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We study the class of multivariate distributions in which all bivariate regressions can be 
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In t roduct ion  

To be well-prepared for this event I have done  a small content  analysis of  a few 
earlier presidential addresses. The former presidents talked about  things dear to their 
hearts. They  were not  afraid of  controversy,  o f  historical remarks, of  daring meth-  
odological  generalizations, and of using a shameless number  of self-references. In short,  of  
all the things one tends to avoid in a paper that must  still be approved by a number  of  
critical referees. I will continue in this tradition, and indulge in the same sins. 

The topic dear to my heart  is multivariate analysis (MVA) with opt imal  scaling (OS). 
Forrest  Young  (1981) has reviewed our  joint  work  in this field until 1980 in his presi- 
dential address. Since then an enormous  amount  of  addit ional work has been done  by the 
Girl team in Leiden. This now starts to appear  in a more  accessible form (van Rijckevorsel 
& de Leeuw, 1988; van der Burg, de Leeuw, & Verdegaal, 1988), The book  by Girl will at 
long last appear  near the end of  1988, and the D S W O  press in Leiden has already 
published a long series of  Girl-related books  in the past four years. Also French Analyse 
des Donn~es has definitely come out  of  the closet, with books  such as Greenacre (1984), 
Lebart,  Morineau,  & Warwick (1984), and with papers such as Tenenhaus  and Young  
(1985) and Besse and Ramsay (1986). Correspondence analysis is now discussed with great 
regularity in the official statistical journals,  and optimal scaling techniques have become 
quite popular  (Breiman & Friedman,  1985, Koyak,  1987). 

Nevertheless some aspects of  the situation remain unsatisfactory. There is little inte- 
grat ion of  M V A  with OS and classical MVA in the sense of  Anderson (1958), and there is 
very little interaction with the active and interesting field of  s imultaneous equat ions or  
structural covariances modeling. In the meant ime a lot of  polemics is going on which 
centers on such esoteric topics as chance capitalization, and the distinction between 
exploratory and confirmatory,  or  between inferential and descriptive. No t  much  of  this 
has actually appeared in print, but  you  can hear it at every conference. Twenty  years ago, 
when I started in M V A / O S  (de Leeuw, 1968), you could hear it at every street corner. 
Some references, with a strong Dutch  bias, are de Leeuw (1988b) and Molenaar  (1988). I 
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will summarize the arguments of my learned opponents. MVA/OS techniques are ex- 
ploratory and descriptive, they say. Of  course exploration and description are important  
in the early stages of scientific investigation, when there is not a great deal of prior 
knowledge. But ultimately we want to generalize from our particular data set, infer from 
the sample to the population, and we want to test explicit hypotheses. Doing science 
means sticking out your neck. If you make statements which cannot  be falsified, then you 
can never increase your knowledge of an area. In these methodological backwoods 
Popper  still rules with an iron hand. 

I have never been happy with the distinction between exploratory and confirmatory, 
nor with any other related Aristotelian dichotomy. It  seems more realistic and productive 
to use the point of view that these are really two aspects of the same activity, which do 
not take place in linear order. I t  is not the case that first we explore for 30 days, then we 
confirm for 10 minutes. Or  that in exploration there are no rules, everything goes. While 
in confirmation we have to obey the very strict prescriptions of the Neyman-Pearson 
theory, or we have to be coherent in a very specific and somewhat peculiar sense of the 
word. We think both activities go on simultaneously, until the bitter end (the final 
revision or final rejection) and can be separated only with great difficulty. All popular  
statistical techniques seem to have very important  descriptive components,  and although 
sometimes statisticians and methodologists may emphasize the inferential aspects of 
LISREL, regression, and ANOVA, it seems quite clear, to me at least, that these tech- 
niques are mainly popular  because of their descriptive properties. 

In this address I shall try to indicate that MVA/OS techniques do not differ a great 
deal from classical MVA techniques, and from covarianc~ structure techniques in particu- 
lar. There is no gap that separates us. 

The Use of Models in Multivariate Data  Analysis 

We restrict ourselves to forms of multivariate analysis in which models for the 
covariances between, say, m variables are studied. Higher order moments  are ignored. 
There is ample historical precedent for imposing this restriction. In the first place the 
centered multivariate normal distribution is described completely by its covariance 
matrix, and the multivariate normal distribution is of course the leading case in much of 
multivariate analysis. In the second place higher order moments  can often not be deter- 
mined with sufficient statistical precision, because their standard errors grow so fast. And 
thirdly, higher order product moments  are even less precisely determined, because there 
are so many of them. The number of 10th order product moments,  for instance, is m t°, 
which will usually be much larger than the number  of observations. Finally second order 
moments  have a nice interpretation in terms of linear least squares regression and predic- 
tion, and in terms of linear structural models or systems of simultaneous linear equations. 
This does not mean that higher order moments  are completely irrelevant for multivariate 
analysis. In fact a lot of recent work by Bentler, Brown, de Leeuw, Mooijaart,  Satorra, 
and Shapiro concentrates on the use of  higher order moments  to increase precision 
and/or  generality, or to obtain identification. To  keep things simple, and without losing 
too much generality in practice, we shall concentrate on models for second order mo-  
ments. 

These models have a certain parametric form. Thus they say that the covariance 
matrix (or the correlation matrix) X is of the form X(0), with 0 a vector of real parameters. 
A simple example, and by far the--'most interesting one in the history of psychometrics, is 
the Spearman model E = aa' + A 2. 

We all knoff" ihat  the Spearman model is false, that is, it does not describe the 
covariance between batteries of tests in a satisfactory way. The fact that many  of these 
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models used in psychometric data analysis are false is often considered to be a disadvan- 
tage. David Freedman (1987, and many other papers) has attacked social science models 
builders because they assume things to be true which are quite obviously false. But is this 
really such a big disadvantage? To answer this in general terms we have to discuss the 
role of statistical models (de Leeuw, 1984a, 1988a, 1988b). 

