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Note

This book will be expanded/updated frequently. The directory
github.com/deleeuw/stress has a pdf version, a html version, the bib
file, the complete Rmd file with the codechunks, and the R and C source
code. All suggestions for improvement of text or code are welcome, and
some would be really beneficial. For example, I only use base R graphics,
nothing more fancy, because base graphics is all I know.
All text and code are in the public domain and can be copied, modified, and
used by anybody in any way they see fit. Attribution will be appreciated,
but is not required. For completeness we include a slighty modified version
of the Unlicense as appendix C.
I number and label all displayed equations. Equations are displayed, instead
of inlined, if and only if one of the following is true.

• They are important.
• They are referred to elsewhere in the text.
• Not displaying them messes up the line spacing.

All code chunks in the text are named. Theorems, lemmas, chapters, sec-
tions, subsections and so on are also named and numbered, using book-
down/Rmarkdown.
I have been somewhat hesitant to use lemmas, theorems, and corollaries in
this book. But ultimately they enforce precision and provide an excellent
organizational tool. If there is a proof of a lemma, theorem, or corollary, it
ends with a □.
Another idiosyncracy: if a line in multiline displayed equation ends with “=”,
then the next line begins with “=”. If it ends with “+”, then the next line
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begin with “+”, and if it ends with “-” the next line begins with “+” as well.
I’ll try to avoid ending a line with “+” or “-”, especially with “-”, but if it
happens you are warned. A silly example is

(x + y)2− (1)
+ 4x = (2)
= x2 + y2 − 2x = (3)
= (x − y)2 ≥ (4)
≥ 0. (5)

Just as an aside: if I refer to something that has been mentioned “above” I
mean something that comes earlier in the book and “below” refers to anything
that comes later. This always confuses me, so I had to write it down.
The dilemma of whether to use “we” or “I” throughout the book is solved
in the usual way. If I feel that a result is the work of a group (me, my co-
workers, and the giants on whose shoulders we stand) then I use “we”. If it’s
an individual decision, or something personal, then I use “I”. The default is
“we”, as it always should be in scientific writing.
Most of the individual chapters also have some of the necessary mathemati-
cal background material, both notation and results, sometimes with specific
eleborations that seem useful for the book. Sometimes this background ma-
terial is quite extensive. Examples are splines, majorization, unweighting,
monotone regression, and the basic Zangwill and Ostrowski fixed point the-
orems we need for convergence analysis of our algorithms.
There is an appendix A with code, and an appendix B with data sets. These
contain brief descriptions and links to the supplementary materials directo-
ries, which contain the actual code and data.
Something about code and R/C
I will use this note to thank Rstudio, in particular J.J. Allaire and Yihui Xi,
for their contributions to the R universe, and for their promotion of open
source software and open access publications. Not too long ago I was an
ardent LaTeX user, firmly convinced I would never use anything else again
in my lifetime. In the same way thatI was convinced before I would never
use anything besides, in that order, FORTRAN, PL/I, APL, and (X)Lisp.
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And PHP/Apache/MySQL. But I lived too long. And then, in my dotage, lo
and behold, R, Rstudio, (R)Markdown, bookdown, blogdown, Git, Github,
Netlify came along.

Figure 1: Forrest Young, Bepi Pinner, Jean-Marie Bouroche, Yoshio Takane,
Jan de Leeuw at La Jolla, August 1975
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Preface

This book is definitely not an impartial and balanced review of all of multi-
dimensional scaling (MDS) theory and history. It emphasizes computation,
and the mathematics needed for computation. In addition, it is a summary
of over 50 years of MDS work by me, either solo or together with my many
excellent current or former co-workers and co-authors. It is heavily biased
in favor of the smacof formulation of MDS (De Leeuw (1977a), De Leeuw
and Heiser (1977), De Leeuw and Mair (2009)), and the corresponding ma-
jorization (or MM) algorithms. And, moreover, I am shamelessly squeezing
in as many references to my published and unpublished work as possible,
with links to the corresponding pdf’s if they are available. Thus this book is
also a jumpstation into my bibliography.

I have not organized the book along historical lines because most of the early
techniques and results have been either drastically improved or completely
abandoned. Nevertheless, some personal historical perspective may be useful.
I will put most of it in this preface, so uninterested readers can easily skip it.

I got involved in MDS in 1968 when John van de Geer returned from a visit
to Clyde Coombs in Michigan and started the Department of Data Theory in
the Division of Social Sciences at Leiden University. I was John’s first hire,
although I was still a graduate student at the time.

Remember that Clyde Coombs was running the Michigan Mathematical Psy-
chology Program, and he had just published his remarkable book “A Theory
of Data” (Coombs (1964)). The name of the new department in Leiden was
taken from the title of that book, and Coombs was one of the first visitors
to give a guest lecture there.

This is maybe the place to clear up some possible misunderstandings about
the name “Data Theory”. Coombs was mainly interested in a taxonomy of
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data types, and in pointing out that “data” were not limited to a table or
data-frame of objects by variables. In addition, there were also similarity
ratings, paired comparisons, and unfolding data. Coombs also emphasized
that data were often non-metric, i.e. ordinal or categorical, and that it was
possible to analyze these ordinal or categorical relationships directly, without
first constructing numerical scales to which classical techniques could be ap-
plied. One of the new techniques discussed in Coombs (1964) was a ordinal
form of MDS, in which not only the data but also the representation of the
data in Euclidean space were non-metric.

John van de Geer had just published Van de Geer (1967). In that book,
and in the subsequent book Van de Geer (1971), he developed his unique ge-
ometric approach to multivariate analysis. Relationship between variables,
and between variables and individuals, were not just discussed using matrix
algebra, but were also visualized in diagrams. This was related to the geo-
metric representations in Coombs’ Theory of Data, but it concentrated on
numerical data in the form of rectangular matrices of objects by variables.

Looking back it is easy to see that both Van de Geer and Coombs influenced
my approach to data analysis. I inherited the emphasis on non-metric data
and on visualization. But, from the beginning, I interpreted “Data Theory”
as “Data Analysis”, with my emphasis shifting to techniques, loss functions,
implementations, algorithms, optimization, computing, and programming.
This is of interest because in 2020 my former Department of Statistics at
UCLA, together with the Department of Mathematics, started a bachelor’s
program in Data Theory, in which “Emphasis is placed on the development
and theoretical support of a statistical model or algorithmic approach. Alter-
natively, students may undertake research on the foundations of data science,
studying advanced topics and writing a senior thesis.” This sounds like a nice
hybrid of Data Theory and Data Analysis, with a dash of computer science
mixed in.

Computing and optimization were in the air in 1968, not so much because
of Coombs, but mainly because of Roger Shepard, Joe Kruskal, and Doug
Carroll at Bell Labs in Murray Hill. John’s other student Eddie Roskam and
I were fascinated by getting numerical representations from ordinal data by
minimizing explicit least squares loss functions. Eddie wrote his dissertation
in 1968 (Roskam (1968)). In 1973 I went to Bell Labs for a year, and Eddie
went to Michigan around the same time to work with Jim Lingoes, resulting
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in Lingoes and Roskam (1973).

My first semi-publication was De Leeuw (1968c), quickly followed by a long
sequence of other, admittedly rambling, internal reports. Despite this very
informal form of publication the sheer volume of them got the attention of
Joe Kruskal and Doug Carroll, and I was invited to spend the academic year
1973-1974 at Bell Laboratories. That visit somewhat modified my cavalier
approach to publication, but I did not become half-serious in that respect
until meeting with Forrest Young and Yoshio Takane at the August 1975
US-Japan seminar on MDS in La Jolla. Together we used the alternating
least squares approach to algorithm construction that I had developed since
1968 into a quite formidable five-year publication machine, with at its zenith
Takane, Young, and De Leeuw (1977).

In La Jolla I gave the first presentation of the majorization method for MDS,
later known as smacof, with the first formal convergence proof. The canonical
account of smacof was published in a conference paper (De Leeuw (1977a)).
Again I did not bother to get the results into a journal or into some other
more effective form of publication. The basic theory for what became known
as smacof was also presented around the same time in another book chapter
De Leeuw and Heiser (1977).

In 1978 I was invited to the Fifth International Symposium on Multivariate
Analysis in Pittsburgh to present what became De Leeuw and Heiser (1980).
There I met Nan Laird, one of the authors of the basic paper on the EM
algorithm (Dempster, Laird, and Rubin (1977)). I remember enthusiastically
telling her on the conference bus that EM and smacof were both special
case of the general majorization approach to algorithm construction, which
was consequently born around the same time. But that is a story for a
companion volume, which currently only exists in a very preliminary stage
(https://github.com/deleeuw/bras).

