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Abstract: In this paper we study the convergence properties of an important class 
of multidimensional scaling algorithms. We unify and extend earlier qualitative 
results on convergence, which tell us when the algorithms are convergent. In order 
to prove global convergence results we use the majorization method. We also 
derive, for the first time, some quantitative convergence theorems, which give 
information about the speed of convergence. It turns out that in almost all cases 
convergence is linear, with a convergence rate close to unity. This has the practi- 
cal consequence that convergence will usually be very slow, and this makes tech- 
niques to speed up convergence very important. It is pointed out that step-size 
techniques will generally not succeed in producing marked improvements in this 
respect. 
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1. Introduction 

Recent research in multidimensional scaling has moved in the direction 
of proposing more and more complicated models, often with a very large 
number of parameters, and sometimes even with severe discontinuities in the 
model. The emphasis has been on producing computer programs that work, 
and comparatively little attention has been paid to theoretical problems asso- 
ciated with the loss functions and the algorithms used to minimize them. We 
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think that such a more theoretical study is long overdue. In fact we think that 
at the moment an in-depth study of some of the more simple models and tech- 
niques is more urgent than the development of even more complicated ones. 
This paper is a contribution to the study of a simple algorithm for fitting the 
simplest of  multidimensional scaling models. 

Thus, our paper does not present a new algorithm or a new model. It 
also makes no claim about superiority of the algorithm studied here over 
other possible or actual algorithms. The model is chosen from a large spec- 
trum of possible models, and the loss function is one among many. The only 
reason for studying this particular model, loss function, and algorithm is that 
they are simple and direct. This choice makes the mathematical study of their 
properties relatively easy. It is also the reason why they have been around for 
quite some time now, and why they have been used in a majority of the appli- 
cations of multidimensional scaling. 

The paper will mainly be about metric multidimensional scaling; 
towards the end we shall briefly discuss the nonmetric case. Results for non- 
metric scaling are often simple extensions of the metric results, and in this 
sense metric scaling is more basic. 

2. Notation and Terminology 

We introduce the notation and terminology more or less standard for 
metric multidimensional scaling (Kruskal and Wish 1978). The data in a 
classical multidimensional scaling problem are collected in a symmetric 
non-negative matrix A = { 8ij }. The elements of A are called dissimilarities; 
8ij is the dissimilarity between objects i and j. There are n objects, and thus 
A is of order n. We suppose that self-dissimilarities are zero; as a conse- 
quence A has a zero diagonal. A common purpose of multidimensional scal- 
ing is to represent the objects as points in a low-dimensional Euclidean space, 
in such a way that the distance between points i and j is approximately equal 
to the given dissimilarity of objects i and j. The xi denote n points inp-space, 
with coordinates in the n × p  matrix X, called the configuration. The matrix 
D(X), with dements d0(X), contains the Euclidean distances between the 
points xl. It follows that 

d/~(X) = (xi - xj)" (Xl _ xj) (la) 
= (el - e j )  X X (ei - ej) (lb) 
= tr X Aij X . (lc) 

In (lb) the ei are unit vectors (columns of the identity matrix of order n), and 
in (lc) we have Aij = (el - ej)(ei - e j ) .  In order to find out how successful a 
representation is we compute the value of a loss function, defined to be 
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o(X) = 1/2 Zi Z i wq (~)ij - dq(X)) 2 (2) 

where W = {wij } is a symmetric, non-negative matrix of  weights, with a zero 
diagonal. 

Matrix W is known and fixed throughout the computations. Its nondi- 
agonal elements can be used to code various forms of supplementary informa- 
tion. If there are missing data, for instance, we can set wij corresponding to 
missing dissimilarities equal to zero. If there are replications of the dissimi- 
larities in a cell we can estimate their variability, and use this information to 
choose weights. It sometimes also makes sense to set wq equal to a fixed 
function of the dissimilarity values, such as the square or the inverse square, 
in order to differentially weight errors. This strategy can be used to simulate 
the behavior of other multidimensional scaling loss functions. 

The purpose of the particular form of multidimensional scaling we have 
presented can now be stated more precisely: given weights, dissimilarities, 
and a dimensionality p, we want to find X that minimizes c(X). 