Let us remain in the context of fitting covariance matrices. It  is not difficult to find a 
model that is true: simply assume nothing about  the form of the covariance matrix. But 
this model, although very true, is also very useless. To describe the covariance matrix we 
compute the covariance matrix. It  is as if we have not started our analysis yet. Using a 
model, that is, singling out some subset of the space of all covariance matrices, has two 
important  functions. It makes it possible to express our results in a form in which they 
can be readily interpreted, that is, related to existing theories or prejudices. And it in- 
creases the stability of the estimates. 

We illustrate this with a (very) simple example. Suppose x i (i = 1 . . . . .  n) are iid .W'(# 1, 
0 "2) and Yl (i = 1 . . . . .  n) are iid .W'(#2,0.2). The xi are independent of the Yi, and #1 ~ #2. 
We compare two strategies: estimating #i and #2 by the sample means m~ and m z versus 
estimating both #~ and #2 by the pooled mean (m t + m2)/2.  The mean square error of the 
first procedure (which fits the correct model) is 20.2/n, and that of  the second procedure 
(wrong model) is (#1 - #2)2/2 + 0.2/n. If the two means are very close, that is, if (#1 

_ #:)2/0.2 < 2/n, then fitting the wrong model is better than fitting the correct model (at 
least in this sense). If #~ and #2 are .10. apart, then the "wrong" procedure is better than 
the "correct" procedure if n < 200. If we are quite sure that men and women have the 
same average intelligence, then the best way to estimate the average intelligence of women 
is to compute the average intelligence of all individuals, men and women alike. 

This suggest the following conclusion. If we use very general models we reduce the 
bias in our estimates, because very general models tend to be true. The sample covariance 
matrix will be unbiased, or at least consistent, under very general conditions. On the other 
hand we decrease the stability of  our estimates, and we decrease the interpretability of our 
results. But you can have too much of a good thing. Stability is desirable, but certainly 
not the only criterion we should take' into account. If we estimate our covariance matrix 
by setting it equal to the identity, no matter  what the data are, we have a very stable 
technique. All standard errors are zerO. But the technique is almost always completely 
useless. Figure 1 illustrates the basic dilemma. S, and T~ are two observed covariance 
matrices, distributed around the Truth Y'0. We have a model E(0), and the figure shows 
that projecting observed matrices on the model generally leads to smaller variability, 
although here clearly truth ' is  not on the model. Whether the increased bias, due to the 
nonzero distance of ~o and ~(0), is serious enough to offset the gain in stability cannot  be 
seen from the figure, because it depends on the precise way of measuring these quantities. 
But the figure suggests that sometimes fitting the wrong model may be OK, or (a bit less 
provocative) that we do not want to make our models exactly right. 

The example of the two means is perhaps a bit too simple. A far more interesting 
class of examples, general multinomial experiments, are analyzed in considerable detail by 
de Leeuw (t988a). The problem analyzed there is to estimate a vector of m probabilities n. 
We observe a vector of m proport ions p. Both n and p are in the unit simplex St T M -  1, that 
is, the set of all m-vectors with nonnegative elements adding up to one. We could use p 
directly as an estimate of n, but this is not necessarily the best procedure. We replace it by 
an estimate of the form O(p), where • maps ~ ' ~ -  1 into 6 am- ~. For  example, ~ could be 
the maximum likelihood estimate of n based on some model ~q, where f~ is a subset of 
~,m-1. Let us measure the closeness of our estimate to the true value by the random 
variable A(Tr, ~(p)), more precisely b y  the expected estimation error E(A(Tr, O(p))). We also 
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  r(o) 

z(o) 

FIGURE 1 
A model X(0), the truth Zo, two observed covariance matrices S. and T., and the influence of projection. 

measure the predictive quality of our estimate by the expected prediction error E(A(q, 
*(p))), where q is a replication of p (i.e., it is independent of p, and it has the same 
distribution). Both errors cannot be observed directly because n and q are not observed, 
but they can be estimated by using the delta method or resampling methods such as the 
Jackknife and Bootstrap. De Leeuw (1988a) shows that using a model sometimes im- 
proves the quality of the estimate, even if the model is not precisely true. Or,  more 
precisely, tl~(p) can be better than p without having to assume that the model f~ is true, 
that is, that 7~ ~ ~. 

These considerations suggest that the basic dilemma in statistical modeling (actually 
in any kind of mathematical  modeling) is the trade-off between bias and variance. I f  our  
model is too specific (if we impose too much prior information, we use our prejudices, and 
model from our armchairs), then we have excellent precision (around the wrong value). If 
the model is too general (if we rely too much on the data, if we refuse to use our prior 
knowledge), then we have very bad precision around the correct value. I t  seems to me that 
this framework is not only useful to describe many recent developments in statistics, but 
also far more generally to describe various approaches to (inductive and deductive) mod- 
eling and to (theory-driven and data-driven) research strategies. 

This way of talking about  these distinctions suggests a compromise. If there is firm 
prior knowledge one must use it, because it enhances stability. If  there are merely preju- 
dices then one should not use them, because they introduce bias. We also want to 
emphasize that confirmatory statistical analysis of complicated multivariate models is 
tricky, because we merely test the structural core Z(0) in an implausible stochastic frame- 
work. It is nice to use the multinormal distribution in examples, because of its many  
beautiful properties, but from the descriptive point of view it is sadly lacking. If  we do not 
want to assume that the structural core is true, then we certainly want to assume no such 
thing about  the even more implausible stochastic framework. Much more useful ways of 
testing appropriateness of models are possible than the simple chi square, which assumes 
that the model is true. The AIC and cross-validation, which are special cases of the 
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approach based on the estimated estimation and/or  prediction error, seem to be more to 
the point (de Leeuw, 1988a, or the September 1987 issue of Psychometrika). 

A Multivariate Analysis Framework 

In this talk we shall accept a somewhat nonstandard and quite general framework to 
discuss multivariate analysis problems. Each variable y is an element of a separable real 
Hilbert space A ,~. The inner product in .,~ is <.,-), the norm is [I • [I- Thus t[ Y II 2 = <Y,Y>. 
The norm of a variable is called its variance, the inner product of variables Yx and Y2 is 
their covariance. 