My 1973 PhD thesis (De Leeuw (1973a), reprinted as De Leeuw (1984a))
was actually my second attempt at a dissertation. I had to get a PhD,
any PhD, before going to Bell Labs, because of the difference between the
Dutch and American academic title and reward systems. I started writing
a dissertation on MDS, in the spirit of what later became De Leeuw and
Heiser (1982). But halfway through I lost interest and got impatient, and
I decided to switch to nonlinear multivariate analysis. This second attempt
did produced a finished dissertation (De Leeuw (1973a)), which grew over

https://github.com/deleeuw/bras
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time, with the help of multitudes, into Gifi (1990). But that again is a
different history, which I will tell some other time in yet another companion
volume (https://github.com/deleeuw/gifi). For a long time I did not do much
work on MDS, until the arrival of Patrick Mair and the R language led to a
resurgence of my interest, and ultimately to De Leeuw and Mair (2009) and
Mair, Groenen, and De Leeuw (2019).
I consider this MDS book to be a summary and extension of the basic pa-
pers De Leeuw (1977a), De Leeuw and Heiser (1977), De Leeuw and Heiser
(1980), De Leeuw and Heiser (1982), and De Leeuw (1988) (published version
of De Leeuw (1984b)), all written 30-40 years ago. Footprints in the sands
of time. It can also be seen as an elaboration of the more mathematical
and computational sections of the excellent and comprehensive textbook of
Borg and Groenen (2005). That book has much more information about the
origins, the data, and the applications of MDS, as well as on the interpreta-
tion of MDS solutions. In this book I concentrate almost exclusively on the
mathematical, computational, and programming aspects of MDS.
For those who cannot get enough of me, there is a data base of my published
and unpublished reports and papers since 1965, with links to pdf’s, at https:
//jansweb.netlify.app/publication/.
There are many, many people I have to thank for my scientific education.
Sixty years is a long time, and consequently many excellent teachers and
researchers have crossed my path. I will gratefully mention the academics
who had a major influence on my work and who are not with us any more,
since I will join them in the not too distant future: Louis Guttman (died
1987), Clyde Coombs (died 1988), Warren Torgerson (died 1999), Forrest
Young (died 2006), John van de Geer (died 2008), Joe Kruskal (died 2010),
Doug Carroll (died 2011), and Rod McDonald (died 2012).

https://github.com/deleeuw/gifi
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Notation and Reserved
Symbols

intro

0.1 Spaces

• Rn is the space of all real vectors, i.e. all n-element tuples of real num-
bers. Typical elements of Rn are x, y, z. The element of x in position
i is xi. Defining a vector by its elements is done with x = {xi}.

• Rn is equipped with the inner product ⟨x, y⟩ = x′y = ∑n
i=1 xiyi and the

norm ∥x∥ =
√

x′x.

• The canonical basis for Rn is the n−tuple (e1, cdots, en), where ei has
element i equal to +1 and all other elements equal to zero. Thus
∥ei∥ = 1 and ⟨ei, ej⟩ = δij, with δij the Kronecker delta (equal to one
if i = j and zero otherwise). Note that xi = ⟨ei, x⟩.

• R is the real line and R+ is the half line of non-negative numbers.

• Rn×m is the space of all n×m real matrices. Typical elements of Rn×m

are A, B, C. The element of A in row i and column j is aij. Defining a
matrix by its elements is done with A = {aij}.

• Rn×m is equipped with the inner product ⟨A, B⟩ = trA′B =∑n
i=1

∑m
j=1 aijbij and the norm ∥A∥ =

√
tr A′A.
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• The canonical basis for Rn×m is the nm−tuple (E11, cdots, Enm), where
Eij has element (i, j) equal to +1 and all other elements equal to zero.
Thus ∥Eij∥ = 1 and ⟨Eij, Ekl⟩ = δikδjl.

vec and vec−1

0.2 Matrices

• ai• is row i of matrix A, a•j is column j.

• ai⋆ is the sum of row i of matrix A, a⋆j is the sum of column j.

• A′ is the transpose of A, and diag(A) is the diagonal matrix with the
diagonal elements of A. The inverse of a square matrix A is A−1, the
Moore-Penrose generalized inverse of any matrix A is A+.

• If A and B are two n × m matrices then their Hadamard (or elemen-
twise) product C = A × B has elements cij = aijbij. The Hadamard
quotient is C = A/B, with elements cij = aij/bij. The Hadamard
power is A(k) = A(p−1) × A.

• DC matrices. Centering matrix. Jn = In − n−1En. We do not use gthe
subscripts if the order is obvious from the context.

0.3 Functions

• f, g, h, · · · are used for functions or mappings. f : X → Y says that f
maps X into Y .

• σ is used for all real-valued least squares loss functions.

0.4 MDS

• ∆ = {δij···} is a matrix or array of dissimilarities.
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• ⟨X, d⟩ is a metric space, with d : X ⊗ X → R+ the distance function.
If X is is an ordered n-tuple (x1, · · · , xn) of elements of X then D(X)
is {d(xi, xj)}, the elements of which we also write as dij(X).

• Summation over the elements of vector x ∈ Rn is ∑n
i=1 xi. Summation

over the elements of matrix A ∈ Rn×m is ∑n
i=1

∑m
j=1 aij. Summation

over the elements above the diagonal of A is ∑∑
1≤i<j≤n aij.

• Conditional summation is, for example, ∑n
i=1{xi | xi > 0}.

Iteration
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Chapter 1

Introduction

In this book we study the smacof family of Multidimensional Scaling (MDS)
techniques. In MDS the data consist of some type of information about the
dissimilarities between a pairs of objects. These objects can be anything:
individuals, variables, colors, locations, chemicals, molecules, works of Plato,
political parties, Morse code signals, and so on. The dissimilarities can be
approximate or imprecise distances, dissimilarity judgments, or sociometric
choices. They generally are distance-like, but we do not expect them to
satisfy the the triangle inequality, and in general not even non-negativity
and symmetry. Similarities, such as confusion probabilities, correlations, or
preferences, are always converted in some way or another to dissimilarities
before they can serve as data for MDS.
The information we have about these dissimilarities can be numerical, ordi-
nal, or categorical. Thus we may have the actual values of some or all of the
dissimilarities, we may know their rank order, or we may have a classification
of them into a small number of qualitative bins.
Let’s formalize this, and introduce some notation at the same time. The set
of ojects is O. For example, it can be the set of all cities with more than
10,000 inhabitants. In our MDS analysis we only use O := (o1, · · · , on), an
n-tuple (i.e. a finite sequence) of n different elements of O, for example n
capital cities selected from O. If you want to, you can call O a sample from
O. It is entirely possible, however, that O has only n elements, in which case
O is just an permutation of the elements of O.
A dissimilarity is a function δ on all pairs of objects, with values in a set
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D. It can be, for example, the time in seconds for an airline flight from
city one to city two. Thus δ : O ⊗ O ⇒ D. A dissimilaritry is numerical
if D is subset of real line, it is ordinal if D is a partially ordered set, and
it is nominal if D is neither. Or a dissimilarty is nominal if D is any set,
and we choose to ignore the ordinal and numerical information if it is there.
No matter what D is, we suppose it always has the element NA to indicate
missing dissimilarities. Cities may not have airports, for example, or we just
don’t have the information about the airline distances. Define δij := δ(oi, oj)
and ∆ := δ(O × O). We can think of ∆ and an n × n matrix with elements
in D.
MDS techniques map the objects oi into points xi in some metric space ⟨X, d⟩
in such a way that the distances between pairs of points approximate the
dissimilarities of the corresponding pairs of objects. Thus we want to find a
map x : O → X that produces an n-tuple X = (x1, · · · , xn) of elements of
X, where xi := x(oi). Also define dij := d(xi, xj) and D(X) := d(X × X.
Unlike the dissimilarities the dij are always numerical, because distances are.
So MDS finds X such that D(X) ≈ ∆.
For numerical dissimilarities it is clear what “approximation” means, we sim-
ply want the distances and the corresponding dissimilarities to be numerically
close. Because there are generally many dissimilarities and distances a com-
bined measure of closeness can still be defined in many different ways. For
ordinal and nominal dissimilarities the notion of approximation is less clear,
and we have to develop more specialized techniques to measure how well the
distances fit the dissimilarities.

1.1 Brief History

De Leeuw and Heiser (1980)
This section has a different emphasis. We limit ourselves to developments
in Euclidean MDS, and to contributions with direct computational conse-
quences that have a direct or indirect link to psychometrics, and to work
before 1960. This is reviewed ably in the presidential address of W. S. Torg-
erson (1965).
Our history review takes the form of brief summaries of what we consider to
be milestone papers or books.
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1.1.1 Milestones

W. S. Torgerson (1952) W. S. Torgerson (1965)

Shepard (1962a) Shepard (1962b)

Kruskal (1964a) Kruskal (1964b)

Guttman (1968)

De Leeuw (1977a) De Leeuw and Heiser (1977)

There was some early work by Richardson, Messick, Abelson and Torger-
son who combined Thurstonian scaling of similarities with the mathematical
results of Schoenberg (1935) and G. Young and Householder (1938).

Despite these early contributions it makes sense, certainly from the point of
view of my personal history, but probably more generally, to think of MDS as
starting as a widely discussed, used, and accepted technique since the book
by W. S. Torgerson (1958). This was despite the fact that in the fifties and
sixties computing eigenvalues and eigenvectors of a matrix of size 20 or 30
was still a considerable challenge.

