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Fixed Rank Matrix Approximation with Singular Weights Matrices

By J. de Leeuw, Leiden

Summary

In this paper we approximate a matrix by another matrix of lower rank. The approx-

imation is defined by using the general class of orthogonally invariant norms, in
' combination with row-weights and column-weights which can be singular. Our results

generalize the existing ones.
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1: Introduction

Suppose X is a given n xm matrix. The problem of minimizing the norm
tr (X - Y)'(X - Y) over all matrices Y with rank(Y) < p, and the solution to
this problem are very well known. Some of the relevant references are Schmidt
(1907), Eckart and Young (1936), Householder and Young (1938), Keller (1962).
The application of these results to various forms of factor analysis, principal
component analysis, correspondence analysis, multidimensional scaling, and other
graphical data analysis techniques are much too numerous to 1ist here. Many of
these applications are reviewed by Gabriel (1971), Gnanadesikan (1977), Kruskal
(1978). From these reviews it is clear that this matrix approximation result is

one of the basic tools of psychometrics, and perhaps of data analysis in general.
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The matrix approximation problem mentioned above, and its solution, have
been generalized recently in various directions. The first direction is weighted
Jeast squares. This only requires a minor adaptation of the classical results.
Keller and Wansbeek (1983) and Van Praag (1982) study the problem of minimizing
tr (X - Y)'A(X - Y) for a positive definite matrix of row-weights A, and they
discuss applications of this result to multinormal maximum Tikelihood theory.
They both indicate that the case in which A is singular may be of interest, but
they do no present definite results on this case. De Leeuw (1981) studied the
case in which A is singular, using results from penalty function theory and
perturbation theory. Although these are useful tools, they lead to fairly heavy
computations. One of the purposes of this paper is to solve the singular case
by purely algebraic methods, which turn out to be at least as powerful as the

analytic ones.

-~
Other recent generalizations steer away from the Euclidean norm. A general

reference is Fiedler (1968). Maitre (1968) uses the class of generalized norms
introduced into numerical analysis by Gastinel (1962). In a classical paper

Mirsky (1960) uses the unitarily invariant norms introduced by Von Neumann (1937).
Reviews of the application of unitarily invariant norms to matrix approximation
problems are Corsten (1976) and Rao (1980). In Rao's paper there is a general
result which covers the case of minimizing ]|A(X - Y)B|| for positive definite
matrices A and B of row-weights and column-weights, and for an arbitrary unitarily

invariant norm. This is the result we want to generalize in this paper.

For ease of reference we summarize some of the basic definitions here.
Because we work with real matrices, we define orthogonally invariant norms on

the space of all real n x m matrices. They must satisfy

a: ||X]] > 0 for X # § (the null matrix),

b: []eX|| = |c|+||X]| for all real c,
et [ Y[« [IXTE+ TS
d: ||VXU|] = [|X]|] for all square orthonormal V and U.




Condition (d) is what makes these norms special. The singular value decomposition
tells us that any matrix X can be decomposed as X = VAU', with V and U square
orthonormal, and with A pseudo-diagonal and non-negative. (A matrix is called
pseudo-diagonal if all is off-diagonal elements are zero, this does not require
the matrix to be square). It follows from (d) that ||X|| = ||A|], 1.e. the norm
of X is a function of its singular values only. Von Neumann (1937) establishes

a one-to-one correspondence between orthogonally invariant norms and symmetric
gauge functions. A symmetric gauge function ¢ is a real valued function, defined

on a space of real vectors, such that

a: ¢(x) > 0 for x # § (the null vector),

b: ¢(ex) = |g[+¢(x) for all real g,
c: ¢(x +y) < ¢(x) + 9(¥),

d: ¢(Px) = ¢(x) for all permutation matrices P, .

e: ¢(Sx) = ¢(x) for all signmatrices S.

Remember that a permutation matrix is a zero-one matrix, with exactly one element

equal to one in each row and column. A sign matrix is diagonal with plus or minus

one on the diagonal. Von Neumann's result is that each orthogonally invariant
norm can be written in the form |[X]| = ¢()), where X are the singular values

A, collected in a vector.

It is clear that orthogonally invariant norms define a very general class,
the only restriction being that they are symmetric gauges on the singular values.
The Gastinel-norms, mentioned above, are a somewhat different class which can be
defined in terms of certain generalized singular values. it is not true, however,
that all possible cases of interest are covered by these two classes. In Bargmann

and Baker (1977) for example, the function []X --Y||, with |

| the ¢_-norm, is
minimized over all Y with rank(Y) < p. The 4_-norm on the elements of the matrix
is not orthogonally invariant, although the 2_-norm on the vector of singular
values defines an orthogonally invariant matrix norm. Similar comments apply
to fitting in the zl—norm, which is discussed briefly in Gabriel and Odoroff

(1983).