There is no need to be unduly impressed by our use of Hilbert space terminology. If  
you keep in mind the usual interpretation of variables and their variances and covariances 
you can follow all the discussions. The technical aspects of our framework are discussed 
in de Leeuw (1988b). The notation and terminology is attractive, because it allows us to 
discuss various important special cases in one single framework (the same argument can 
also be found in Gut tman,  1955). In the first place there is the ease of a finite vector of real 
numbers, in which ~,~ = ~" ,  and <Yx,Y2> = ]E~=x YllY2i. In the second place there is the 
case of m (population) random variables (with finite variance) defined on the same prob- 
ability space (E, o~, p ) .  Here ~¢g = k2(E, ~ ,  P) and (Yl("), Y2(" )) = S Yl(~)Y2(0 dP(~). 

Multivariate analysis involves m variables ~b 1 . . . . .  ~b,, defined on the same space. 
Collect them in a multivariable ~. Just another new word. Throughout  the paper we use 
the following example. We have measurements on four variables for 1270 pupils leaving 
primary education in the city of Groningen, The Netherlands, in 1959. These are the 
so-called G A L O  data, analyzed earlier by Peschar (1973). We know their Sex, their IQ, 
the profession of their father, and the advice the teacher gave about  the most appropriate  
form of secondary education for this pupil. Thus the four variables are four vectors of 
1270 real numbers, or alternatively four functions on J -- {1, 2 . . . . .  1270}, equipped with 
counting measure. The real numbers are used only as labels, for obvious reasons. Sex is 
binary, IQ is fairly continuous, Father is a six point scale with categories {unskilled labor, 
skilled labor, lower white collar, small business, higher white collar, higher professions}, 
and Advice has the categories {no further education, extended ordinary primary educa- 
tion, lower technical education, lower agricultural education, intermediate secondary edu- 
cation, secondary education for girls, preparatory higher education}. Both Father and 
Advice are not really ordered, but sociologists usually argue that scales such as these can 
be treated as ordinal scales, in fact applied sociologists simply treat them as interval scales 
by using equally spaced quantifications of the categories. I am not saying that this is 
wrong. I am not the police. 

Fitting Covariance and Correlation Models 

We shall compare, and to a certain extent contrast, two different approaches to 
multivariate analysis in this paper. In the first approach we assume that we are fitting a 
model to our variables. A model, in this context, is an expression for the covariance matrix 
of the variables. We suppose that it can be written as Z(0), with 0 e #~P. Thus E is on a 
p-dimensional manifold in m(m + 1)/2 dimensional space. Now if the y are completely 
known, then we know X = E(yy'), and we can choose parameters 0 in such a way that 5".(0) 
is approximately equal to E. This looks like an approximation problem, with little or no 
statistical content, but it may be the correct interpretation of our activities in many  cases 
in which the standard statistical framework does not apply. If  there is no question of a 
random sample, for instance, and we study the population of individuals we are interested 
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in, then we approximate the population covariance matrix by a lower dimensional one 
based on a model. We do this because the parametric model is more parsimonious, easier 
to interpret, that is, to relate to existing theory, and to communicate. Statistics has 
nothing to say about  fitting models to population covariance matrices. All deviations are 
significant. All hypotheses are rejected. 

In the usual statistical interpretation we do not know E, but we have an es t imate  S 
(often based on n iid observations). We now use a distance measure A between the 
observed covariance matrix S and the parametric manifold Z(0), and we find 0 in ~P such 
that A(S, E(0)) is minimized. In other words: We project S on the manifold E(0), and we 
evaluate the fit by looking at the distance between observed and expected (i.e., projected). 
The really important  part  is the model E(0), statistical assumptions such as normality or 
iid usually only influence the choice of the distance measure A. 

There is an important  shift in emphasis here from the usual way of approaching these 
problems. We do not suppose that the usual statistical assumptions (such as normality, or 
iid observations) are part  of the model (or at least, they do not belong to the core of the 
model). In the terminology of van Praag, de Leeuw, and Kloek (1986) we decompose the 
problem into its population and sample aspects. Choice of loss function, or distance 
measure, should be seen as an independent problem. We know that some distance mea- 
sures are better than others if particular stochastic models are true, but often we do not 
care to assume that these models are indeed true. Because it is fairly obvious, in most  
cases, that assumptions such as normality and iid are false, difficult to verify, made only 
for technical reasons, not essential for the substantive scientific aspects of the problem, 
and so on. In fact it is often difficult enough to argue that the core of the model, the 
expression E(0), is plausible. In the usual statistical interpretation we assume that S is not 
equal to E because of random sampling. Thus, if our sample becomes larger, we think that 
S will approach X, and we assume that this limiting Z will satisfy the model exactly. At 
least we act  as if we think this. 

The second approach is quite different, and in a sense more general. We suppose the 
covariance matrix of the variables depends on a number  of parameters (the variables are 
not completely known). Thus we have a function S(~), where ~ E ~q. The ~ can be thought 
of as t ransformat ion parameters ,  but they can also be covariances involving latent vari- 
ables. We now pick an aspect  of the covariance matrix that we are interested in (the 
multiple correlation coefficient, the largest eigenvalue . . . .  ). An aspect is a real valued 
function r defined on the space of covariance matrices. We then optimize r(S(¢)) over ~. 

This may not be immediately clear, so let us illustrate it with a few examples. In 
Box-Cox regression we assume that there is a transformation f of the dependent variable 
such that the vector z with elements z~ =f(Yi) is distributed as s l ; (X f l ,  a2I). The transfor- 
mation has the form f ( y )  = (ya - 1)/2, with 2 unknown. We can now compute the likeli- 
hood of the observations and maximize this over fl and tr 2. The resulting expression is a 
function of 2, and this function can then be maximized over 2. There have been many 
generalizations of this approach (by Winsberg & Ramsay, 1980, or de Leeuw, 1984c, 1986, 
for instance). Instead of maximizing the likelihood, however, we can also minimize the 
residual sum of squares (or maximize the multiple correlation) over 2. This is basically the 
approach in optimal scaling (ALSOS by Young et al., G I F I  by Girl, ACE by Friedman et 
al.). Using the likelihood can be interpreted quite easily in the framework of assuming a 
model, and then projecting on the model. Using the residual sum of squares means 
choosing an aspect which does not directly have such an interpretation. 