A few years later the popularity of MDS got a large boost by developments
centered at Bell Telephone Laboratories in Murray Hill, New Jersey, the
magnificent precursor of Silicon Valley. First there was nonmetric MDS by
Shepard (1962a), Shepard (1962b) and Kruskal (1964a), Kruskal (1964b),
And later another major development was the introduction of individual dif-
ference scaling by Carroll and Chang (1970) and Harshman (1970). Perhaps
even more important was the development of computer implementations of
these new techniques. Some of the early history of nonmetric MDS is in De
Leeuw (2017e).

Around the same time there were interesting theoretical contributions in
Coombs (1964), which however did not much influence the practice of MDS.
. . . .. And several relatively minor variations of the Bell Laboratories ap-
proach were proposed by Guttman (1968), but Guttman’s influence on fur-
ther MDS implementations turned out to be fairly localized and limited.

The main development in comptational MDS after the Bell Laboratories
surge was probably smacof. Initially, in De Leeuw (1977a), this stood for
Scaling by Maximizing a Convex Function. Later it was also used to mean
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Scaling by Majorizing a Complicated Function. Whatever. In this book
smacof just stands for smacof. No italics, no boldface, no capitals.
The first smacof programs were written in 1977 in FORTRAN at the Depart-
ment of Data Theory in Leiden (Heiser and De Leeuw (1977)). Eventually
they migrated to SPSS (for example, Meulman and Heiser (2012)) and to
R (De Leeuw and Mair (2009)). The SPSS branch and the R branch have
diverged somewhat, and they continue to be developed independently.
Parallel to this book there is an attempt to rewrite the various smacof
programs in C, with the necessary wrappers to call them from R (De
Leeuw (2017f)). The C code, with makefiles and test routines, is at
github.com/deleeuw/smacof

1.2 Basic MDS

Following Kruskal, and to a lesser extent Shepard, we measure the fit of
distances to dissimilarities using an explicit real-valued loss function (or
badness-of-fit measure), which is minimized over the possible maps of the
objects into the metric space. This is a very general definition of MDS, cov-
ering all kinds of variations of the target metric space and of the way fit is
measured. Obviously we will not discuss all these possible forms of MDS,
which also includes various techniques more properly discussed as cluster
analysis, classification, or discrimination.
To fix our scope we first define basic MDS, which is short for Least Squares
Euclidean Metric MDS. It is defined as MDS with the following characteris-
tics.

1. The metric space is a Euclidean space.
2. The dissimilarities are numerical, symmetric, and non-negative.
3. The loss function is a weighted sum of squares of the residuals, which

are the differences between dissimilarities and Euclidean distances.
4. Weights are numerical, symmetric, and non-negative.
5. Self-dissimilarities are zero and the corresponding terms in the loss

function also have weight zero.

By a Euclidean space we mean a finite dimensional vector space, with ad-
dition and scalar multiplication, and with an inner product that defines the

https://github.com/deleeuw/smacof
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distances. For the inner product of vectors x and y we write ⟨x, y⟩. The
norm of x is defined as ∥x∥ :=

√
⟨x, x⟩, and the distance between x and y is

d(x, y) := ∥x − y∥.

The loss function we use is called stress. It was first explicitly introduced
in MDS as raw stress by Kruskal (1964a) and Kruskal (1964b). We define
stress in a slightly different way, because we want to be consistent over the
whole range of the smacof versions and implementations. In smacof stress is
the real-valued function σ, defined on the space Rn×p of configurations, as

σ(X) := 1
4

n∑
i=1

n∑
j=1

wij(δij − dij(X))2. (1.1)

Note that we use := for definitions, i.e. for concepts and symbols that are
not standard mathematical usage, when they occur for the first time in this
book. Through the course of the book it will probably become clear why
the mysterious factor 1

4 is there. Clearly it has no influence on the actual
minimization of the loss function.

In definition (1.1) we use the following objects and symbols.

1. W = {wij} is a symmetric, non-negative, and hollow matrix of weights,
where hollow means zero diagonal.

2. ∆ = {δij} is a symmetric, non-negative, and hollow matrix of dissimi-
larities.

3. X is an n × p configuration, containing coordinates of n points in p
dimensions.

4. D(X) = {dij(X)} is a symmetric, non-negative, and hollow matrix
of Euclidean distances between the n points in X. Thus dij(X) :=√∑p

s=1(xis − xjs)2.

Note that symmetry and hollowness of the basic objects W , ∆, and D allows
us carry out the summation of the weighted squared residuals in formula
(1.1) over the upper (or lower) diagonal elements only. Thus we can also
write

σ(X) := 1
2
∑∑

1≤i<j≤n

wij(δij − dij(X))2. (1.2)
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We use the notation ∑∑
1≤i<j≤n for summation over the lower-diagonal ele-

ments of a matrix.

The function D, which computes the distance matrix D(X) from a config-
uration X, is matrix-valued. It maps the n × p-dimensional configuration
space Rn×p into the set D(Rn×p) of Euclidean distance matrices between n
points in Rp, which is a subset of the convex cone of hollow, symmetric,
non-negative matrices in the linear space Rn×n (Datorro (2015)).

In basic MDS the weights and dissimilarities are given numbers, and we min-
imize stress over all n × p configurations X. Note that the dimensionality
p is also supposed to be known beforehand, and that MDS in p dimen-
sions is different from MDS in q ̸= p dimensions. We sometimes emphasize
this by writing pMDS, which indicates that we will map the points into
p-dimensional space.

Two boundary cases that will interest us are Unidimensional Scaling or UDS,
where p = 1, and Full-dimensional Scaling or FDS, where p = n. Thus UDS
is 1MDS and FDS is nMDS. Most actual MDS applications in the sciences
use 1MDS, 2MDS or 3MDS, because configurations in one, two, or three
dimensions can easily be plotted with standard graphics tools. Note that
MDS is not primarily a tool to tests hypotheses about dimensionality and to
find meaningful dimensions. It is a mostly a mapping tool for data reduction,
to graphically find interesting aspects of dissimilarity matrices.

The projections on the dimensions are usually ignored, it is the configuration
of points that is the interesting outcome. This distinguishes MDS from, for
example, factor analysis. There is no Varimax, Oblimax, Quartimax, and
so on. Exceptions are confirmatory applications of MDS in genetic mapping
along the chromosome, in archeological seriation, in testing psychological
theories of cognition and representation, in the conformation of molecules,
and in geographic and geological applications. In these areas the dimension-
ality and general structure of the configuration are given by prior knowledge,
we just do not know the precise location and distances of the points. For
more discussion of the different uses of MDS we refer to De Leeuw and Heiser
(1982).
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1.2.1 Kruskal’s stress

Definition (1.1) differs from Kruskal’s original stress in at least three ways:
in Kruskal’s use of the square root, in our use of weights, and in our different
approach to normalization.
We have paid so much attention to Kruskal’s original definition, because
the choices made there will play a role in the normalization discussion in
the ordinal scaling chapter (section 7.4.1), in the comparison of Kruskal’s
and Guttman’s approach to ordinal MDS (sections 10.3 and 10.4), and in
our discussions about the differences between Kruskal’s stress (10.15) and
smacof’s stress (1.1) in the next three sections of this chapter.

1.2.1.1 Square root

Let’s discuss the square root first. Using it or not using it does not make a
difference for the minimization problem. Using the square root, however, does
give a more sensible root-mean-square scale, in which stress is homogeneous
of degree one, instead of degree two. But I do not want to compute all
those unnecessary square roots in my algorithms, and I do not want to drag
them along through my derivations. Moreover the square root potentially
causes problems with differentiability at those X where σ(X) is zero. Thus,
througout the book, we do not use the square root in our formulas and
derivations. In fact, we do not even use it in our computer programs, except
at the very last moment when we return the final stress after the algorithm
has completed.

1.2.1.2 Weights

There were no weights W = {wij} in the original definition of stress by
Kruskal (1964a), and neither are they there in most of the basic later con-
tributions to MDS by Guttman, Lingoes, Roskam, Ramsay, or Young. We
will use weights throughout the book, because they have various interesting
applications within basic MDS, without unduly complicating the derivations
and computations. In Groenen and Van de Velden (2016), section 6, the
various uses of weights in the stress loss function are enumerated. They gen-
erously, but correctly, attribute the consistent use of weights in MDS to me.
I quote from their paper:
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1. Handling missing data is done by specifying wij = 0 for
missings and 1 otherwise thereby ignoring the error corre-
sponding to the missing dissimilarities.

2. Correcting for nonuniform distributions of the dissimilarities
to avoid dominance of the most frequently occurring dissim-
ilarities.

3. Mimicking alternative fit functions for MDS by minimizing
Stress with wij being a function of the dissimilarities.

4. Using a power of the dissimilarities to emphasize the fitting
of either large or small dissimilarities.

5. Special patterns of weights for specific models.
6. Using a specific choice of weights to avoid nonuniqueness.

In some situations, for example for huge data sets, it is computationally
convenient, or even necessary, to minimize the influence of the weights on the
computations. We can use majorization to turn the problem from a weighted
least squares problem to an iterative unweighted least squares problem. The
technique, which we call unweighting, is discussed in detail in section 5.4.10.

