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Abstract The early history of correspondence analysis is reviewed. It is shown that K.  PEARSON 
came very close to discovering correspondence analysis in 1906. That he did not 

actually discover it may be because he was not familiar with the singular value decomposition, 
which is the basic existence result in correspondence analysis. 
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1 Introduction 

Correspondence analysis is usually credited to HIRSCHFELD (1935) orto FISHER (1940), 
compare also MAUNG (1941a) and (1941b). HIRSCHFELD showed that it was possible to 
choose systems to row-scores and column-scores that exactly linearize the regressions. 
FISHER and MAUNG find scores that maximize the correlation coefficient of the two 
variables, and give other interpretations of the scores in terms of analysis of variance, 
discriminant analysis, and canonical correlation analysis. At about the same time 
GUTTMAN (1941) discovered multiple correspondence analysis, which he described in 
almost the same terms as FISHER and MAUNG, and only much later GUTTMAN (1959) in 
terms of linearizing the regressions. In this short note we indicate that K. PEARSON was 
very close to discovering correspondence analysis in PEARSON (1904), (1906). If he had 
known it, he would have used it, because it is a relatively cheap and reliable method to 
compute the correlation coefficient in bivariate tables for which “the order of grouping” 
is not necessarily known. 

2 PEARSON’S contributions 

In the famous 1904 paper on contingency PEARSON proved that the mean square contin- 
gency ofthe bivariate normal distribution is simply related to its correlation coefficient. 
In fact he proved that this makes it possible to estimate the correlation coefficient by the 
formula 

r2 = x’/(x’ + N ) ,  

where X2 is the chi-square for departure from independence, and where N is the total 
number of observations. PEARSON’S motivation for studying this problem is also out- 
lined very clearly. In the course of his empirical work on the inheritance of eye colour, 
coat colour of horses and greyhounds, and human hair colour, he continually ran into 
the problem of defining a scale in order to compute correlation. In his experiments with 
different scales he found, to his pleasant surprise, that in many cases the correlation 
coefficient did not change greatly if different scales or groupings were used. Since the 
coefficient of contingency is independent from any considerations of scale or order, it 
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seemed to PEARSON that his result explained the relative invariance of correlation in the 
case of a bivariate normal with sufficiently fine grouping. 

On page 19 and 20 ofthe same memoir PEARSON derives another result, which we first 
give in words. “Hence we conclude that in any correlated system of variables, obeying 
the law of linear regression, we can, without sensibly modifying the correlation, inter- 
change two adjacent y-arrays (e.g. two rows of the correlation table), provided the grou- 
ping be fine. But if we can change any two adjacent y-arrays, we can, by a repetition of 
such changes, interchange any two y-arrays whatever; and a precisely similar statement 
must be valid for any two x-arrays (e.g. two columns of the correlation table). Hence, 
given a sufficiently small system of grouping, we may state that in all cases of linear 
regression the actual order of the scales is immaterial as far as the determination of the 
correlation is concerned.” (PEARSON (1904), p. 20). 

This is a very sweeping statement, and the proof offered is quite disappointing. 
PEARSON shows that if the grouping is fine then interchanging two rows has a vanishing 
first order contribution to the correlation if the regression is linear. PEARSON was appar- 
ently criticized by YULE, who did not think it obvious that this comparatively simple 
mathematical result had such far-reaching practical implications. In PEARSON (1906) 
there is a defensive note. “I think this conclusion is quite sound, and deserves further 
consideration. Although in the statement ofthe proposition I have used the word ‘small 
changes’ in scale order (p. 19) and in the summary ofmy memoir(p. 35) stated what is to 
be understood by small, in this case, I think,as Mr. G. U. YULE points out to me, that the 
wording on p. 20 is too unguarded, ifthe reader has not been sufficiently impressed with 
the wording on p. 19, or reached the summary on p. 35.” (PEARSON (1906), p. 176). In the 
1906 note this is followed by a more complete proof, with even more far reaching prac- 
tical implications. 