Imputat ion of missing data is another  example (for a recent thorough analysis of 
such problems refer to Little & Rubin, 1987). We can choose a probability model (the 
multivariate normal distribution), assume missing data are missing at random, write down 
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the likelihood of the completed data (which is a function of the values chosen for the 
missing data), and maximize this over structural parameters and missing data. We can 
also integrate out the missing data from the likelihood, and use the EM algorithm to 
maximize the likelihood of the observed data. And we can also choose some aspect of the 
problem that seems interesting (for instance a measure of collinearity or of predictive 
power) and optimize this over missing data values. Similar approaches are possible if we 
do not only miss some observations, but actually complete variables (so called latent 
variables). The approach of marginalizing and optimizing the multinormal likelihood of 
the observed data is the usual one (Anderson, Bentler, Browne, Jfreskog). Optimizing an 
interesting aspect of the covariance matrix over the unknown latent variables (and over 
missing data, and over transformations . . . .  ) is done in ALS (Girl), ACE (Friedman), and 
PLS (Wold) methods. If we only observe discreticized or ordered versions of the variables 
we can again follow the usual approach by computing and optimizing the likelihood of 
the observed data (Muthrn, 1984), or we can optimize over another aspect that interests 
us (as in ALS, etc.). 

I guess most of you have experience with the usual statistical model-based approach. 
In recent years many people (Bentler, Browne, de Leeuw, Mooijaart, Muthrn, Shapiro) 
have tried to make the framework of model fitting a bit more realistic by relaxing the 
"assumption of multivariate normality". In our terminology this means that they have 
suggested other distances between S and E(0) which (perhaps) behave more satisfactory in 
practice. Peter Bentler's presidential address of 1983 contains a discussion of much of the 
earlier work for continuous nonnormal data, and much has been accomplished since then. 
De Leeuw (1983b) reviews various extensions to discrete data. We consider most of this to 
be fine-tuning, useful but not very consequential. The misspecification of the structural 
part of the model has much more important consequences, both in terms of statistical 
stability and in terms of substantive interpretation, than misspecification of the stochastic 
framework. 

On Subspace and Cone Constraints 

You are perhaps less familiar with the optimal scaling approach. We consequently 
specialize it a little bit, and show what it amounts to. The specialization consists of the 
fact that our partial knowledge of the variables can be written in the form q~ e .La~, with 
c~,j a subspace of ~_2(,E, ~ ,  P), the space of variables with finite variance. It could be a 
subspace of polynomials, or of splines, or whatever. Most of our results apply equally to 
tkj ~ ~g.'j, with gC'.j a convex cone, for instance the cone/of  monotone functions. The 
interpretation of these constraints is simple. It is very similar to the Box-Cox approach to 
regression or to the Kruskal approach to nonmetric multidimensional scaling. We are not 
only interested in the variables as we observe them, but we are interested in all smooth or 
monotonic or polynomial or splinical transformations of them as well. If one such reex- 
pression suits our purposes (i.e. our aspect) better than the original expression of the 
variable, then we use that reexpression. 

For  computational purposes we suppose the .~('j to be finite-dimensional, and we 
suppose that matrix fqj, which may have an infinite number of rows, contains a basis for 
.L:'~. Thus all transformations that we study are of the form f#j ~ .  The unknowns in S(~) 
are the vectors ( j  containing the coefficients of each of the basic functions. Collect the 
inner products of the basis function in matrices ¢gjt = ~)fg~. This generalizes the contin- 
gency table of variables j and I. If the cBj are dummies (a.k.a. indicator functions, splines of 
degree one, step functions) then <giz is equal to the contingency table. The covariance of 
the transformed variables is now simply ~) c~jt ~t. These are the elements of S(~). Because 
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we work with subspaces we shall actually impose scate-freeness and work with aspects of 
the correlation matrix R(~). 

One way of moving a little bit closer to the model-based approach is by choosing the 
criterion in a particular way. In this sense we can say that the approach based on aspects 
is more general. We use a model P(O) for the correlation matrix, choose a distance 
measure, and define as our aspect 

x(R(~)) = min {A(R(¢), P(0))I 0 ~ ~tP}. 

Then minimize this aspect of the covariance matrix, which measures the fit of the 
correlation model P(O), over ~. This is done, for instance, by Takane, Young, and de 
Leeuw (1979) in their FACTALS program. Along these lines one could fairly easily make 
an optimal scaling version of LISREL or EQS or COSAN as well. Not  that I suggest that 
anybody should really do this. This way of combining OS and fitting structural models 
does not seem to be very natural. We try to have the best of both  worlds, but we seem to 
destroy the desirable properties of the first world in the process, because we obviously 
cannot use the statistical theory associated with LISREL and other methods any more. If 
we maximize the likelihood over structural parameters and over transformations, we 
cannot expect the estimates to be efficient and we cannot expect to continue to use chi 
squares for our likelihood ratios. The precise definition of the model has become unclear. 
This can have serious consequences (Dijkstra, 1983, Little & Rubin, 1983). 

What  we find, in practice, is that people nevertheless like to have the best of both 
worlds. They want to transform their variables because they are unsure about  the precise 
expression they need, but they also want the statistical information that comes out of 
LISREL. No matter how much we try to discourage them to take that information 
seriously, and no matter  how much statistical information we present with the optimal 
scaling methods, they want to publish their final results as LISREL results. Some pro- 
grams are publication vehicles. Thus they first apply some optimal scaling method (such 
as multiple correspondence analysis). This finds the "correct" expression of their variables. 
These reexpressed variables are then fed into LISREL, or similar programs, and analyzed 
as usual. There are a number of nice examples in Bakker, Dronkers,  and Ganzeboom 
(1984). This approach used to worry me a great deal, although it has obvious data 
analytical and didactical advantages. At a relatively cheap price we get a lot of useful 
additional information in the form of transformations of the variables and experience with 
optimal scaling techniques has taught us that these transformations are useful diagnostic 
tools. But in the meantime I have discovered or unearthed some pleasant results, which 
make this two-stage eclectic approach a bit more respectable. 