1.2.1.3 Normalization

This section deals with a rather trivial problem, which has however caused
problems in various stages of smacof’s 45-year development history. Because
the problem is trivial, and the choices that must be made are to a large
extent arbitrary, it has been overlooked and somewhat neglected.
In basic MDS we scale the weights and dissimilarities. It is clear that if
we multiply the weights or dissimilarities by a constant, then the optimal
approximating distances D(X) and the optimal configuration X will be mul-
tiplied by the same constant. That is exactly why Kruskal’s raw stress had
to be normalized. Consequently we in basic MDS we always scale weights
and dissimilarities by

∑∑
1≤i<j≤n

wij = 1, (1.3)
∑∑

1≤i<j≤n

wijδ
2
ij = 1. (1.4)
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This simplifies our formulas and makes them look better (see, for example,
section 2.1.1 and section 2.3.0.2). It presupposes, of course, that wijδij ̸= 0
for at least one i ̸= j, which we will happily assume in the sequel, because
otherwise the MDS problem is trivial. Note that if all weights are equal
(which we call the unweighted case) then they are equal to 1/

(
n
2

)
and thus

we require ∑∑
1≤i<j≤n δ2

ij = 1
2n(n − 1).

Using normalized dissimilarities amounts to the same defining stress as

σ(X) = 1
2

∑∑
1≤i<j≤n wij(δ2

ij − dij(X))2∑∑
1≤i<j≤n wijδ2

ij

. (1.5)

This is useful to remember when we discuss the various normalizations for
non-metric MDS in section 7.4.1.

1.3 Local and Global

In basic MDS our goal is to compute both minX σ(X) and ArgminX σ(X),
where σ(X) is defined as (1.1), and where we minimize over all configurations
in Rn×p.

In this book we study both the properties of the stress loss function and
a some of its generalizations, and the various ways to minimize these loss
functions over configurations (and sometimes over transformations of the
dissimilarities as well).

Emphasis local minima

Compute stationary points

Note we use the notation Argminx∈X f(x) for the set of minimizers of f over
X. Thus z ∈ Argminx∈X f(x) means z minimizes f over X, i.e. f(z) =
minx∈X f(x). If it is clear from theory that the minimum is necessarily
unique, we use argmin instead of Argmin.
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1.4 Generalizations

The most important generalizations of basic MDS we will study in later
chapters of this book are discussed briefly in the following sections.

1.4.1 Non-metric MDS

Basic MDS is a form of Metric Multidimensional Scaling or MMDS, in which
dissimilarities are either known or missing. In chapter 7 we relax this as-
sumption. Dissimilarities may be partly known, for example we may know
they are in some interval, we may only know their order, or we may know
them up to some smooth transformation. MDS with partly known dissimilar-
ities is Non-metric Multidimensional Scaling or NMDS. Completely unknown
(missing) dissimilarities are an exception, because we can just handle this in
basic MDS by setting the corresponding weights equal to zero.
In NMDS we minimize stress over all configurations, but also over the un-
known dissimilarities. What we know about them (the interval they are in,
the transformations that are allowed, the order they are in) defines a subset
of the space of non-negative, hollow, and symmetric matrices. Any matrix
in that subset is a matrix of what Takane, Young, and De Leeuw (1977) call
disparities, i.e. imputed dissimilarities. The imputation provides the missing
information and transforms the non-numerical information we have about
the dissimilarities into a numerical matrix of disparities. Clearly this is an
optimistic imputation, in the sense that it chooses from the set of admissible
disparities to minimize stress (for a given configuration).
One more terminological point. Often non-metric is reserved for ordinal
MDS, in which we only know a (partial or complete) order of the dissimi-
larities. Allowing linear or polynomial transformations of the dissimilarities,
or estimating an additive constant, is then supposed to be a form of met-
ric MDS. There is something to be said for that. Maybe it makes sense to
distinguish non-metric in the wide sense (in which stress must be minimized
over both X and ∆) and non-metric in the narrow sense in which the set
of admissible disparities is defined by linear inequalities. Nonmetric in the
narrow sense will also be called ordinal MDS or OMDS.
It is perhaps useful to remember that Kruskal (1964a) introduced explicit
loss functions in MDS to put the somewhat heuristic NMDS techniques of



1.4. GENERALIZATIONS 41

Shepard (1962a) onto a firm mathematical and computational foundation.
Thus, more or less from the beginning of iterative least squares MDS, there
was a focus on non-metric rather than metric MDS, and this actually con-
tributed a great deal to the magic and success of the technique. In this
book most of the results are derived for basic MDS, which is metric MDS,
with non-metric MDS as a relatively straightforward extension not discussed
until chapter 7. So, at least initially, we take the numerical values of the
dissimilarities seriously, as do W. S. Torgerson (1958) and Shepard (1962a),
Shepard (1962b).
It may be the case that in the social and behavioural sciences only the ordi-
nal information in the dissimilarities is reliable and useful. But, since 1964,
MDS has also been applied in molecular conformation, chemometrics, genetic
sequencing, archelogical seriation, and in network design and location analy-
sis. In these areas the numerical information in the dissimilarities is usually
meaningful and should not be thrown out right away. Also, the use of the
Shepard plot, with dissimilarities on the horizontal axis and fitted distances
on the vertical axis, suggests there is more to dissimilarities than just their
rank order.

1.4.2 fstress

Instead of defining the residuals in the least squares loss function as δij −
dij(X) chapter 22 discusses the more general cases where the residuals are
f(δij) − f(dij(X)) for some known non-negative increasing function f . This
defines the fstress loss function.
If f(x) = xr with r > 0 then fstress is called rstress. Thus stress is rstress
with r = 1, also written as 1stress or σ1. In more detail we will also look at
r = 2, which is called sstress by Takane, Young, and De Leeuw (1977). In
chapter 21 we look at the problem of minimizing sstress and weighted version
strain. The case of rstress with r → 0 is also of interest, because it leads to
the loss function in Ramsay (1977).

1.4.3 Constraints

Instead of minimizing stress over all X in Rn×p we will look in chapter 15 at
various generalizations where minimization is over a subset ⊗ of Rn×p. This
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is often called Constrained Multidimensional Scaling or CMDS.
The distinction may be familiar from factor analysis, where we distinguish
between exploratory and confirmatory factor analysis. If we have prior in-
formation about the parameters then incorporating that prior information
in the analysis will generally lead to more precise and more interpretable
estimates. The risk is, of course that if our prior information is wrong, if
it is just prejudice, then we will have a solution which is precise but incor-
rect. We have the famous trade-off between bias and variance. In MDS this
trade-off does not seem to apply directly, because the necessary replication
frameworks are missing.
and we do not attach much value to locating the true configuration.

min
X∈Ω

σ(X)

min
X

σ(X) + λκ(X, Ω)

where κ(X, Ω) ≥ 0 and κ(X, Ω) = 0 if and only if X ∈ Ω.

1.4.4 Individual Differences

Now consider the situation in which we have m different dissimilarity matrices
∆k and m different weight matrices Wk. We generalize basic MDS by defining

σ(X1, · · · , Xm) := 1
2

m∑
k=1

∑∑
1≤i<j≤n

wijk(δijk − dij(Xk))2, (1.6)

and minimize this over the Xk.
There are two simple ways to deal with this generalization. The first is to
put no further constraints on the Xk. This means solving m separate basic
MDS problems, one for each k. The second way is to require that all Xk

are equal. As shown in more detail in section 16.2.2 this reduced to a single
basic MDS problem with dissimilarities that are a weighted sum of the ∆k.
So both these approaches do not really bring anything new.
Minimizing (1.6) becomes more interesting if we constrain the Xk in various
ways. Usually this is done by making sure they have a component that
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is common to all k and a component that is specific or unique to each k.
This approach, which generalizes constrained MDS, is discussed in detail in
chapter 16.

1.4.5 Distance Asymmetry

We have seen in section 5.4.6 of this chapter that in basic MDS the assump-
tion that W and ∆ are symmetric and hollow can be made without loss of
generality. The simple partitioning which proved this was based on the fact
that D(X) is always symmetric and hollow. By the way, the assumption that
W and D are non-negative cannot be made without loss of generality, as we
will see below.
In chapter 17 we relax the assumption that D(X) is symmetric (still requiring
it to be non-negative and hollow). This could be called Asymmetric MDS, or
AMDS. I was reluctant at first to include this chapter, because asymmetric
distances do not exist. And certainly are not Euclidean distances, so they
are not covered by the title of this book. But as long as we stay close
to Euclidean distances, least squares, and the smacof approach, I now feel
reasonably confident the chapter is not too much of a foreign body.
When Kruskal introduced gradient-based methods to minimize stress he also
discussed the possibility to use Minkovski metrics other than the Euclidean
metric. This certainly was part of the appeal of the new methods, in fact
it seemed as if the gradient methods made it possible to use any distance
function whatsoever. This initial feeling of empowerment was somewhat
naive, because it ignored the seriousness of the local minimum problem, the
combinatorial nature of one-dimensional and city block scaling, the problems
with nonmetric unfolding, and the problematic nature of gradient methods
if the distances are not everywhere differentiable. All these complications
will be discussed in this book. But it made me decide to ignore Minkovski
distances (and hyperbolic and elliptic non-Euclidean distances), because life
with stress is complicated and challenging enough as it is.