It is now easy to describe the contents of this paper. We want to minimize

A(X = Y)B'!! over Y with rank(Y) <€ o, where A and B need not even be square, and
I {

where ||+|| is any orthogonally invariant norm. Because of the particular

application in Keller and Wansbeek (1983), which provided the motivation for
doing this research, we also discuss a restricted version of the problem. Thus
we generalize Rao (1980), because we ailow for singular row-weights and column-
weighfs. And we generalize De Leeuw (1981), because we include orthogonally

invariant norms other than the lz-norm.

2: Main approximation result

Suppose we want to approximate a given n % m matrix X with a matrix Y, also
n x m, and with rank(Y) ¢ g Closeness of approximation is measured by using a
p x nmatrix A of row-weights, a q x m matrix B of column-weights, and by defining

the loss-function

a(Y) = [A(X - V)B'[], (1)

is an orthogonally invariant matrix norm on.the space of p x q matrices.

where |

GoH'

We start with some convenient definitions. Suppose A = P¥Q' and B
are singular value decompositions of A and B. Thus P, Q, G, H are square ortho-
normal. Both ¥ and ¢ are pseudo-diagonal, ¥ is p x n, ¢ is g x m, and we assume
without loss of generality that the elements of v and ¢ decrease along the diagonal.
Suppose rank(A) = s. Partition Q as Q = (Q1 ! QO), where Q1 isn x s and Q0 is
nx (n-s). In the same way H = (H1 ] HO), where H1 is mx t and H0 ismx (m-t),
for t = rank(B). Moreover wl and @1 are the leading s x s and t x t positive
definite diagonal submatrices of ¥ and ¢ (our singular values are always chosen
to be non-negative). Observe that it is possible that s = n and/or t = m. In that
case QO and/or HO have no columns, but the formulas we derive can stili be
interpreted in the obvious way. In fact they can even be interpreted in the (admit-

tedly completely uninteresting) case in which s = 0 and/or t = 0.



Our first step in the construction of the optimal Y is a change of variables.
Write Y in the form
Y = QlFHi + Qché + QODHi + QOEHé. (2)
We now want to minimize

¥10XH 2y - ¥ Fe, 0!

o(F,C,D,E) = , (3)
0 0
over all F, C, D, E that satisfy
F C
rank < p. (%)
D E

Because C, D, E do not appear on the right-hand side in (3) it is best to inter-
pret (4) as a condition on F. Thus we require that F is such that there exist
C, D, E of the appropriate size such that (4) is true. But a Tittle reflection
shows that this condition is simply equivalent Yo rank(F) < p. Thus we can find
F, C, D, E by first minimizirg (3) over F, under the condition that rank(F) < p.

This gives a solution F. We can then choose C, D, E arbitrarily, except for the
fact that together with F they must satisfy (4).

But we know how to construct F from Mirsky (1960). If U = leiXH1¢1, and
U =SaT' is a singular value decomposition of U, then

F

wils{g}pT'éil. (5)
Here {Q}p is pseudo-diagonal, of order s x t, with its p largest elements equal
to those of @, and its other elements equal to zero. Thus {Q}p is the best rank-p
approximation to Q. Using this interpretation it also makes sense to write E =
wil{U}p¢11, with {U}p the best rank=p app}oximation to U. It is of some interest
to observe that E is not necessarily uniquely defined by (5). If rank(U) > p and
W, T O then different choices of E are possible, because we can choose different
elements from the singular subspace corresponding with the singular value e We

collect our results so far in a theorem.

Theorem 1: Consider the problem of minimizing the loss function o(Y) =

[|A(X - Y)B'|| over all Y such that rank(Y) s o, where ||<]|] is any orthogonally



invariant norm. The general solution for Y is

Y = QlFHi + Q1CH6 + QODHi + QOEHO, (6)
with
F= S{sz} T @11, (7)
and with C, D, E chosen in such a way that

F e
rank [~ | € p.