Linearizable Regressions 

There is a simple way to introduce correspondence analysis of a two-way table. It  
was discovered by Hirschfeld (1935). Suppose we have two categorical variables with 
corresponding dummy codings f#l and f#2, and with cross table c~ = f # ~ 2 .  Moreover  the 
univariate marginais are ~1 = f#'lC#1 and ~2  = f#~ fq2. If ¢1 and ~2 are normalized scores 
for the categories of the variables, then we can compute the conditional expectations 
~/1 = @~-~c£¢ 2 and r/2 = ~ £ ' ~ .  We have linear regression if t h is proportional  to ~1, 
and F/z is proportional  to ~z. Or, in formulas, if 

~ 2  = P ~ l~ l ,  (1) 

c£'~1 = P~2 ~2. (2) 

But (1) and (2) can be solved by computing the singular value decomposition of the 
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FIGURE 2a 
The regression functions in the G A L O  data  for Teacher's Advice on Father 's  Profession, with equal interval 

scoring. 

matrix ~ -  1 / 2 ~  2 1 / 2  If (2, a, b) is a triple consisting of a singular value and the corre- 
sponding left and right singular vectors, then 41 = ~ - I / 2 a ,  42 = ~21/2b, and p = 2 satisfy 
(1) and (2). And this is true for each such triple. This is Hirschfeld's theorem: We can 
always choose scores for the rows and columns of a contingency table in such a way that 
the two regressions are linear. If the table has r rows and c columns, then we can actually 
choose such scores in min(r, c) ways. 

Figures 2a and 2b give an example of the working of Hirschfeld's theorem. There is a 
very similar example, without picture, in Louis Gut tman ' s  presidential address of 1971. 
We have plotted father's profession on the horizontal axis, and teacher's advice on the 
vertical axis. The hollow squares show the regression line of advice on profession, that is, 
the six average advices for the six father classes. The solid squares give the regression of 
profession on advice. In Figure 2a we have used equally spaced scores for the seven 
categories of advice and for the six categories of fathers profession. We see that the 
regression of advice on profession is fairly linear, at least monotonic,  but the regression of 
father on advice is much disturbed by the fact that children with lower technical and 
lower agricultural advice have on the average a slightly less satisfactory father than 
children with extended ordinary primary education advice. Figure 2b shows the regres- 
sion after optimal scoring by using the dominant  singular value. By modifying the spacing 
on both axes (and actually the order on the vertical axes) the regression functions become 
straight lines. The correlation between the scaled variables increases from 0.36 to 0.39. 
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FIGURE 2b 
The regression functions in the GALO data for Teacher's Advice on Father's Profession, with optimal scoring. 

If there are m > 2 variables, the situation becomes more complicated. This was 
discussed in a little known, but very interesting, paper by Louis Gut tman  (1959). Who 
else? In general, there do not exist scores that linearize all bivariate regressions. The 
precise situation has been reviewed recently by Bekker and de Leeuw (1988). Linearity of 
bivariate regression imposes restrictions, which means that we have to use a model. There 
you are. Now we are in trouble. To  quote David Freedman, we have said the M-word. 
Our  model supposes that there exist expressions (or transformations) of the variables that 
make all bivariate regressions linear. Obviously this is much weaker that assuming multi- 
variate normality or multivariate ellipticity, because in those cases the regressions are 
already linear without any re-expression. It is also more general than what Udny Yule has 
called the strained multinormal, which is the family you get if you apply separate mono-  
tonic distortions to all variables of a multivariate normal distribution. 

For  computational  purposes we have to suppose that the linearizing transformations 
are in £~'j. The model then says that there exists ~j such that for all ( j , / )  

~ ~z = Pj, ~ j  ~j. (3) 

And perhaps the P~t satisfy a correlation model of  the form P(O), as usual. 
Now let us consider applying an optimal scaling program which optimizes an aspect 

of the correlation matrix, say ~(R(~)). At the opt imum we have the stationary equation 

~x 
E ~ r~j, ,~, = 2i ~.i C j,  (4) 

I = I  
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where the ~ are normalized by ~ cgji ~j = 1. But let us substitute the linearizing equation 
(3) in this. We then find that the linearizing ~ satisfies the stationary equation (4), with 

• j  = - -  Off"  (5) 
t= 10r~t 

We have proved the following: If linearizing transformations exist, they will be found 
by optimal scaling techniques. Actually we have not proved this much, it is perhaps better 
to say that we have shown that linearizing transformations, if they exist, can be found by 
optimal scaling techniques. Stronger resuRs are possible by imposing additional con- 
ditions. This result is, at least implicitly, in Gut tman (1959). De Leeuw (1983a) has pointed 
out that it generalizes a much older result of Pearson (1906). It has important conse- 
quences. Because of this the two-step procedure mentioned above, first OS and then 
LISREL (or factor analysis, or regression), finds consistent estimates of the structural 
parameters 0 if all bivariate regressions can be linearized. 

This is nice: The two-stage procedure reduces the bias of the existing programs, 
because it makes them consistent over a far larger class of distributions. We could call this 
a robustness property. The structural equation programs do not need multivariate nor- 
mality or linear regressions to produce consistent estimates. If we combine them with an 
OS method, then they produce consistent estimates if the bivariate regressions are merely 
linearizable. If we apply OS to strained multinormal data in the sense of Yule, then the 
techniques unstrains them. It finds the inverse transformations, and makes the distribution 
of the transformed variables exactly normal. 