1.5 Models and Techniques

Truth, error
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Chapter 2

Properties of Stress

2.1 Notation

The notation used in the smacof approach to MDS first appeared in De
Leeuw (1977a), and was subsequently used in several of the later key smacof
references, such as De Leeuw and Heiser (1982), De Leeuw (1988), chapter 8
of Borg and Groenen (2005), and De Leeuw and Mair (2009). We follow it
in this book.

2.1.1 Expanding

We expand stress by writing out the squares of the residuals and then sum-
ming. Define

η2
δ :=

∑∑
1≤i<j≤n

wijδ
2
ij, (2.1)

ρ(X) :=
∑∑

1≤i<j≤n

wijδijdij(X), (2.2)

η2(X) :=
∑∑

1≤i<j≤n

wijd
2
ij(X). (2.3)

More precisely, using conditional summation,

45
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ρ(X) :=
∑∑

1≤i<j≤n

{wijδijdij(X) | wijδij > 0} , (2.4)

η2(X) :=
∑∑

1≤i<j≤n

{
wijd

2
ij(X) | wij > 0

}
. (2.5)

Remember that we have normalized by η2
δ = 1. With our newly defined

functions ρ and η2 we can write stress as

σ(X) = 1
2(1 + η2(X)) − ρ(X). (2.6)

The CS inequality implies that for all X

ρ(X) =
∑∑

1≤i<j≤n

wijδijdij(X) ≤ ηδη(X) = η(X), (2.7)

and thus, from (2.6),

1
2(1 − η(X))2 ≤ σ(X) ≤ 1

2(1 + η2(X)), (2.8)
1
2(1 − ρ(X))2 ≤ σ(X) ≤ 1

2(1 − 2ρ(X)). (2.9)

2.1.2 Matrix Expressions

Using matrix notation allows us to arrive at compact expressions, which
suggest various mathematical and computational shortcuts. In order to use
matrix notation for distances we mainly rely on the difference matrices Aij,
which we now define.

• A unit vector ei is a vector with element i equal to +1 and all other
elements equal to 0. A unit matrix Eij is a matrix of the form ei e

′
j,

• A diff matrix Aij is a matrix of the form (ei − ej)(ei − ej)′.
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The element in row i and column j of a matrix X is normally referred to
as xij. But in some cases, to prevent confusion, we use the notation {X}ij.
Thus, for example, {ei}j = δij, where δij is Kronecker’s delta (zero when
i = j and one otherwise).
The diff matrices Aij with i ̸= j have only four non-zero elements

{Aij}ii = {Aij}jj = +1,

{Aij}ij = {Aij}ji = −1,
(2.10)

and all other elements of Aij are zero. Thus Aij = Aji and Aii = 0. Diff
matrices are symmetric, and positive semidefinite. They are also doubly-
centered, which means that their rows and columns add up to zero. If i ̸ j
they are of rank one and have one eigenvalue equal to two, which means
As

ij = 2s−1Aij. Also

∑∑
1≤i<j≤n

Aij = nI − ee′ = nJ, (2.11)

with J the centering matrix.
We begin our matrix expressions with d2

ij(X) = tr X ′AijX. Define

V :=
∑∑

1≤i<j≤n

wijAij, (2.12)

so that

η2(X) = tr X ′V X. (2.13)

The matrix V has off-diagonal elements equal to −wij and diagonal elements
vii = ∑

j ̸=i wij It is symmetric, positive semi-definite, and doubly-centered.
Thus it is singular, because V e = 0.
To analyze the singularity of V in more detail we observe that z′V z =∑∑

1≤i<j≤n wij(zi − zj)2. This is zero if and only if all wij(zi − zj)2 are
zero. If we permute the elements of z such that z1 ≤ · · · ≤ zn then the ma-
trix with elements (zi −zj)2 can be partitioned such that the diagonal blocks,
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corresponding with tie-blocks in z, are zero and the off-diagonal blocks are
strictly positive. Thus z′V z = 0 if and only if the corresponding off-diagonal
blocks of W are zero. In other words, we can find a z such that z′V z = 0 if
and only if W is the direct sum of a number of smaller matrices. If this is
not the case we call W irreducible, and z′V z > 0 for all z ̸= e, so that the
rank of V is n − 1.
If W is reducible the MDS problem separates into a number of smaller in-
dependent MDS problems. We will assume in the sequel, without any real
loss of generality, that this does not occur, and that consequently W is irre-
ducible.
Because of the singularity of the matrices involved we sometimes have to work
with generalized inverses. We limit ourselves to the Moore-Penrose (MP)
inverse, which can be defined in terms of the singular value decomposition.
If the singular value decomposition is X = KΛL′ with K ′K = L′L = Ir and
Λ a positive definite diagonal matrix of order r = rank(X), then the MP
inverse of X is X+ = LΛ−1K ′.
Because of irreducibility the MP inverse of V is

V + = (V + ee′

n
)−1 − ee′

n
. (2.14)

If all weights are equal, say to w, then V = nwJ and V + = 1
nw

J , with J the
centering matrix I − 1

n
ee′.

Finding an expression for ρ(X) from (2.2) in matrix form is a bit more
complicated. Define

rij(X) :=

0 if dij(X) = 0,
δij

dij(X) if dij(X) > 0,
(2.15)

and
B(X) :=

∑∑
1≤i<j≤n

wijrij(X)Aij. (2.16)

Then we have
ρ(X) = tr X ′B(X)X. (2.17)

Just like V , the matrix-valued function B is symmetric, positive-semidefinite,
and doubly-centered. If all dissimilarities and distances are positive then
irreducibility of W implies that the rank of B(X) is equal to n − 1. Note



2.1. NOTATION 49

that if δij = dij(X) > 0 for all i, j (perfect fit), then the rij from (2.15) are
all equal to one, and B(X) = V .
In (2.15) we have set rij(X) = 0 if dij(X) = 0. This is arbitrary. Since
bij(X) = rij(X) if dij(X) = 0 we get a different matrix B(X) if we choose to
set, say, rij(X) = 1 or rij(X) = δij whenever dij(X) = 0. But

B(X)X =
∑∑

1≤i<j≤n

wijrij(X)(ei − ej)(xi − xj)′ (2.18)

remains the same, no matter how we choose rij(X) for the i < j with
dij(X) = 0. And, consequently, ρ(X) = tr X ′B(X)X remains the same
as well.
We now see, from equation (2.6), that

σ(X) = 1 − tr X ′B(X)X + 1
2tr X ′V X. (2.19)

2.1.3 Coefficient Space

Observe that we distinguish configuration space, which is the linear space
Rn×p of n × p matrices, from the linear space Rnp of np element vectors. The
two spaces are isomorphic, and connected by the vec operator and its inverse.
Some quick definitions. If Y ∈ Rn×p is a configuration, then vec(Y ) is an np-
element vector obtained by stacking the columns of Y on top of each other.
Thus element (i, s) of Y becomes element i+(s−1)∗n of vec(Y ). If Z = X+Y
in Rn×p then vec(Z) = vec(X) + vec(Y ) in Rnp, and if Z = αY for some real
number α then also vec(Z) = αvec(Y ). Thus vec is an isomorphism, and so
is its inverse vec ∗ −1, which transforms an np-element vector into an n × p
matrix. In R we vec a matrix by the as.vector function, which removes the
dim attribute from the matrix, and we vec−1 a vector by the matrix function,
which adds the dim attribute to the vector.
But that is not all. Euclidean spaces are equipped with an inner product and
a corresponding metric. The spaces Rn×p and Rnp are also isometric inner
product spaces. If x and y are in Rnp then their inner product is

⟨x, y⟩np := x′y =
np∑

k=1
xkyk,
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If X and Y are in Rn×p their inner product is

⟨X, Y ⟩n×p := tr X ′Y =
n∑

i=1

p∑
s=1

xisyis,

their lengths are ∥X∥ =
√

tr X ′X and ∥Y ∥ =
√

tr Y ′Y , and their distance
is ∥X − Y ∥. Now ⟨x, y⟩ = ⟨vec(X), vec(Y )⟩ and $|x-y|=|vec(X)-vec(Y)|.
Some formulas in MDS are more easily expressed in Rnp (see, for example,
section 2.3), but most of the time we prefer to work in the more intuitive
space Rn×p of configurations (which is after all where our representations and
pictures live).
Suppose Y1, · · · , Yr are r linearly independent matrices in configuration space
Rn×p. We write Y for the r-dimensional subspace spanned by the basis
Y1, · · · , Yr. Of course if r = np then Y = Rn×p.
If X ∈ Y then there is a θ in coefficient space Rr such that X = ∑r

s=1 θsYs.
We now parametrize basic MDS using the new variables θ. Define

d̃2
ij(θ) := tr X ′AijX = θ′Ãijθ, (2.20)

with

{Ãij}st := tr Y ′
s AijYt. (2.21)

Now

B̃(θ) :=
∑∑

1≤i<j≤n

wij
δij

d̃ij(θ)
Ãij, (2.22)

and

Ṽ :=
∑∑

1≤i<j≤n

wijÃij, (2.23)

and

σ̃(θ) := 1 − 2ρ̃(θ) + η̃2(θ) = 1 − 2 θ′B̃(θ)θ + θ′Ṽ θ. (2.24)
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For the elements of B̃ and Ṽ we see

b̃st(θ) = tr Y ′
s B(X)Yt, (2.25)