3. Basic Algorithm 

The algorithm we discuss in this paper was first given by Guttman 
(1968). He derived it by setting the stationary equations for the minimization 
of o(X) equal to zero, and he observed that the algorithm could be interpreted 
as a gradient algorithm with constant step-size. Compare also Lingoes and 
Roskam (1973, p. 8-10), Hartman (1979, p. 74-82), Borg (1981, p. 88-92). In 
de Leeuw (1977) the very same algorithm was derived in a somewhat more 
general context from convex analysis as a subgradient method. It was 
observed that in the simple Euclidean case, which is the one we are interested 
in here, the algorithm could be derived from the Cauchy-Schwartz inequality, 
without using either differentiation or subdifferentiation. This is the deriva- 
tion we present here. It is a much simplified version of the one given in de 
Leeuw and Heiser (1980). 

In order to describe the algorithm efficiently we need some additional 
notation. First let 

and 

~X(x) = 1/2 E i Zj wij d~j(X) , 

p(x) = 1/2 zj  d j(X). 

(3) 

(4) 

If we assume, without loss of generality that 
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then 

1/2 ~'i ~j  wij ~2 = 1 , 

o(X) = 1 - 2 p ( X )  + ~2(X). 

(5) 

(6) 

It is clear that rl2(X) is a convex quadratic function of X. From (lc) and (3) 
we have 

with 

rl2(X) = tr X" V X ,  

V = 1/2 Zi Zy wq Aq . 

(7) 

(8) 

Throughout the paper we assume that V has rank n - 1, an assumption which 
can be made without any loss of generality (de Leeuw 1977). It also follows 
from (8) that V is positive semidefinite, and that its (one-dimensional) null 
space consists of all vectors with constant elements. 

The function p(X) is somewhat more complicated than rl2(X). We 
know that dq(X) is a convex and positively homogeneous function of X. 
Thus, by (4), the same claim holds for 9(X). It is convenient to write p(X) as 

with 

where 

p(X) = tr X 'B(X)X,  

B(X) = 1/2 Zi Ej wij 8 6 sij(X)A 0 , 

(9) 

(lO) 

sij(X) = 1/dij(X) if dij(X) sO ( l la)  

so(X) = 0 otherwise (1 lb) 

It is obvious that the difference between (7) and (9) is that in (7) V is a con- 
stant matrix,while in (9), B(X) varies with X. Thus, rl2(X) is quadratic in X, 
while p(X) is not. 

With the notation developed so far it is easy to explain the algorithm. 
Clearly the partial derivatives of rl2(X) are given by V rl2(X) = 2VX. Using 
the definitions it is also not difficult to see that V p(X) = B(X)X, provided 
that p(X) is differentiable at X. Thus, V ~(X)= 2(VX-B(X)X).  In de 
Leeuw and Heiser (1980), the Guttman transform F(Y) of a configuration Y is 
defined as 
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F(Y) = V + B ( Y ) Y ,  (12) 

with V + the Moore-Penrose inverse of  V. Observe that the Guttman 
transform depends on weights and dissimilarities, and is consequently defined 
relative to a particular metric multidimensional scaling problem. Using the 
Guttman transform makes it possible to rewrite the gradient as 
V o(X) = 2V(X - F(X)), and thus V (~(X) = 0 if and only if X = F(X). As a 
consequence, a configuration X is called stationary for a particular metric 
multidimensional scaling problem if it is equal to its Guttman transform. The 
result also immediately suggests the algorithm Xk+l = F(Xk), or more expli- 
citly, 

Xk+l = V+B(Xk)Xt . (13) 

Equivalently we can also write 

Xk+l = Xk - 1/2 V + V c(Xk) , (14) 

which shows the gradient interpretation of  the algorithm. 
In this derivation of  the algorithm we have made the provision that 

o(X) had to be differentiable at X. This claim is true if and only i fdij(X) > 0 
for all i, j for which wij 5ij > 0. Let us agree to call a configuration usable if 
this condition is true. Thus if X is not usable, then ~(X) is not differentiable 
at X, and interpretation (14) cannot be used. Using definition (10), however, 
the iteration (12) can still be canied out. In de Leeuw (1977) and de Leeuw 
and Heiser (1980) it is shown that in this case the algorithm still converges to 
a stationary point. 

There are three reasons why we simply assume differentiability in the 
sequel. In the first place it was proved by de Leeuw (1984), that if ~ has a 
local minimum at X, then X is usable. Since we are interested in the behavior 
of our algorithm in the neighborhood of  a local minimum in most  of  this 
paper, we might as well assume differentiability. In the second place, 
although we do not need differentiability for the qualitative study of  conver- 
gence (i.e., for proving that the algorithm converges), we do need it for the 
quantitative study (i.e., for establishing the rate of convergence). And, 
finally, we shall base our convergence proof below directly on the Cauchy- 
Schwartz inequality, for which differentiability is not needed in the first place. 