There is another important aspect of the result. A common criticism of MVA/OS is 
that the quantifications of the variables depend on the aspect one has selected. If you 
optimize the multiple correlation coefficient you find different quantifications from the 
ones you find if you are optimizing the sum of the two largest eigenvalues. And in fact a 
two dimensional principal component analysis with optimal scaling finds transformations 
which differ from those found by a three dimensional one. This is not strange, after all 
component loadings are also different from regression weights, but it complicates the 
interpretation. If income is scaled as a very flat function which accellerates suddenly very 
quickly at high income levels, then the interpretation of the results will have to take that 
into account. A transformation which is more log-like, that is, which decelerates and 
spreads out the lower incomes, will lead to a different interpretation. Our previous result 
says that if all bivariate regressions can be linearized, then different OS techniques will 
find the same quantifications, namely precisely those quantifications which linearize the 
regressions. 

There is a generalization of the result in this section which is of some importance. We 
have concentrated on aspects which are functions of the correlation coefficients. In the 
context of linearity of the regressions the correlation ratio's are also of some importance. 
In our notation, with normalized scores, they are defined as r/~ = ~cgjl ~ 7  lcgtj ~j- Let us 
now extend our results to aspects which are functions both of the correlation coefficients 
and the correlation ratios. The stationary equation (4) generalizes to 

c~x ~K 

If the ~j and the pj~ satisfy (3), then they satisfy (6), with 

2 j = ~  ~x ~ ~x 2 ~= ~ ~ Pj~ + ~= ~ ~/j~ ~/jz- (7) 
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Thus the theory also applies to this more general class of aspects. A particularly simple 
aspect in this class, which has been discussed by de Leeuw (1982) and Bekker and de 
Leeuw (1988), is 

. . . . .  = y +  - ( 8 )  
j = l  /=1  

This is zero if and only if all bivariate regressions are linear, and generally gives a 
useful and informative method to measure deviations from linearity. It is relatively simple 
to minimize K of (8) over the normalized ~j. We optimize it over one ~j at the time, 
keeping all others fixed at current values. Each subproblem is a simple generalized eigen- 
value problem, of order equal to the number of categories of variable j. And we cycle over 
the subproblems. This is done by using the program LINEALS, previously employed by 
van Rijckevorsel (1987), and it can also be done by using the Jacobi-like plane orthogonal 
rotation techniques of the P R E H O M  program described by Bekker and de Leeuw (1988). 

Let us now apply optimal sealing to the GALO example. If we use equally spaced 
normalized scores, the results are in Table 1. The most remarkable finding are the differ- 
ent boy/girl ratios in the various father's profession categories, which corresponds to a 
correlation ratio of 0.21. The squared correlation between IQ and advice is high, the 
correlation ratio is not much higher. The total discrepancy (8) is 0.36. Table 2 gives 
optimal scoring and induced correlations computed by multiple correspondence analysis 
(a.k.a. homogeneity analysis, Guttman's principal components of categorical variables, 
Hayashi's fourth method of quantification). This is the most popular OS technique, and it 
does a nice job. It brings down the total discrepancy to 0.22, and linearizes most of the 
regressions nicely. The only remaining problem case is the regression of sex on father's 
profession, which has a fixed correlation ratio not dependent on scoring. This makes it 
difficult to improve the situation there. And, of course, we do not expect linearization 
techniques to work too well with binary variables such as sex. Either linearity is trivial, in 
one direction, or not very natural, in the other direction. LINEALS, finally, in Table 3, 
does not improve much on the multiple correspondence analysis solution. The quantifica- 
tions are similar, the correlations are very similar, and the total discrepancy decreases to 
0.21. The similarity of Tables 2 and 3 illustrates the fact that if linearizing scores exists, 
then different OS techniques will find them. The optimal scores themselves look quite 
reasonable. 

Stability of Induced Correlations 

We have now found quantities which are consistent estimates of the correlation 
coefficients under the assumption of linearizability of the regressions. This links MVA/OS 
with the classical MVA techniques which take the correlation matrix or covarianee 
matrix as a starting point. Anything you can do to the correlation matrix of the unsealed 
variables you can also do to the correlation matrix of the sealed variables. If the regres- 
sions are nonlinear, but can be linearized, then using the original variables introduces 
bias. From the data analysis point of view, independent of statistical considerations, the 
meaning of correlation coefficients is a bit doubtful in the ease of nonlinear regressions. If 
the regressions are linear, then both matrices are consistent estimates of the same quan- 
tity. In particular for multinormai data, they both consistently estimate the population 
correlation matrix. For  strained multinormal data OS techniques unstrain, while tech- 
niques which do not scale distort the relations. 

On the other hand, from our general considerations above, we expect the stability to 
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TABLE 1 

Galo Solution with Equally Spaced Scores 
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SQUARED CORRELATIONS 
+i.0000 +0.0526 +0.0058 
+0.0526 +i.0000 +0.0862 
+0.0058 +0.0862 +1.0000 
+0.0173 +0.5767 +0.1291 

CORRELATION RATIOS 
+i.0000 +0.0526 +0.0058 
+0.0564 +i.0000 +0.0917 
+0.2116 +0.1295 +1.0000 
+0.0438 +0.5803 +0.1438 

LOSS 
+0. 3619165862 

NORMALIZED VALUES 
SEX -0.9846 +1.0156 
IQ -2.6053 -1.9283 
FATHER -2.1280 -1.3865 
ADVICE -1.9299 -1.3020 

+0.0173 
+0.5767 
+0.1291 
+I.0000 

+0.0173 
+0.6118 
+0.1528 
+i.0000 

-1.2512 -0.5742 +0.1029 +0.7799 +1.4570 +2.1340 +2.8110 
-0.6449 +0.0966 +0.8381 +1.5796 
-0.6741 -0.0462 +0.5817 +1.2096 +1.8374 

go down as a consequence. In a more general model, standard errors will increase. And 
we certainly expect the statistical information to come out of LISREL applied to opti- 
mally transformed variables to be in error. There is a second nice robustness type of 
result, however, which can make us feel less pessimistic in this respect. This result has 
been discussed, in a closely related context, by Steiger and Browne (1984). 