ṽst = tr Y ′
s V Yt. (2.26)

Minimizing σ over X ∈ Y is now equivalent to minimizing σ̃ over θ ∈ Rr.
If Y = Rn×p then, in a sense, this is just notational sleight of hand. Consider,
for example, using the basis where the Ys are the np matrices ei e

′
q. Then

{Ãij}kq,lv := δqv{Aij}kl
(2.27)

Using Kronecker products this can be written as Ãij = Ip ⊗ Aij, the direct
sum of p copies of Aij. Obviously if θ = vec(Y ) then d2

ij(Y ) = θ′Ãijθ. Also
B̃(θ) = Ip ⊗ B(Y ) and Ṽ = Ip ⊗ V . The only thing that changes by moving
from configuration space to coefficient space, using the canonical basis of
Rn×p, is that the configuration gets strung out to a vector, and the matrices
Aij get blown up to p copies of themselves.
But nevertheless it is clear that coefficient space allows us to use different
bases as well, and allows us to use bases for proper subspaces of dimension
r < np. This can be the p(n − 1)-dimensional space of centered configura-
tions, or the np − 1

2p(p + 1)- dimensional subspace of lower diagonal centered
configurations. These configurations can be used to eliminate translational
and rotational indeterminacy from basic MDS.
But the basis can also define a subspace of configurations with, for example,
a rectangular lattice pattern, with the edges of the rectangle parallel to the
horizontal and vertical axes (Borg and Leutner (1983)) or, for that matter,
configurations X constrained to satisfy any number of (consistent) linear
equality constraints. If r < np− 1

2p(p+1) then these applications are properly
discussed as constrained multidimensional scaling or CMDS. A discussion of
various forms of CMDS is in chapter 15.

2.1.4 Our Friends CS and AM/GM

Perhaps the most frequently used mathematical results in this book are two
elementary inequalities: the Cauchy-Schwartz and the Aritmetic-Geometric
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Mean inequalities. They are so important that we give them their own section
in the book, their own acronyms CS and AM/GM, and we include their
statements and even proofs.

Theorem 2.1. If x and y are vectors in a Euclidean space X then ⟨x, y⟩ ≤
∥x∥∥y∥, with equality if and only if there is a real α such that x = αy.

Proof. If x = 0 and/or y = 0 then obviously the result is trivially true. If
x ̸ 0 and y ̸= 0 then consider f(α) := ∥x − αy∥2 = ∥x∥2 + α2∥y∥2 − 2α⟨x, y⟩.
Now

min
α

f(α) = ∥x∥2 − ⟨x, y⟩2

∥y∥2 ≥ 0. (2.28)

It follows that ⟨x, y⟩2 ≤ ∥x∥2∥y∥2, which shows −∥x∥∥y∥⟨x, y⟩ ≤ ∥x∥∥y∥.
We have minα f(α) = 0 if and only if x = αy for some α.

Theorem 2.2. If x and y are two non-negative numbers, then √
xy ≤ 1

2(x +
y) with equality if and only if x = y.

Proof. Follows directly from (
√

(x) −
√

(y))2 = x + y − 2√
xy ≥ 0.

This can also be written as

Corollary 2.1. If x and y are two non-negative numbers, then xy ≤ 1
2(x2 +

y2) with equality if and only if x = y.

Combining CS and AM/GM gives

Corollary 2.2. If x and y are vectors in a Euclidean space X then ⟨x, y⟩ ≤
1
2(∥x∥2 + ∥y∥2).

2.2 Global Properties

2.2.1 Boundedness

Theorem 2.3. σ is bounded below by zero and unbounded above.

Proof. Stress is a sum of squares, and thus it is non-negative, i.e. bounded
below by zero. Because σ(αX) = 1−αρ(X)+ 1

2α2η2(X) we see that for each
X ̸= 0 and for each K < +∞ there is an α such that σ(αX) > K.
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2.2.2 Invariance

Theorem 2.4. We have the following invariances.

• Rotational Invariance: σ(XK) = σ(X) for all K with K ′K = KK ′ =
I.

• Translational Invariance: σ(X + eu′) = σ(X) for all u ∈ Rp.
• Reflectional Invariance: σ(XK) = σ(X) for all diagonal K with kss =

±1.
• Evenness: σ(−X) = σ(X).

Proof. Stress only depends on the distances between the points in the con-
figuration, and thus it is invariant under rigid geometrical transformations
(rotations, reflections, and translations). Note that reflectional and evenness
are actually special cases of rotational invariance.

It follows directly that the minimizer of stress, if it exists, cannot possibly
be unique. Whatever the value at a minimum, it is shared by all rigid
transformations of the configuration.
It also follows from translational invariance that we can minimize stress over
the p(n − 1) dimensional subspace of Rn×p of all n × p matrices which are
centered, i.e. have e′X = 0. Rotational invariance implies we can also require
without loss of generality that X is orthogonal, i.e. that X ′X is diagonal.
This studied in more detail in section #ref(propconfspace).

2.2.3 Continuity

A real-valued function f on an open subset X of a Euclidean space is Lipschitz
or Lipschitz continuous if there is a K ≥ 0 such that |f(x)−f(y)| ≤ K∥x−y∥
for all x and y in X. The smallest K for which this inequality holds is called
the Lipschitz constant of f . Lipschitz functions are uniformly continuous, and
thus continuous. Lipschitz functions are almost everywhere differentiable,
and where the derivative exists there is an L ≥ 0 such that ∥df(x)∥ ≤ L.
Thus differentiable functions with an unbounded derivative are not Lipschitz.
A function f is locally Lipschitz on X if for each x ∈ X there is a open
neighborhood N (x) such that f is Lipschitz on N (x). A locally Lipschitz
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function is continuous and almost everywhere differentiable. Continuously
differentiable functions and convex functions are all locally Lipschitz.

Theorem 2.5. On Rn×p

• dij is Lipschitz continuous with Lipschitz constant
√

2.
• d2

ij is locally Lipschitz, but not globally Lipschitz.

Proof. To show that dij is Lipschitz we use the reverse triangle inequality
|∥x∥ − ∥y∥| ≤ ∥x − y∥. It gives

|dij(X)−dij(Y )| = |∥X ′(ei−ej)∥−∥Y ′(ei−ej)∥| ≤ ∥(X−Y )′(ei−ej)∥ ≤
√

2 ∥X−Y ∥.
(2.29)

To show this Lipschitz bound is sharp use Y = 0 and X =
[

x
−x

]
with

∥x∥ = 1. Then |d(X) − d(Y )| = 2 and ∥X − Y ∥ =
√

2.
Because d2

ij is continuously differentiable it is locally Lipschitz, and because
its derivative is unbounded it is not globally Lipschitz.

Corollary 2.3. On Rn×p

• ρ is Lipschitz continuous with Lipschitz constant
√

2 ∑∑
1≤i<j≤n wijδij.

• η2 and σ are both locally Lipschitz, but not globally Lipschitz.

Proof. This follows directly from theorem 2.5.

2.2.4 Coercivity

Stress is not a quadratic function, and not even a convex function, of the
configuration. But it is like a bowl shaped around the origin, with some
bumps and creases, in a way we are going to make more precise. First a
definition: A real-valued function f is coercive if for every sequence {xk}
with limk→∞ ∥xk∥ = ∞ we also have limk→∞ f(xk) = +∞.

Theorem 2.6. σ is coercive.
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Proof. From (2.8) we have σ(X) ≥ 1
2(1 − η(X))2. Now η is clearly coercive,

and thus σ is coercive.

It follows from coercivity that all level sets of stress Ls := {X | σ(X) = s}
are compact, and that there is at least one configuration for which the global
minimum of stress is attained (Ortega and Rheinboldt (1970), section 4.3).
The following theorem provides even more bowl-shapedness.

Theorem 2.7. If X ̸= 0 then on the ray {Y | Y = αX with α ≥ 0} stress
is an unbounded convex quadratic in α. The minimum of this quadratic is
at α = ρ(X)/η2(X) and it is equal to 1 − 1

2ρ2(X)/η2(X). There is a local
maximum at the boundary α = 0, equal to 1.

Proof. We have σ(αX) = 1 − αρ(X) + 1
2α2η2(X). The statements in the

theorem follow easily from this.