The convergence proof starts with a lemma, which is the foundation of  
our approach to the minimization of this particular multidimensional scaling 
loss function. 
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Lemma  1: For all X and Y 

o ( X )  < 1 - rlz(F(Y)) + n2fx-  r(Y)). 

Moreover for  all X 

o ( X )  = 1 - n2(r(x)) + n2(x-  r(x)) .  

(15a) 

(15b) 

Proof." By Cauchy-Schwartz 

tr X'AqY < { tr X'A/jX} 1/2 { tr Y'AqY } u2 = dq(X)dij(Y) . (16) 

Multiply both sides by wij ~ij sq(Y), and add over all i, j. This manipulation 
gives, using (4) and (10), 

tr X ' B ( Y ) Y  < p ( X )  , (17) 

with equality i fY  = X. We can also write (17) as 

p(X) > tr X'VF(Y) , (18) 

and substitution in (6) gives 

o(X) < 1 - 2 tr X'VF(Y) + tr X ' V X .  (19) 

We can write (19) as 

o(X) < 1 - tr F(Y)'VF(Y) + tr (X - F(Y))'V(X - F(Y)) , (20) 

which is (15a). We have equality i fX  = Y, which is (15b). 
Q.E.D. 

Figure 1 provides a useful interpretation of  Lemma 1, and also shows 
the algorithmic implications. If we use the abbreviation 

o~(X) = 1 - ~2(F(Y)) + rl2(X - F(Y)) , (21) 

then for each Y, the function roy is quadratic in X. Moreover, by Lemma I, 
c(X) < oAr(X) and c(Y) = roy(Y). Thus, for each Y, the function ohr major- 
izes the function a,  and the two functions touch only for X = Y. Moreover, 
roy is minimized over X by setting X = F(Y) and thus we see that the Gutt- 
man transform decreases the loss function. We write this result as 

o(F(Y)) < roy(F(Y)) < roy(Y) = o(Y) , (22) 
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Figm'e 1. Three iterations of the majorization algorithm. We have drawn a section of the 
stresg loss function, and two quadratic majorization functions. These touch the function at the 
current configuration, they are always above it, and their minimum provides the next 

configuration. 

provided that Y # F(Y). These results are illustrated in Figure 1. Thus either 
Y = F(Y), in which case V o(Y) = 0 and we have found a solution o f  the sta- 
tionary equations, or Y ~ F(Y) and we can decrease the loss by replacing Y 
by its Guttman transform. This procedure constitutes the basic algorithm. It 
also explains why we call it a majorization method: instead of  local linear 
approximation we use global quadratic majorization in each iteration step. 
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4. Sequences Generated by the Algorithm 

The algorithm (13)generates a sequence Xk, and also sequences of  real 
numbers ok = O(Xk), Pk = p(XD, rl 2 = rl2(Xt~). Also define the sequences 
3. k = p(Xj:) / ri(Xk), and e~ = l~2(Xk-  F(Xk) ). The symbols 1" and ,l. are used 
for convergence of monotone sequences which are, respectively, increasing 
and decreasing. The theorems in this section unify earlier results in de Leeuw 
(1977) and de Leeuw and Heiser (1980). 

Theorem l: (a) Pk 1" po*, 
: 

(c) 1" = 
(d) Ok ,l, ~3~ : 1 - poo, 
(e) o. 

Proof." From (3) and (4) we lind, by using Cauchy-Schwartz, that p(X) < ri(X) 
for all X. Thus Zk <-1 for all k. We can write (9) as p(X) = tr X VF(X), and 
again by Cauchy-Schwartz, p(X) < rl(X)q(F(X)) for all X. Thus Pt, < rlkrlk÷1, 
and also ~.k < rlk+l. Now write (17) as p(F(X)) > 
tr (F(X))'B(X)X = rl2(F(X)), which implies that Pk > rlk 2 and )~k > rlk. Sum- 
marizing the results so far gives 

rl/c<~Lk<rlk+l <)~k+1 < 1 , 

1] 2 <-- Pk <- l~kTlk+l <- 112+1 <Pk+l < 1 . 

(23a) 

(23b) 

These chains are sufficient to prove parts (a) (b) (c). We have already proved 
the decrease of ok in (22), the limit value follows trivially from 
¢~k = 1 - 2pk + rl 2, together with po~ = rl 2. This proves (d). For (e) we write 
e 2 112 + rl2+1 - 2pk, and again use poo = rl 2. 
Q.E.D. 