D E

Proof: Given above. []

Condition (8) can be made somewhat more explicit. Suppose Pg = rank(n) and

= rank {Q}p, i.e. = min(p,po). Moreover @, is the Teading Py X Py submatrix

"1 1 1
of @ and of {Q}p. The corresponding left and right singular vectors are in S1 and

Tl’ the remaining singular vectors are in SO and TO. Now

rl

Foe sty o 0 sy
rank <l = rank [~ P -~ | =rank | 6 o sl cClo. (9)
E Do,T E Do, T, Do,T %!
11 10
By a familiar theorem, given for example by Guttman (1946), this gives
ﬁ 6 Owlc
rank [. ~f = Pyt rank |- - (10)
D E D<1>1T0 E - D@lqul SlwlC

In fact we can go further. By using the methods of Meyer (1973), Marsaglia and

Styan (1974), Oellette (1978), De Leeuw (1982), we can derive from (10) the

result
F é' .
rank 6 ~| =pqt rank(S'W C) + rank(D@lTO)
+ rank{K}(E - D3, T2l sty C)L ), (11)
where K0 is an orthogonal basis for the null space of T $ D' and L is an ortho-

gonal basis for the null space of S0 1
On the basis of these results we can distinguish two different cases. If
Py = P> i.e. Pg S P then o(Y ) 0. By a suitable choice of C D E we can

give Y any rank between °9 and p. If Py = 0> i.e. if p g then rank(Y) £ p

pO’



: . I‘_ - - A__‘ '1|A
if and only if SOWIC = 0 and D<1>1T0 =0 and E = D@lTlﬂl Slw1C. Here o(Y) > O,

except in the boundary case p = Py

3: Restricted approximation

We have seen in the previous section that o(Y) = 0 if and only if rank(U) =

rank(QiXHl) < p. This implies that Qi?Hl QiXHl’ but if either A or B is not of

full column rank it does not follow that Y= X. We can have 0(§) =0 and 9 # X,

or, to put it differently, [|A(<)B"[] is not a norm on the space of all n x m
matrices. But consider the subspace of all n x m matrices Z that satisfy QiZHO =0,
QéZH1 =0, and Q(‘)ZHO = 0. For any Z in this subspace we clearly have ||AZB'|| = 0
if and only if Z = 0. Or, if Y satisfies QiYH0 = QiXHO’ Q(')YH1 = 06XH1’ and

Q(')YHO = QéXHO, then we also have o(Y) = 0 if and only if Y = X. In some applica-

tions, such as the multinormal maxipum 1ikelihood context of Keller and Wansbeek
(1983), it is necessafy to work with norms on subspaces instead of pseudo-norms on

the whole space. Thus, accordingly, we now formulate the restricted approximation
problem in which o(Y) is minimized over all Y that satisfy QiYHO = QiXHO’ QéYH1 =
QéXHl, QéYH0 = QéXHO. By using the same reasoning as in the proof of theorem 1

we obtain a similar theorem for restricted approximation.

Theorem 2: Consider the problem of minimizing o(Y) over all Y such that

rank(Y) < p and QiYH0 = QiXHO’ Q(')YHl = QéXHl, Q(')YHO = Q6XH0‘ The general solution

for Y is
Y = QiFH] + QiCHy + QuDH{ + QuEH,» (12)
with
c -1 -1
Ii =y, s{a},T'e (13)
E) = QoXH;» (15)
E = QJXHy (16)
and with ¢ the largest integer such that
Fc
rank |- <p (17)
D E
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Proof: As in the proof of theorem 1 the problem can be reduced to minimizing

Q- ¥.S'FT¢
1 1 0 (18)
0 ¢
over all F that satisfy
IF C|
rank [~ -f < p. (19)
D E

The difference is that now 6, 6, and é are given matrices, they can not be
chosen freely any more. That E must be of the form (13) isvc1ear from the proof
of theorem 1. If it is not, then there are non-singular transformations which
transform it into this form. These transformations do not change the rank, and
give a smaller Toss. []

The expression for Y in (12) can be simplified somewhat. In the first place
QlQiXH +Q QOXHlHl + QOQOXH H! = QIQiXHlHi‘ In the second place we can

write SQeT‘ as sSeT’ H , with He a_symmetric idempotent of rank o. This gives

.'

Y = QlQIXHltblnedb1 Hi + X - QloIXHlHl =

X = QqOQ{XH{(I - ejn 0, )Hi. (20)
0f course we can also write SneT' as EeSnT', with Ee another symmetric idempotent
of rank 6. This gives the alternative formula

Vo= X QI - ¥Ry )QlXH Hy - (21)

It is also possible to make (17) somewhat more precise, along the Tines of
the previous section, but we have not found a satisfactory final form. Thus for
the practical problem of how to find 6 we have a rather unelegant solution. We
start with (20) or (21), and try all values of 6 between 0 and °g- We keep the

largest one for which rank(Y) < o. In this repect, however, our results can

certainly be improved.
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