2.3 Differentiability

The fact that dij can be zero for some configurations creates problems with
the differentiability of stress. These problems have been largely ignored in
the MDS literature, and there are indeed reasons why they are not of great
practical importance (see section 2.5.2 of this chapter), at least not in basic
MDS. But for reasons of completeness, and for later generalizations of basic
MDS, we discuss zero distances and the resulting problems with differentia-
bility in some detail.
Historically the complications caused by dij(X) = 0 were one of the reasons
why I switched from differentiability to convexity in De Leeuw (1977a) and
from derivatives to directional derivatives in De Leeuw (1984c). It turned out
that at least some of the important characteristics of the smacof algorithm,
and several important aspects of stress surfaces, were better described by
inequalities than by equations.
### Directional Derivatives
Because we are dealing with minimization of stress, which is not everywhere
differentiable, we use one-sided directional derivatives. Our notation largely
follows Delfour (2012).
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The first three directional derivatives at X in the direction Y are defined
recursively by

d+σ(X; Y ) := lim
ϵ↓0

σ(X + ϵY ) − σ(X)
ϵ

, (2.30)

d
(2)
+ σ(X; Y, Y ) := lim

ϵ↓0

σ(X + ϵ Y ) − σ(X) − ϵ dσ(X)(Y )
1
2ϵ2 , (2.31)

d
(3)
+ σ(X; Y, Y, Y ) := lim

ϵ↓0

σ(X + ϵ Y ) − σ(X) − ϵ d+σ(X)(Y ) − 1
2ϵ2 d

(2)
+ σ(X)(Y, Y )

1
6ϵ3 ,

(2.32)

where ϵ ↓ 0 is understood as ϵ taking only strictly positive values in com-
puting the limit, and where it is also understood that the one-sided limits
exist. The directional derivatives used in optimization theory differ from the
usual derivatives of analysis because the limits in functions that define them
are over the one-dimensional positive real axis and are one-sided (from the
right). You may wonder why we need to go as high as order three, but just
you wait.

Note that we write d+σ(X; Y ) (with a semi-colon) instead of d+σ(X, Y ) (with
a comma) to emphasize the different roles of X and Y . Also note that by
“directional derivatives” we will always mean “one-sided directional deriva-
tives”, because the two-sided ones are of limited usefulness in optimization.
This is especially true for the two-sided directional derivative defined by

dσ(X; Y ) := lim
ϵ→0

σ(X + ϵY ) − σ(X)
ϵ

. (2.33)

The two-sided derivative may not exist, while we can still make useful state-
ments of the minima of non-differentiable functions using the one-sided ver-
sion. Of course for totally differentiable functions in the classical sense the
two directional derivatives are equal.

For the higher directional derivatives we can also use alternative, and slightly
more general, definitions that follow directly from the idea that the kth di-
rectional derivative is the directional derivative of the (k − 1)th one. In each
step of the recursion we now use a different direction, instead of using the
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fixed direction Y in all steps. Thus

d
(2)
+ σ(X; Y, Z) := lim

ϵ↓0

d+σ(X + ϵZ; Y ) − d+σ(X; Y )
ϵ

, (2.34)

d
(3)
+ σ(X; Y, Z, U) := lim

ϵ↓0

d2
+σ(X + ϵU ; Y, Z) − d2

+σ(X; Y, Z)
ϵ

. (2.35)

Note again that d+σ(X) is a function on Rn×p, d2
+σ(X) a is a function on

Rn×p ⊗ Rn×p, and d3
+σ(X) is a function on Rn×p ⊗ Rn×p ⊗ Rn×p.

If σ is differentiable at X then d+σ(X), d
(2)
+ σ(X), and d

(3)
+ σ(X) are the usual

first, second, and third derivatives of σ at X. In this differentiable case
they are, respectively, a linear function, a symmetric bilinear function, and
a super-symmetric trilinear function.

We can use the directional derivatives to expand σ(X + ϵY ) in powers of ϵ.
This gives an expansion of the form

σ(X + ϵY ) = σ(X) + ϵd+σ(X)(Y ) + 1
2ϵ2d

(2)
+ σ(X)(Y, Y )+

+ 1
6ϵ2d+(3)σ(X)(Y, Y, Y ) + o(ϵ3),

(2.36)

where o(ϵ3) stand for any function of ϵ > 0 such that

lim
ϵ↓0
ϵ ̸=0

o(ϵ3)
ϵ3 → 0. (2.37)

2.3.0.1 Distances

Let us look at the directional differentiability of the distances dij themselves
first. Since ρ is a straightfoward weighted sum of distances and η2 is a
weighted sum of squared distances, the only directional derivatives we really
need are those of the squared distances and the distances.

The problems with differentiability are clearly not caused by the squared
distances, which form the η2 component in equation (2.6). The squared dis-
tance d2

ij(X) = tr X ′AijX is a quadratic function, and thus it is everywhere
infinitely many times continuously differentiable.
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On the other hand, dij(X) =
√

tr X ′AijX is not differentiable at points where
dij(X) = 0, i.e. where xi = xj, because the square root is not differentiable
at zero. For MDS this means that if dij(X) = 0 for one or more (i, j) with
wijδij > 0 then both ρ and σ are not differentiable at X.
For the avalanche of furmulas that will follow in this section it is convenient
to define cij(X, Y ) := tr Y ′AijX = (yi − yj)′(xi − xj). Note that cij(X, X) =
d2

ij(X) and cij(Y, Y ) = d2
ij(Y ). Now

d+d2
ij(X; Y ) = 2cij(X, Y ), (2.38)

d2
+d2

ij(X; Y, Z) = 2cij(Y, Z), (2.39)
d3

+d2
ij(X; Y, Z, U) = 0. (2.40)

More involved calculations are needed for the directional derivatives of dij.
First the “problematic” case dij(X) = 0. We have

d+dij(X; Y ) = dij(Y ), (2.41)
d2

+dij(X; Y ) = 0, (2.42)
d3

+dij(X; Y ) = 0. (2.43)
(2.44)

Note that d+dij(X) is continuous but not linear in Y , which also implies dij is
not differentiable at X. Also note that if we define the two-sided directional
derivative of dij at X in the direction Y

ddij(X; Y ) := lim
ϵ→0

dij(X + ϵY ) − dij(X)
ϵ

, (2.45)

then this limit only exists if also dij(Y ) = 0. The limit from the right is
dij(Y ), but the limit from the left is −dij(Y ). This illustrates that the two-
sided directional derivative does not give much useful information on the
behavior of the distance at zero.
If dij(X) > 0 we have continuous differentiability of all orders at X. To
expand

dij(X + ϵY ) =
√

d2
ij(X) + 2 ϵ cij(X, Y ) + ϵ2 d2

ij(Y ) (2.46)
we use the truncated Maclaurin series for the square root

√
1 + x = 1 + 1

2x − 1
8x2 + 1

16x3 + o(x3). (2.47)
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For the distance this gives the series

dij(X + ϵY ) = dij(X) + ϵ
1

dij(X)cij(X, Y )+

+ 1
2ϵ2 1

dij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
+

− 1
2ϵ3 cij(X, Y )

d3
ij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
+ o(ϵ3),

(2.48)

and consequently

d+dij(X; Y ) = 1
dij(X)cij(X, Y ), (2.49)

d
(2)
+ dij(X; Y, Y ) = 1

dij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
, (2.50)

d
(3)
+ dij(X; Y, Y, Y ) = −3cij(X, Y )

d3
ij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
. (2.51)

Formulas for the mixed directional derivatives from equations (2.34) and
(2.35) are necessarily more complicated. Again assuming dij(X) > 0 we find

d
(2)
+ dij(X; Y, Z) = 1

dij(X)

{
cij(Y, Z) − cij(X, Y )cij(X, Z)

d2
ij(X)

}
, (2.52)

which reduces to (2.50) if Y = Z. And, with 95% certainty,

d
(3)
+ dij(X; Y, Z, U) = 3cij(X, Y )cij(X, Z)cij(X, U)

d5
ij(X) +

− cij(X, Y )cij(U, Y ) + cij(X, Z)cij(U, Z) + cij(X, U)cij(Y, Z)
d3

ij(X)
(2.53)

which is obviously symmetric in Y, Z, and U , and if Y = Z = U it reduces
to (2.51).
Again, we have to be careful if dij(X) = 0. In that case we know from
equation (2.41) that d+dij(X; Y ) = dij(Y ). Also

d+dij(X + ϵZ; Y ) =

dij(Y ) if dij(Z) = 0,
1

dij(Z)cij(Y, Z) if dij(Z) > 0,
(2.54)
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and thus d
(2)
+ dij(X; Y, Z) = 0 when dij(Z) = 0, but when dij(Z) > 0 the

limit defining d
(2)
+ dij(X; Y, Z) does not exist unless Z = Y . If Z = Y we

have d
(2)
+ dij(X; Y, Y ) = 0, in accordance with (2.42).

2.3.0.2 Rho and Stress

We now use the results from the previous section to compute directional
derivatives of ρ and σ. They are general, in the sense that they cover cases
in which some dij(X) > 0 and some dij(X) = 0. To handle one or more zero
distances we define

ξ(X; Y ) :=
∑∑

1≤i<j≤n

{wijδijdij(Y ) | wijδij > 0 and dij(X) = 0}. (2.55)

The directional derivatives of ρ at X in direction Y are

d+ρ(X; Y ) = tr Y ′B(X)X + ξ(X, Y ), (2.56)

d
(2)
+ ρ(X; Y, Y ) =

∑∑
1≤i<j≤n

wij
δij

dij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
, (2.57)

d
(3)
+ ρ(X; Y, Y, Y ) = −3

∑∑
1≤i<j≤n

wij
δijcij(X, Y )

d3
ij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
.

(2.58)

Note that by the CS inequality

d2
ij(Y ) −

c2
ij(X, Y )
d2

ij(X) ≥ 0 (2.59)

for all Y , and thus d
(2)
+ ρ(X)(Y, Y ) ≥ 0.