Observe that the theorem does not state that ek decreases monotonically 
to zero. In fact usually convergence of  ek to zero is nonmonotonic. The 
theorem also does not say anything about the convergence of  Xk. The 
sequence Xk is studied in a separate theorem. Remember that Xoo is an accu- 
mulation point of a sequence Xk if each neighborhood of  X~ contains 
infinitely many points of the sequence. 

Theorem 2: Suppose So. is the set of all accumulation points of the sequence 
Xk. Then: 

(a) So. is nonempty, 
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(b) i f X ~  E S.~ then a(X~) = c**, 
(c ) i f  X~ ~ S~ and X** is usable, then X~ is stationary (i.e., equal to 

its Guttman transform), 
(d) if S~. is not a singleton, then it is a continuum. 

Proof." All Xk are column centered. In the p(n - 1) dimensional space of all 
column-centered n × p  matrices, the function 11 defines a norm. Because 
rik -< 1 for all k, it follows that all Xk are in the unit ball of this normed space, 
and consequently they have at least one accumulation point. This implication 
proves (a). 

Suppose X~ is a subsequence converging to Xo.. Then, by continuity of 
t~, the sequence t~(X~.) converges to c(Xo~). But the only accumulation point 
of C(Xk) is Co~. This argument proves (b). 

In the neighborhood of a usable configuration the Guttman transform is 
continuous. Thus, by the same argument that proved (b), we find that 
e(X~.) = rl(X~. - F(X~,)) = rl(X~. - X~.+l) converges to rl(X** - F(X~)), which 
must be zero by Theorem 1, part (e). This reasoning proves (c). 

For result (d), we remember that a continuum is a closed set, which 
cannot be written as the union of two or more disjoint closed sets. A proof of 
(d) is given by Ostrowski (1966, Theorem 28.1). 
Q.E.D. 

Again Theorem 2 does not say that Xk converges. This fact is quite 
irrelevant from a practical point of view, however. If we define Ix-optimal 
configurations as those configurations for which rl(X - F(X)) < Ix, then for all 
Ix > 0, the algorithm finds a Ix-optimal configuration in a finite number of 
steps. This result is all the convergence we ever need in practice. In 
Theorem 2 there is a restriction in part (c), because we require that X~, is 
usable. This restriction can be removed by using subdifferentials (de Leeuw 
and Heiser 1980). But again, from a practical point of view, the restriction is 
not very important, because all local minima are usable (de Leeuw 1984). 

The conclusion for Theorems 1 and 2 is that the sequences of loss and 
fit values generated by the algorithm converge monotonically. The difference 
between successive solutions converges to zero, which implies that the 
sequence of  solutions converges. In a precise mathematical sense we have 
either convergence to a single point, or convergence to a continuum of sta- 
tionary points, with all these stationary points having the same value of the 
loss function. We have not been able to exclude this last possibility, and 
indeed a natural candidate for such a continuum is available in any multidi- 
mensional scaling problem. If X~. is a stationary point, then for any p x p 
rotation matrix K, the matrix XooK is also a stationary point, with the same 
loss function value. Thus there is the possibility that Xk converges to a 
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continuum of the form S**= { X I X = X . o K } ,  in the sense that 
min {ri(Xk - X) I X e S** } converges to zero, but XI, does not converge to a 
point in So.. Again it is clear that this fact is irrelevant from a practical point 
of view. 

5. Derivatives of the Guttman Transform 

A more detailed study into the convergence behavior of the algorithm 
is possible if we determine the derivative of the Guttman transform. This 
information makes it possible to investigate, for the first time, the rate of  con- 
vergence of our basic algorithm. For a general discussion of the role of the 
derivative in one-step iterative processes, such as our (12), we refer to 
Ostrowski (1966, Chapter 22) or Ortega and Rheinboldt (1970, Chapter 10). 
For ease of reference we briefly summarize their key result here. If 
Xk+1 = ~(Xk) is any convergent iterative algorithm generating a sequence 
converging to Xoo, and if the largest eigenvalue "coo of the derivative of • at 
X~ satisfies 0 <'co. < 1, then ]]Xk+1-Xo.ll/]]Xk-Xoo]]-->"coo, i.e., we have 
linear convergence with rate "c.~. 

The derivative is considered as a linear operator mapping the (n - 1)p 
dimensional space of column-centered configurations into itself. We can 
represent it computationally by an np x np matrix, but here we prefer to give 
it as a linear map which associates with each centered configuration Y 
another centered configuration Fx(Y). The map Fx is the derivative of the 
Guttman transform at the usable configuration X. Thus we have, for example, 

r ( x  + Y) = r ( x )  + Ix(Y) + o (nOr) ) ,  (24) 

showing the local linear approximation provided by the derivative. Observe 
that in (24), we have chosen I"1 as the norm we are using in defining the 
derivative. This choice is not essential, of course, but it certainly is con- 
venient. 

