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D I F F E R E N T I A B I L I T Y  O F  K R U S K A L ' S  STRESS 
AT A L O C A L  M I N I M U M  

JAN DE LEEUW 
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It is shown that Kruskars multidimensional scaling loss function is differentiable at a local 
minimum. Or, to put it differently, that in multidimensional scaling solutions using Kruskal's 
stress distinct points cannot coincide. 
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Introduction 

In one type of metric multidimensional scaling the loss function 

or(X) = ~ ~ Wij(3ij -- dij(X)) 2, (1) 
i=1  j = l  

is minimized over all n x p configuration matrices X. Loss function (1) is patterned after 
Kruskal 's  famous STRESS (1964a, b). In (1) the wij are nonnegative weights, the 6ij are 
nonnegative dissimilarities. Without loss of generality it can be assumed that both weights 
and dissimilarities are symmetric and hollow (De Leeuw, 1977, section 3). The dij(X) are 
Euclidean distances between rows of X, i.e. 

d2(X) = (x~ - xj)'(x~- x j). (2) 

While our results deal with a(-), they can be extended easily to the corresponding loss 
function of nonmetric MDS. 

It  was pointed out by De Leeuw (1977) that d~#(. ) is not differentiable at configura- 
tions X with x~ = xj. This may cause trouble in the definition of gradient algorithms, but 
this trouble turns out to be not very serious. In De Leeuw (1977) and De Leeuw and 
Heiser (1980) it is shown how the usual gradient algorithms can be modified quite simply 
to deal with the problem. The resulting algorithm is unambiguously defined, and conver- 
gent. A second, more serious, problem is that the algorithm may converge to a configur- 
ation X for which the gradient Va(X) does not exist, and for which the gradient is non- 
zero in any neighborhood of X. While this situation does not affect the convergence of the 
De Lecuw-Heiser algorithm, it does complicate the additional study of its properties. The 
proof of linear convergence of the algorithm to a configuration X, for example, uses the 
assumption that the loss function is twice continuously differcntiable at X (De Leeuw, 
note 2). 

In this note we show that if a configuration X is a local minimizer of o'(. ), then xi 
and xj cannot  coincide and dii(X) ~ 0 (unless wi~ = 0 or 6i~ = 0). This result is of some 
practical importance, because we must bear it in mind if we interpret MDS solutions 
based on STRESS. It  is also theoretically important,  because we have seen that it implies 
that the De Lecuw-Hciser algorithm converges linearly to local minima of a(.  ). A similar 
result, for the special case of one-dimensional metric scaling, was given in a nice paper of 
Defays (1978). 

Requests for reprints should be sent to Jan de Leeuw, Department of Data Theory FSW/RUL, Middelste- 
gracht 4, 2312 TW Leiden, Netherlands. 
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At this point it seems necessary to point out that the problems with differentiability 
of the loss function do not apply to SSTRESS used in ALSCAL (Takane et al, 1977) or to 
STRAIN used in INDSCAL (Carroll, 1981). These alternative loss functions are sums of 
squared deviations between squared dissimilarities and squared distances (SSTRESS) or 
between inner products and the doubly centered squared dissimilarities (STRAIN). Both 
squared distances and inner products are differentiable everywhere. We also indicate that 
the results of Kruskal (1971) are concerned with a different problem. He shows that mon- 
otone regression does not destroy differentiability. If the metric loss function is differ- 
entiable at X, then the corresponding nonmetric loss function, Kruskal's original 
STRESS, is also differentiable at X. 

Basic Result 

We first state and prove our basic result. As indicated below a similar result may be 
proved for STRESS in nonmetric MDS. 

Theorem. If X is a local minimum of a(.),  then do(X)= 0 can occur only if 
Wij(~ij = O. 

Proof We use the fact that or(.) is differentiable in all directions. This follows from a 
direct computation of the directional derivatives, which are defined by 

a(X + ~ Y) -- a(X) 
Da(X; Y) = lim (3) 

~ 0  /~ 

If X is a local minimum it follows that X must satisfy Da(X; Y) > 0 for all n × p matrices 
Y. 

Firstly 

Dd2(X; Y) = 2 ( x / -  xj) ' (y i -  Y j), (4) 

SO 

Ddo(X ; Y) = dij l(X)(xi - xj ) ' (y i -  Y j), (5) 

if do(X ) > 0. Also, by direct calculation, 

Dd,j(X ; Y) = dij(Y), (6) 

if dij(X) = 0. We now set sii(X) = d,~ ~(X) if do(X ) > 0, and sfj(X) = 0 if d~(X) = 0. We 
also set to(X ) = 1 if dij(X) = 0, and tlj(X) = 0 if di~(X) > 0. By using these definitions, and 
by combining (4), (5), (6), we find 

= - 2 n 

i=1  j = l  i = l  j = l  

= 2 w , j ( x , -  
i = 1  j = l  

° i  
+ 2 ~ wij gij sii(X)(x~ - xi)'(Yi - Y~) 

i=i j=1 

n 

- 2 Z ~ w~ 6ij tii(X)do(Y). (7) 
i = 1  j = l  

Because X is a local minimum we must have both Da(X; Y) > 0 and Da(X; - Y) >_ 
0, for all possible directions Y. Thus the sum Da(X; Y) -V'Da(X; - Y) mus-[ be nonnega- 
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tive too. But if we change Y to - Y, then the first two terms of (7), which are linear in Y, 
also change sign. The third term does not change. Thus 

Da(X; Y) + Da(X; - Y )  = - 4  ~ wijbijto(X)__d,j(Y ) >_ O. (8) 
i=1 j = l  

Because this is true for all Y, it is also true for all Y with d~j(Y) > 0 for all i # j .  But for 
these Y (8) is true if and only if w~j 6i~ tij(X) = 0 for all i and j. i.e. if and only if wij 6ij = 0 
for all i ,j  such that dij(X) = O. [] 

A similar result for nonmetric scaling can be obtained if we combine our theorem 
with the results of Kruskal (1971). In nonmetric scaling the 6~i must, of course, be replaced 
by the disparities di~. The nonmetric result is not true for loss based on the rank image 
principle of Guttman and Lingoes. In fact, more or less the opposite is true: it is easy to 
see that these loss functions are never differentiable at their stationary points (De Leeuw, 
note 1, and Kruskal, 1977). Our results also do not apply to the loss functions in 
Ramsay's MULTISCALE (Ramsay, 1978). Because MULTISCALE measures loss as the 
sum of squares of the deviations between log-dissimilarities and log-distances, it follows 
that MULTISCALE loss is not even defined at configurations with coinciding points. 
Thus for STRAIN and SSTRESS we can have coinciding points at local minima. For  
STRESS we can only have them at local minima if w~j6ij = 0. In metric unfolding, for 
instance, within-set points can coincide but between-set points cannot. In MULTISCALE 
coinciding points are ruled out even more radically. 
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