We shall discuss the practical implications, and the connection with correspondence 
analysis, in a later section. First we give a generalized and modernized treatment of 
PEARSON’S result. The main difference is that PEARSON treated a very restricted class of 
perturbations, the interchange of two adjacent arrays in a finely grouped but discrete bi- 
variate probability distribution. We generalize to arbitrary random variables (with finite 
variances) and to arbitrary “small changes”. 

3 PEARSON’S theorem 

Suppose x and y are two random variables with a joint distribution and with finite 
variances. In fact we can suppose without loss of generality than they have expectation 
zero and variance one. Let ex,, = E(xy). We now consider new random variables - x=f (x) 
and y =  g(y) ,  with f and g measurable, with 5 and y having finite variance, and with 
E = _x- xand 6 =y-yin the role of“smal1 changes”. We compute perturbed moments. 
For the variance we find, using u2 for variances and 4 throughout for correlations, 
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while the covariance is given by 

03 = pXY + 06 eX6 + a, Q ~ &  + 0, 06 ~~6 

The perturbed correlation is 

If both regressions are linear then 

Q~~ = eXy ex& . 
If we substitute this in the expansion, we find 

I 2  2 1 2  2 Q== eXy ( 1  - F, (1 - ex&) - m(1- ~ ~ 6 )  - a, a 6 e X , ~ y 6 ]  + 0 ( m a  (02, d)}. (6) 

Observe that this result remains true under the weaker condition that x and 6 are un- 
correlated given y ,  and y and E are uncorrelated given x. This is basically the result used 
by PEARSON, in a much generalized form. 

4 PEARSON’S conclusions 

The first conclusion, corresponding to PEARSON ((1904), p. 19-20), follows from (4). If 
both regressions are linear, then 

(7) em = ew + 0 { m a  (02, d)}. 
Thus “small changes (i.e., such that the sum of their squares may be neglected as com- 
pared with the square of mean or standard deviation) may be made in the order of 
grouping without affecting the correlation coefficient.” (PEARSON (1904), p. 35). To see 
the relation with correspondence analysis observe that this can also be formulated more 
suggestively as: if both regressions are linear then the correlation coefficient is station- 
ary with respect to variations infand g. This is, at least partly, the key result of HIRSCH- 
PELD (1935). 

But PEARSON (1906) goes further than this. He concludes from (6) that if the regres- 
sions are linear and if exy is nonnegative, then actually rXy is an absolute maximum. “Or, 
we conclude that if there be one arrangement of the material for which the regression 
line is linear, then any interchanges, however extensive, will reduce the value of the 
correlation as calculated by the product moment method. This conception of the linear 
regression line as giving the arrangement with the maximum degree of correlation 
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appears of considerable philosophical interest. It amounts practically to much the same 
thing as saying that ifwe have a fine classification, we shall get the maximum of correla- 
tion by arranging the arrays so that the means of the arrays fall as closely as possible on a 
line.” (PEARSON (1906), p. 178). But this is exactly what correspondence analysis does. 
PEARSON just lacks an existence theorem which tells him that such an arrangement is 
always perfectly possible, and in many different ways. Or, to put it differently, 
he was not familiar with the singular value decomposition, although this had been dis- 
covered much earlier by BELTRAMI, SYLVESTER, and JORDAN. 

We must emphasize that, of course, it does not follow from (6) that pV is an absolute 
maximum for variation off and g. Such a result cannot be proved with local methods. In 
general it is false, compare SARMANOV and BRATOEVA (1967), example 2. In PEARSON’S 
context, in which we interchange adjacent arrays, it is easy to see that pxE and eys are 
both negative, which means that gxy is at least a local maximum if the regressions are 
linear. 

“While not desiring to encourage carelessness in observing or tabling or in the forma- 
tion of scale orders without due consideration, still the results of this note seem to in- 
dicate that in many cases absolute unanimity ofjudgment in classifying or great stress 
on small details of scale grouping are not needful in order to reach sensibly identical 
values of the correlation.” (PEARSON (1906), p. 178). We agree with the spirit of this 
remark, amount other things because of our experience with correspondence analysis 
as a method for optimal scaling. We also think that PEARSON’S theorem indicates that it 
is very important to investigate linearity of the regressions for the scoring system one 
intends to use. One way to do this is by using correspondence analysis. 
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