We now give the formula for the derivative. It is most usefully written 
as 

Fx(Y) = V + {B(X)Y- U(X,Y)X} , (25) 

with 

U(X,Y) = 1/2 Xi Zj {wij~ijci j(X,Y) / d3(X)} Aij , (26) 

and clj(X,Y) = tr X'A•Y. Thus U(X,X) = B(X). 
Next we are interested in the eigenvalues and eigenvectors of I x .  

Observe that we have interpreted it as an operator on the (n - 1)p dimensional 
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space of centered configurations. It consequently has (n - 1)p eigenvalues, 
not necessarily all distinct. If we consider Fx as an operator on the space of  
all np matrices, then it has p additional eigenvalues equal to zero. The 
corresponding eigensubspace contains the solutions ofrl(Y) = 0. 

Before proceeding, we have to single out one special case. If p = 1, 
then UCK,Y)X = B(X)Y, and thus Fx(Y) = 0. It is shown in de Leeuw and 
Heiser (1977) that the Guttman transform iterations converge in a finite 
number of steps if p = 1. This special case was already singled out by Gutt- 
man (1968). Defays (1978), Heiser (1981), and Hubert and Arabie (1986) 
show that one-dimensional scaling is essentially a combinatorial problem. 
Because either the result Fx(Y) = 0 or the fact of finite convergence stops all 
considerations having to do with rate of convergence, we assume from now 
on tha tp  > 1. 

Result 1. X is an eigenvector of Fx with eigenvalue zero. This result 
follows directly from U(X,X) = B(X) and (24). 

Result 2. Fx has simple structure, i.e., (n - 1)p linearly independent 
eigenvectors. This follows because Fx(Y) = ~Y can be written in the form 
(V2p(X))Y = ~,VY, where V2p is the operator corresponding with the second 
partial derivatives of p, which is consequently symmetric. Thus the eigen- 
values are real, and the eigenvectors Ys can be chosen such that they are 
orthogonal, i.e., such that tr Y~VYt = Sst, with 5 st the Kronecker delta. 

Result 3. The eigenvalues of Fx are non-negative. This fact follows 
from the representation in the previous result. Because p is convex, the 
operator V2p is positive semidefmite. 

Result 4. If X is a local minimum of ~, then all eigenvalues of  Fx are 
less than or equal to one. This result follows because if X is a local 
minimum, then we must have that V2c(X) is positive semidefinite. And 
V2a(X) is positive semidefmite if and only if I - F x is positive semidefinite, 
i.e., if and only if all eigenvalues of Fx are less than or equal to one. 

Result 5. If X is stationary, then Fx has 1/2p(p - 1) eigenvalues equal 
to one. To prove this result, choose Y = XS, with S anti-symmetric, i.e., 
S = - S'. Then c0(X,Y ) = tr X'AijXS = 0, and thus from (24) and (25) we 
have Fx(Y)= V+B(X)XS = XS = Y. The anti-symmetric matrix S can be 
chosen in 1/2pfp - 1) linearly independent ways. 

6. A Small Example 

The example we use has n = 4 objects, and has all dissimilarities ~ij, 
with i ~ j, equal to 1 / "~fff. The weights wij are all equal to one, and conse- 
quently normalization (5) is true. Of course this example does not constitute 
a realistic multidimensional scaling problem, because it is much too small. 
We use the example to illustrate what kind of stationary points we can expect 
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in a metric scaling problem, and how our simple algorithm will behave in a 
neighborhood of  these stationary points. We do not intend to prove, in any 
sense, that our algorithm is better than other existing algorithms. In fact we 
think that the other algorithms will behave quite similarly. It seems to us that 
the example can be used to illustrate the great difficulties multidimensional 
scaling methods can encounter if the iterations are started at unfommate 
places, and to illustrate the slow rate of  convergence that seems to be typical 
for multidimensional scaling problems. Both the local minimum problem and 
the slow convergence problem will tend to become more serious if we 
increase the size of  the problem. 

We first make a small list of  stationary points. This list may not be 
exhaustive, but it contains some of  the more interesting types of  stationary 
points. 

