 if r = 0, and  that  the determin- 
ant  of  a matrix of order  zero is also equal to one, we can summarize  all our  special cases 
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in the single formula 

det (M) = ( - 1 ) '  det (K'~ALO det (K;  BQ0 det (R'~CLo) det {R6(D - CA*B)Qo}. (13) 

A Corollary 

If A is nonsingular, then M is singular if and only ifD - C A - t B  is singular. We want 
to make a similar statement for A singular. This answers a query of Ouellette [Note 1, p. 
47]. If A is singular, then M is singular if and only if one of the matrices K~ BQ1, R~CLo,  
or R~(D -- CA +B)Q o is singular. This can happen if and only if ease IIa or ease IIb2 with 
R~(D -- CA + B)Q o singular obtains. In case IIbl  the matrix M is nonsingular. 

Applications 

Van de Geer [Note 2] studies the curve defined by the algebraic equation 

g ( # , 2 ) = d e t  A-C,#I DC211 = 0 '  (14) 

with A and D real symmetric (in fact positive semidefinite). Van de Geer shows in detail 
that various data analytic procedures such as ridge regression estimation, oblique Pro- 
crustus rotation, principal component analysis, and various forms of canonical analysis 
can be interpreted in terms of the determinantal (14). Our results can be used to study the 
algebraic multiple valued function 

A(#) = {2 ~ Rig(p, 2) = 0} (15) 

in considerable detail, especially in the points where A - / ~ I  is singular (i.e., where # is an 
eigenvalue of A). This application will be studied in more detail in another paper. 

Another interesting application is to modified eigenvalue problems. We know the 
eigenvalues and eigenvectors of a matrix A, and we want to study the eigenvalues of 
A - BB', either we want to compute them more efficiently using our prior knowledge of 
A, or we want to derive theoretical results such as perturbation bounds. The problem fits 
into the framework of this note because the determinantal equation 

g(#) = det (A - BB' - #I) = 0 (16) 

is equivalent to 

g ( # ) = d e t l A - # Z B '  BI=0"I (17) 

In fact applying Schur's theorem to (t7) gives 

~(/~) = det (I) det (A -- g l  -- B I - I B ' )  = det (A -- BB' -- M). (18) 

If # is not an eigenvalue of A then A -- pl is nonsingular and we can also apply Schur's 
theorem the other way around. This gives 

g(#) = det (A - / d )  det (I - B'(A - Id ) - IB) .  (19) 

If A is m x m and B is m x 1, then the equation g(#) = 0 can consequently be written as 

b'(A - •I)- ~b = 1, (20) 

where we use b instead of B, because B is now a vector. Equation (20) is familiar from the 
oblique Procrustus problem [cf. Ten Berge & Nevels, 1977, for a review and references], 
and familiar from the literature on rank-one modifications of eigenvalue problems (Golub, 
1973, Bunch, Nielsen, & Sorensen, 1978]. Moreover, least squares problems with a qua- 
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dratic constraint [cf. Gander, 1981, for a review and references] can also be written in this 
form. A recent psychometric application is Hafner [1981]. Our theory is more general, 
because B need not be a vector, and because A -  #I can be singular. Details of this 
application, however, will also be published elsewhere. 
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