Suppose 

Pit = ( ~  ~j"~j)l/2(~; ~1¢1)1/2 (9) 

is the induced correlation coet~cient, using optimal scores. If we apply the delta method 
to compute the variance of its asymptotic distribution we have to look at the derivatives 
of p~ with respect to the probability distribution F. To compute the derivatives of pj~ with 
respect to F, we need the derivatives of ~j and ~, with respect to F, and the derivatives of 
cgjt, ~j,  and ~ t  with respect to F. The nice result is that if the Cj linearize the bivariate 
regressions, then the derivatives of Cj and ~ with respect to F drop out of the expression. 
This is easy to see. We find 

t3 ' d ' ~ + 

+ '~(~F")" ~ f ,/0_~., , /0~,,  0 ,1  

The first two terms on the right hand side vanish if the regressions are linear. Only the 
second part  contributes to the standard error, and this does not involve the derivatives of 
the ~j, and is the same as it is for fixed scores. QED. 
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TABLE 2 

Galo Solution with Multiple Correspondence Analysis Scores 

SQUARED CORRELATIONS 
+i.0000 +0.0507 +0.0690 +0.0234 
+0.0507 +1.0000 +0.1292 +0.6181 
+0.0690 +0.1292 +1.0000 +0.1451 
+0.0234 +0.6181 +0.1451 +1.0000 

CORRELATION RATIOS 
+i.0000 +0.0507 +0.0690 +0.0234 
+0.0564 +I.0000 +0.1328 +0.6223 
+0.2116 +0.1329 +1.0000 +0.1616 
+0.0438 +0.6315 +0.1514 +1.0000 

LOSS 
+0.2164122652 

NORMALIZED VALUES 
SEX -0.9846 +1.0156 
IQ -1.1340 -1.2521 -1.0479 -0.7426 -0.1527 +0.7697 +1.7651 +2.4577 +2.5277 
FATHER -2.4462 -0.5214 +1.1264 -0.7368 +0.8619 +1.9354 
ADVICE -1.0871 -1.0040 -0.7336 +0.6796 +0.4266 +0.1973 +2.1027 

The result of Steiger and Browne is somewhat more specific, actually. In our context 
they show that if the scores ¢1 and ¢2 are chosen in such a way that they maximize the 
correlation coefficient, then the distribution of the opt imum correlation coefficient is the 
same as the distribution of the ordinary correlation coefficient between f#1¢i and if2 ¢2, 
with the scores considered as fixed numbers. We have shown that this is true for all sets of 
scores that linearize the regressions. Moreover  if all bivariate regressions can be lin- 
earized, then the result is true for the joint distribution of the induced correlation coef- 
ficients, with scores computed by an OS technique. Thus if the LISREL type program 
uses the general Isserlis (1916) distribution free formula for the covariance of correlations, 
then the statistical information provided by the program will be OK, even after optimal 
scaling of the variables. 

We give the Isserlis-weights here, for completeness, using notation of de Leeuw 
(1983b, p. I 17). The correlation coefficients r o and rkt are jointly asymptotically normal. A 
consistent estimate of the covariance in the asymptotic normal distribution is given by 

= rijkl - -  12rij(riikl -1- r j jk l  ) - -  ~2rkt(rkkij -}- ru i j )  d- ¼r i j rk l ( r t t kk  -b r . .  + rjjkk + rjj l l) ,  (1 1) W i j k l  

with 

and 

¢ -  1/2 e -  1/2 e -  1/2t,-- 1/2 
r i j k l  ~ Oijkl  oi i  o j j  ° k k  "~tl (12) 

n 

siikt = n - 1  ~ ,  ( xv i  - -  m l ) ( x v i  - -  m j ) ( x v k  - -  m k X X ~ t  - -  mr) .  (13) 
V = I  

Here the x~ are either the original or the optimal scores, the m~ are the sample means, and 
the s ,  are sample variances. There are no convenient matrix expressions for these quan- 
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TABLE 3 

Galo Solution with Scores Linearizing the Regressions 
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SQUARED CORRELATIONS 
+1.0000 +0.0506 +0.0961 
+0.0506 +1.0000 +0.1202 
+0.0961 +0.1202 +I.0000 
+0.0223 +0.6252 +0.1258 

+0.0223 
+0.6252 
+0.1258 
+1.0000 

CORRELATION RATIOS 
+1.0000 +0.0506 +0.0961 
+0.0564 +1.0000 +0.1244 
+0.2116 +0.1321 +1.0000 
+0.0438 +0.6330 +0.1346 

+0.0223 
+0.6277 
+0.1577 
+1.0000 

LOSS 
+0.2099159169 

NORMALIZED VALUES 
SEX -0.9846 +1.0156 
IQ -1.2258 -1.2695 -1.0334 -0.7221 -0.1636 +0.7352 +1.7862 +2.5037 +2.6180 
FATHER -2.6142 -0.2722 +1.0436 -0.8474 +0.7710 +1.9489 
ADVICE -1.0809 -1.1083 -0.6846 +0.4529 +0.3981 +0.4006 +2.117 

tities, unless you care to define a new matrix calculus of  your  own. Some people actually 
do this. 

We can use the Isserlis formulas to compute  s tandard errors of  the induced corre- 
lation coefficients from Tables 1, 2, and 3. It turns out  that  these s tandard errors are very 
similar. The three correlat ion coefficients involving sex are a little bit more stable if we use 
equal interval scoring (efficiencies, i.e., ratios of  s tandard  errors, are between .90 and .99). 
The three remaining correlat ion coefficients, which are in a sense the more  interesting 
ones, are more  stable if we use opt imal  scoring (efficiencies between 1.00 and 1.04). I f  we 
combine  this with the fact that  optimal scoring reduces the bias, we see that we are in a 
situation in which we do not  loose precision and reduce the bias, which is pretty favor- 
able. I do  not  know in how far this generalizes to other  examples as well, but  it sure is 
nice. 