Stationary point 1. Take four points equally spaced on a line. This 
actually defines a whole family of  stationary points, because any permutation 
of  four equally spaced points will do. Moreover we can think of  this solution 
as embedded in one-dimensional space, in two-dimensional space, and so on. 
If p = 1 we know that Fx = 0, we also know that the equally spaced points 
define the global minimum (de Leeuw and Stoop 1983). But, as we said 
before, we are really only interested in p > 1. I f p  = 2, i.e., if we have four 
points equally spaced on a line in two-space, then the eigenvalues of Fx are 
four zeros together with the eigenvalues of  1/4B(X), which are 0, 1, 1.5, and 
1.8333. Thus for p = 2 the four points on a line are not a local minimum, in 
fact they define a saddle-point. The function value in this saddle-point is 
.1666666667. 

Stationary point 2. Take three points in the comers of  an equilateral tri- 
angle, and the fourth one in the centroid of the triangle. This is, again, a 
whole family of  stationary points, all with loss function value 

= .06698729811. F o r p  = 2 the operator Fx has 8 eigenvalues. Three are 
equal to zero, three are equal to one, and two are equal to .2321. Thus the tri- 
angle plus centroid defines a local minimum, but not an isolated one. There 
are three eigenvalues equal to one and only one of  them corresponds with the 
trivial eigenvalue equal to one of result (5) in the previous section. I f p  = 3 
we have the same 8 eigenvalues, plus the 4 eigenvalues of 1/2B(X), which are 
0, 1, 1, and 1A641 in this case. Thus f o r p  = 3 this stationary point is not a 
local minimum any more. 

Stationary point 3. Take four points in the corners of a square. Loss is 
.02859547921. F o r p  = 2 the eigenvalues of Fx are three zeros, .4142, three 
times .5858, and one trivial unit eigenvalue. Thus we have local minimum 
here that is isolated in the sense that the manifold of all rotations of  the 
square is isolated from other stationary values. Again the square is not a local 
minimum forp  = 3, although it remains stationary. 
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Stationary point 4. Take four points in the comers of a regular 
tetrahedron. The loss function is now zero, which shows directly that this 
three-dimensional solution is certainly the global minimum. The eigenvalues 
of Fx are zero four times, 1/2 three times, 3/4 two times, and one three times. 
The unit eigenvalues correspond with the 1 /2p(p -  1) trivial eigenvalues 
defining the manifold of rotations. 

7. Rate of Convergence 

The discussion in the previous sections shows that at least part of the 
difficulty with proving actual convergence of  our iterations comes from the 
rotational indeterminancy of multidimensional scaling. Because of this rota- 
tional indeterminancy, Fx has at least 1/2pfp - 1) unit eigenvalues at a sta- 
tionary point X. If we eliminate rotational indetenninancy, then we eliminate 
these difficulties. First, we call a regular stationary point isolated if F x has 
exactly 1/2p(p - 1) unit eigenvalues. We call it an isolated local minimum if 
all other eigenvalues are strictly less than one. In the small example in the 
previous section, the four points in the comer of a square are an isolated local 
minimum for p = 2. For p = 3 the solution is neither isolated nor a local 
minimum. The equilateral triangle with centroid is a local minimum for 
p = 2, but not an isolated local minimum. The regular tetrahedron is an iso- 
lated local minimum for p = 3. At an isolated local minimum, we use the 
symbol ~: for the largest eigenvalue less than one. We call it the level of the 
isolated local minimum. 

Theorem 3: I f  Xk has an accumulation point, which is an isolated local 
minimum, and has level ~c, then ek+l / ek --~ ~. 

Proof." We want to apply the general theorems of  Ostrowski and of  Ortega 
and Rheinboldt referred to above. First, we eliminate rotational indeter- 
minancy by defining a new sequence X~. For each k the configuration X~ is a 
rotation of  Xk; moreover it is a specific rotation which identifies the 
configuration uniquely in the manifold of rotations. We can rotate to princi- 
pal components, for example, with some special provision for equal eigen- 
values. Because X~ is a rotation of Xk, the sequences ak, Pk, rh, ~k generated 
by this modified algorithm are exactly the same. So is 
•2 = (~k+1)2 + ~2 -2Ok, although now ek ~:rl((Xk+l) ° -X~) .  The transfor- 
mation which maps X~ to (Xk+l) ° has a derivative F~ at a stationary point 
with exactly the same eigenvalues as Fx, except for the 1 /2p (p -  1) unit 
eigenvalues, which are replaced by zeroes. Thus ~ < I is actually the largest 
eigenvalue of F~, so that X~ converges linearly, with rate K:. 
Q.E.D. 