We can combine  this with the fitting of  a structural model,  for instance the model  
that sex and father's profession are independent  of  teacher 's advice given IQ. Thus the 
partial correlation coefficients between sex and father's profession on one side and advice 
on the other  side, controll ing for IQ, should be zero. We give the partial correlations, with 
s tandard  errors in parentheses, and the chi square with two degrees of  freedom to test the 
hypothesis. With equal scoring we find rsAt~ = -- .07 (.0275) and rrAll = .22 (.0290), chi 
square is 58.5232. With multiple correspondence analysis we find - . 0 4  (.0278) and .17 
(.0304) and 35.0875. For  optimal linear scaling, finally, the partial correlations are - . 0 5  
(.0276) and .14 (.0300), and chi square is 27.9716. Thus we see that our  model  is rather 
false, especially father's profession and teacher 's advice are not  independent,  even if we 
control  for intelligence. There is a marginal  loss of  precision if we use optimal scaling, but, 
more  importantly,  the point  estimate of  the significant partial correlat ion coel~cient does 
vary a lot. As a consequence chi square after optimal scaling is less than half of  chi square 
before optimal scaling, a l though we did not  set out  to minimize it in any sense. Al though 
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statistical theory insures that all three quantities are indeed asymptotically chi square, the 
interpretation of the statistics in the case of equal interval scaling, in which the regressions 
are clearly non-linear, is not at all clear. We can only interpret vanishing partial corre- 
lation coefficients as indices of conditional independence if regressions are indeed linear. 
Observe, by the way, that if one wants to use log-linear methods to test partial indepen- 
dence one winds up with a chi square with 9 x (7 -- 1) x (12 - 1) = 594 degrees of free- 
dom. The multidimensional contingency table has 756 cells, with an average of 1.5 obser- 
vations per cell. This does not seem to be a very practical alternative to correlation-based 
methods, although in our example it is indeed more sensible to treat sex as a genuine 
categorical variable which does not need quantification. 

Conclusions 

In this paper we have introduced a combination of optimal scaling methods with 
asymptotic distribution free methods to fit correlation structures. And we have found a 
justification for this two-step method by considering the class of distributions whose 
bivariate regressions can be linearized. As we have pointed out using these distributions 
as a leading case or gauge seems to make it possible to reduce the bias without introduc- 
ing too much instability. Also it seems to be a more realistic gauge as the multinormal.  
Moreover the two-step method provides us with very useful additional information, and it 
will produce standard results if the regressions are already linear. We also think these 
results are interesting, because they show another relationship between optimal  scaling 
and the rest of the multivariate analysis world. They are also interesting because there are 
some sociologists who actually apply the two-step method, and it is nice to give them 
some theoretical comfort. 

Our  results so far are incomplete. They should be supplemented with a systematic 
investigation of linearity of regression. It is not too difficult to construct a chi square test 
for this purpose, provided we stay in a categorical data context. It is more complicated to 
construct a test for linearizability of all bivariate regressions. The discrepancy measure we 
have used can be used, of course, but its asymptotic distribution does not seem to be very 
simple (a complicated mixture of chi squares, no doubt). It is possible to construct a more 
satisfactory test, using the algebra in Bekker and de Leeuw (1988) to develop convenient 
parameterizations for the model. We shall not discuss this here, because it would take us 
too far astray,  and because the results so far are preliminary. 

Another point to emphasize is that many  more techniques have appeared in the 
formerly barren region between classical mult inormal multivariate analysis and MVA/OS. 
A minor statistical industry, sponsored mainly by the European Community,  has devel- 
oped around the idea that correspondence analysis must be related in some sense to the 
work in loglinear analysis. It turns out that it is indeed related in many ways. We refer in 
this context to the work of van der Heijden and de Leeuw (1985), Gilula and Habermann  
(1986), G o o d m a n  (1986), de Leeuw and van der Heijden (1988, in press). In the second 
place the so called polychoric or block multinormal models for fitting simultaneous 
equation models to categorical data developed among others by Muth6n (1984) can be 
interpreted as optimal scaling techniques. In fact the same thing is true for latent variable 
methods in general. The easiest way to show this is to formulate these models as incom- 
plete information models (Kiiveri, 1987), and to use the EM algorithm for optimal scaling. 
This similarity was emphasized for the first time by de Leeuw (1984c). More recently 
explicit maximum likelihood optimal scaling methods for the strained multinormal distri- 
bution have been developed by de Leeuw (1986), and Mooijaart,  Meijerink, and de Leeuw 



JAN DE LEEUW 453 

(1988). M u l t i v a r i a t e  ex t ens ions  o f  the  R C  m o d e l  o f  G o o d m a n ,  wh ich  is ca l led  the  po in t -  

m u l t i n o r m a l  m o d e l  by de  L e e u w  (1983b), a re  also be ing  d e v e l o p e d  by  m a n y  persons .  

F ina l l y  we e m p h a s i z e  tha t  the  resul ts  p r e s e n t e d  here  are  o n l y  a t iny p o r t i o n  o f  

o p t i m a l  scal ing,  and  o n l y  one  i n t e r p r e t a t i o n  o f  the  t r a n s f o r m a t i o n s  c o m p u t e d  by  these  

t echn iques .  O n e  can  discuss  the  w h o l e  t h e o r y  of  M V A / O S  as a f o r m  o f  m u l t i d i m e n s i o n a l  

scal ing,  based  o n  m a k i n g  l o w - d i m e n s i o n a l  r ep r e sen t a t i ons  o f  d is tances ,  a n d  w i t h o u t  m e n -  

t i on ing  c lass ical  m u l t i v a r i a t e  ana lys i s  at  all. Th is  is d o n e  in de  L e e u w  (1984b) a n d  in de  

L e e u w  a n d  v a n  R i j ckevor se l  (1988). F o r  m a n y  o t h e r  o p t i m a l  sca l ing  resul ts  we  refer  to  

Gir l  (1988) a n d  to  v a n  R i j ckevor se l  a n d  de  L e e u w  (1988). 
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