176 J. de Leeuw 

If the stationary point is a non-isolated local minimum, or not even a 
local minimum, then Theorem 3 does not say anything about the rate of  con- 
vergence. This fact does not seem to be a very important restriction of  gen- 
erality in practice, because it seems difficult to get our algorithm to converge 
to a non-isolated local optimum. We illustrate this finding with the small 
example from the previous section. 

The equilateral triangle with centroid is a non-isolated local minimum 
for p = 2. Start the iterations from a small perturbation of  this stationary 
point. With a very close start (o = .0669873151), we have convergence to 
the stationary value with 10-decimal precision within 5 iterations. The ratio 
(ek+l) 2 / e 2 continues to increase, however, although extremely slowly. It is 
.99 at iteration 8, and .999 at iteration 10. We have stopped the process at 
iteration 30, at which point we are still equally close to the stationary value, 
and the ratio is still increasing. 

We have restarted the iterations somewhat further away from the sta- 
tionary point ( o =  .0669895385). After 10 iterations t~ is down to 
.0669877606 and e 2 is 7 × 10 -9. The ratio (ek+l) 2 / e  2 is .9739919946. At 
iteration 50 we have t~ = .0669873813, e 2 = 36 x 10 -1°, and 
(ek÷l) 2 / e 2 = .9926593514. Around iteration 60 the value of  o drops below 
.066987298 (equilateral triangle with centroid) and e 2 begins to rise, causing 
a ratio ek+l / ek larger than one. This situation continues for a very long time. 
At iteration 200, for instance, we have o = .0669757275 and 
e 2 = 3413 x 10 -1°. The ratio of  successive epsilons is still larger than one. 
This continues until iteration 250. In the meantime e 2 has increased to 
.0026904972, and o, which started dropping rapidly at iteration 225, is down 
to .0368738809. Convergence now becomes rapid, and within 20 iterations 
the configuration converges to the four comers of  the square, which is an iso- 
lated local minimum (in fact the global minimum) forp  = 2. At iteration 270 
we have o = .0285954792, e 2 < 10 -1°, and (ek+l) 2 / e 2 = .3431684733, which 
is for all practical purposes equal to ~: 2. Thus we have started close to a 
non-isolated local minimum. The algorithm has great difficulty in getting 
away from it, but ultimately succeeds. 

With a restart even further away (o = .0675512622) the algorithm has 
difficulty escaping only until iteration 30. The e 2 decreases rapidly again, and 
we have convergence to the square in 55 iterations. It is now not difficult to 
conjecture that in the first start, in which we seemed to converge on the equi- 
lateral triangle, we merely did not continue long enough. After hundreds or 
perhaps thousands of  iterations we would converge on the square again, i f  we 
continued. 
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8. Nonmetric Scaling 

We now introduce some additional terminology in order to define non- 
metr ic  scaling.  T h e  loss function for a nonmetric scaling problem can be 
written as 

t~(X,A) = 1/2 Ei Ej w O (~ij - d i j (X))  2 , (27) 

where all symbols have the same meaning as before, except for A = {~ilj }, 
which now contains the dispari t ies  and no longer the dissimilarities. In non- 
metric scaling the loss function (27) must be minimized over both the 
configuration X and the disparities A, where the disparities are restricted by 
the ordinal information in the data. Thus the disparities are additional param- 
eters in the nonmetric scaling problem over which we minimize, in contrast to 
the metric scaling problem in which the dissimilarities are fixed numbers. 
Thus we can choose A freely, provided it is feas ib le ,  which means in this case 
mono tone  with the given dissimilarities. In this sense nonmetric scaling gen- 
eralizes metric scaling, in which A must not only be monotone but in fact 
ident ical  to the dissimilarities. In order to prevent trivial solutions, we must 
also impose a normalization condition on the disparities, for instance that 
their sum of  squares is unity, or that their variance is unity. 

As indicated in de Leeuw (1977) we can think of nonmetric scaling 
algorithms in two different ways. First, we interpret them as alternating least 
squares methods, which alternate one gradient step (or Guttman-transform) 
with a monotone regression step. In the gradient step, the loss function (27) is 
minimized (or rather decreased) by choosing a new X; in the monotone 
regression step (27) is decreased by choosing a new A, consistent with the 
ordinal constraints. Of course it is possible, and perhaps sometimes advis- 
able, to introduce some obvious modifications of this algorithm. Instead of 
alternating one Gutlman transform with one monotone regression we can per- 
form more Guttman transforms between monotone regressions. These Gutt- 
man steps have a rate of convergence which is described by our results above. 
In the alternating least squares interpretation, the loss function (27) is dearly 
interpreted as a function of two sets of parameters, the coordinates and the 
disparities. 

Second, it is also possible to view the loss function in nonmetfic scal- 
ing as a function of  X alone. This is the original definition of stress as pro- 
posed by Kruskal (1964a, 1964b). If c(X,A) is the "stress" used in the first 
approach, then Kruskal's stress is the minimum of  c(X,A) over all feasible 
disparities A. Thus A is "projected out," and the remaining function depends 
only on X. This elementary fact has caused a great deal of confusion in the 
early days of multidimensional scaling. The confusion was made even bigger 
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by the fact that the derivative of t~(X) is the same as the partial derivatives of 
c~(X,A) with respect to X, evaluated at the optimal A(X). Thus 
a(X) = c(X,A(X)), but also V c(X) = Vxt~(X,A(X)). This last result is due to 
Kruskal (1971), who used it to show that t~(X) is differentiable (whenever 
o(X,A) is differentiable). It is also used by de Leeuw (1977) to show that the 
iteration Xk+l = V÷B(Xk)Xk is still a convergent algorithm if we define B(X) 
as in (10) but with A(X) substituted for A. Thus, our qualitative convergence 
results remain true without modification, both in the alternating least squares 
and in the (sub)differential interpretation. 

Unfortunately the transformation X-->A(X) is generally not 
differentiable. In fact, to find A(X) we have to project D(X) orthogonally on a 
polyhedral convex cone, which implies that the transformation is piecewise 
linear in the distances. The linear pieces are joined in a continuous but non- 
smooth way (compare Kruskal 1971). If we have convergence of the non- 
metric scaling algorithm to a point where the cone-projection is locally a con- 
stant linear map, then our convergence results apply. In monotone regression 
terms this means that for all points in an open neighborhood of the solution 
we are converging to, monotone regression finds the same partitioning into 
blocks in its computation of the disparities, i.e., for all these points it projects 
on the same face of the cone. In general, however, we cannot exclude the 
possibility that the convergence is to a point in the boundary of two regions 
with different projection maps. These linear maps again correspond to the 
partitioning into blocks found by the monotone regression algorithm. In this 
case our results do not apply, and they must be adapted. 

9. Summary and Conclusions 

We have shown in this paper that our basic majorization algorithm for 
multidimensional scaling converges to a stationary point, if convergence is 
defined using the asymptotic regularity of the generated sequence, i.e., in 
terms of the fact that the distance between two consecutive members of the 
sequence converges to zero. We have also shown that if one of the accumula- 
tion points of the sequence is an isolated local minimum, then convergence is 
linear. This condition seems to be all that is needed for practical applications. 
It follows from our small numerical example that it is possible for actual com- 
puter programs to stop at saddle points which are not local minima, and that 
in the neighborhood of such saddle points convergence may look sublinear. 
Our experience with many practical examples indicates that the level of iso- 
lated local minima (i.e., the convergence rate of the algorithm we have 
described) in multidimensional scaling is very often close to unity. Thus 
although convergence is theoretically linear, it can be extremely slow. 
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Consequently it becomes very important, at least in some cases, to look 
for ways to speed up linear convergence, or even for ways to attain 
supralinear convergence. These acceleration devices will be investigated in 
subsequent publications. Simple ways to speed up linear convergence were 
already investigated by de Leeuw and Heiser (1980); more complicated ones 
were studied by Stoop and de Leeuw (1983). In both papers the basic conver- 
gence of the Gutmaan-transform iterations is preserved, but a specially 
developed step-size procedure is added to the algorithm. Both on theoretical 
and on empirical grounds one can argue that stepsize procedures in MDS, 
including the ones devised by Kruskal (1964), will generally double the speed 
of convergence, i.e., half the number of iterations required for a given preci- 
sion. In the case of  very slow linear convergence, this does not really help 
very much. Of course the formulae derived in Section 5 can be used quite 
easily to derive the exact form of Newton's method applicable to multidimen- 
sional scaling, but our numerical experience so far suggests that Newton's 
method must also be used with much care in this context. 

Our main conclusion is that the majorization method is reliable and 
very simple, but that it is generally slow, and sometimes intolerably slow. It 
seems to us that an additional conclusion is that one should always study the 
second derivatives of the loss function at the stopping point of the algorithm. 
This information indicates if we have stopped at a local minimum, and how 
much improvement we can expect in various directions. Such information on 
improvement can be used either to try to make one or more Newton-steps, or 
to derive information on the stability of the solution. 
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