The directional derivatives for stress at X in direction Y are

d+σ(X; Y ) = tr Y ′(V − B(X))X − ξ(X, Y ), (2.60)

d
(2)
+ σ(X; Y, Y ) = tr Y ′V Y −

∑∑
1≤i<j≤n

wij
δij

dij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
,

(2.61)

d
(3)
+ σ(X; Y, Y, Y ) = 3

∑∑
1≤i<j≤n

wij
δijcij(X, Y )

d3
ij(X)

{
d2

ij(Y ) −
c2

ij(X, Y )
d2

ij(X)

}
. (2.62)
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Note that we can also write (2.61) as

d
(2)
+ σ(X; Y, Y ) = tr Y ′(V − B(X))Y +

∑∑
1≤i<j≤n

wij
δij

dij(X)
c2

ij(X, Y )
d2

ij(X) . (2.63)

Combining (2.61) and (2.63) shows

tr Y ′(V − B(X))Y ≲ d
(2)
+ σ(X; Y, Y ) ≲ tr Y ′V Y. (2.64)

A convenient upper bound for d
(3)
+ σ(X; Y, Y, Y ) is also useful. From (2.62)

and the CS inequality

d
(3)
+ σ(X; Y, Y, Y ) ≤ 3

∑∑
1≤i<j≤n

wij
δij|cij(X, Y )|

d3
ij(X) d2

ij(Y ) ≤ 3
∑∑

1≤i<j≤n

wij

δijd
3
ij(Y )

d2
ij(X) .

(2.65)

Once more, in the differentiable case the subscript + in d+ is not necessarily,
but if one or more dij(X) = 0 for which wijdij > 0 then the subscript is
needed.

2.3.0.3 expandStress

The R function {expandStress, with arguments w, delta, x, and y, gives
the zeroeth, first, second, or third terms in the expansion (2.36), using the
formulas for directional derivatives in this section. We use an example with
n = 4 and p = 2. All weights and dissimilarities are equal. Configuration X
are the four corners of a square, perturbation Y is a 4 × 2 matrix of random
standard normals.

The function expandTester takes an interval around zero for ϵ and computes
the value of σ(X + ϵY ) at 1000 points in that interval. It also computes the
zero, first, second, or third order Maclaurin approximations to σ(X + ϵY ).
In this first example X is a local minimum and thus d+σ(X; Y ) = 0. The
zero-order and first-order approximation are thus the same.

If the interval for ϵ is [−1, 1] the sum of squares of the differences between
σ(X + ϵY ) and its approximations of different orders are
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## [,1]
## [1,] +917.455222294743749
## [2,] +917.455222294744658
## [3,] +468.774392806713365
## [4,] +185.377911517761987

If the interval is [−.1, .1] the errors of approximation are

## [,1]
## [1,] +0.133635212939676
## [2,] +0.133635212939676
## [3,] +0.000152399828616
## [4,] +0.000001520085462

And if the interval is [−.01, .01] the errors of approximation are

## [,1]
## [1,] +0.000013434031631
## [2,] +0.000013434031631
## [3,] +0.000000000149172
## [4,] +0.000000000000015

On the smaller intervals the error of second-order approximation is already
very small, which is not surprising because twice-differentiable functions are
pretty much convex quadratics close to a local minimum.

2.3.1 Partial Derivatives

In the differentiable case we now introduce gradients and Hessians. The
gradient at X is a vector with first-order partial derivatives at X, the Hessian
is a matrix with second-order partial derivatives at X. Partial derivatives
are the commonly used tool for actual computation of derivatives.

We can obtain the partial derivatives from the directional derivatives in
equations (2.60), (2.61), and (2.62) by using the base vectors Eis = ei e

′
s to
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expand the perturbations Y, Z, and U . So the gradient of stress at X is

{∇σ(X)}is := d+σ(X; Eis) = tr eie
′
s(V − B(X))X = {(V − B(X))X}is.

(2.66)
The gradient ∇σ(X) is an n × p matrix, and

d+σ(X; Y ) = tr Y ′∇σ(X) = tr Y ′(V − B(X))X. (2.67)

For the Hessian we use similar calculations, heavily relying on the Kronecker
delta, and on cyclic permutations under the trace sign. First

cij(X, Eks) = tr X ′(ei − ej)(ei − ej)′eks′
s = (xis − xjs)(δik − δjk), (2.68)

and

cij(Eks, Elt) = tr ete
′
l(ei − ej)(ei − ej)′eke′

s = δst(δik − δjk)(δil − δjl). (2.69)

Thus, from equation (2.39),

{∇(2)d2
ij(X)}ks,lt = d

(2)
+ d2

ij(X; Eks, Elt) = 2δst(δik − δjk)(δil − δjl), (2.70)

and from equation (2.52)

{∇(2)dij(X)}ks,lt = d
(2)
+ dij(X; Eks, Elt) =

= (δil − δjl)(δik − δjk)
dij(X)

{
δst − (xis − xjs)(xit − xjt)

d2
ij(X)

}
.

(2.71)

Now take the usual weighted sums of equations (2.70) and (2.71) to find the
Hessians of ρ and σ. To get relatively compact expressions we define the
symmetric doubly-centered matrices

Hst(X) :=
∑∑

1≤i<j≤n

wij
δij

d3
ij(X)(xis − xjs)(xit − xjt)Aij. (2.72)

Then the Hessian of ρ is

{∇(2)ρ(X)}ks,lt = {δstB(X) − Hst(X)}kl, (2.73)
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and that of σ is

{∇(2)σ(X)}ks,lt = {δst(V − B(X)) + Hst(X)}kl. (2.74)

This is all somewhat inconvenient because of the double indexing of rows
and columns. ∇(2)σ(X) is an element of Rn×p ⊗ Rn×p and we can represent
it numerically either as a matrix or a four-dimensional array.
To cut the cord we use the vec isomorphism from Rn×p to Rnp, and its inverse
vec−1.
For computational purposes you can think of ∇2σ(X) as an np × np matrix
K(X), consisting of blocks of symmetric matrices of order n, indexed by
points, with p row-blocks and p column-blocks, indexed by dimensions. For
s ̸= t block (s, t) is the matrix Hst(X), the diagonal blocks for s = t are
(V − B(X)) + Hss(X). In the same way we can collect the blocks Hst(X) in
the np × np matrix H(X).

{∇(2)σ(X; Y )}ks :=
n∑

l=1

p∑
t=1

{∇(2)σ(X)}ks,ltylt, , (2.75)

and

tr Y ′∇2σ(X)Z := d2
+σ(X; Y, Z) =

n∑
k=1

p∑
s=1

n∑
l=1

p∑
t=1

{∇2σ(X)}ks,ltykszlt. (2.76)

Thus

∇(2)ρ(X) = Ip ⊗ B(X) − H(X), (2.77)
∇(2)σ(X) = Ip ⊗ (V − B(X)) + H(X). (2.78)

I do not like to use vec and friends in formulas and derivations, so I try to
avoid them. It is a different matter in computation, because in a computer
Y is the same as vec(Y ) anyway.
Because the Hessian is important throughout the book we want to make sure
we have the correct formulas and code. One way to check this is to compare
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it to the numerical approximation of the Hessian from the package numDeriv
(Gilbert and Varadhan (2019)). Normally one checks if the code is correct
by comparing it with the mathematics, but here we proceed the other way
around.
Again we use the four corners of the square as an example, with weights and
dissimilarities all equal. The largest absolute difference between the elements
of the numerical and the analytical Hessian for ths example is 8.2399365 ×
10−14, which means that we basically have double-precision equality between
the two. We repeat this for a random X, because at a local minimum the
approximation may be more precise. For the random configuration we find
a maximum deviation of 0.2485061, a bit bigger, but still small.
Here are some useful properties of the Hessians.

Theorem 2.8. 1. 0 ≲ H(X) ≲ Ip ⊗ B(X).
2. Ip ⊗ (V − B(X)) ≲ K(X) ≲ Ip ⊗ V.

Proof. Let y = vec(Y ). Then

y′H(X)y =
p∑

s=1

p∑
t=1

y′
sHst(X)yt =

∑∑
1≤i<j≤n

wij
δij

d3
ij(X)c2

ij(X, Y ) ≥ 0,

and thus H(X) ≳ 0. From () ∇2ρ(X) ≳ 0, and thus Ip ⊗ B(X) ≳ H(X).
This proves the first part. The second part is immediate from the first part
and ().

Another useful property. Let y = vec(Y ).

Theorem 2.9. ozo

Proof.

H(X)Y =
p∑

t=1
Hst(X)yt =

∑∑
1≤i<j≤n

wij
δijcij(X, Y )

d3
ij(X) (xis − xjs)(ei − ej). (2.79)

If Y = X then H(X)X = B(X)X and thus ∇2ρ(X)X = 0 and ∇2σ(X)X =
V X. If Y = XT with T anti-symmetric then cij(X, Y ) = tr X ′AijXT = 0
and thus H(X)Y = 0. This implies ∇2ρ(X)Y = B(X)XT and ∇2σ(X)Y =
(V −B(X))XT . If B(X)X = V X then ∇2ρ(X)X = V X and ∇2σ(X)X = 0.
If Y = eα′ then ∇2ρ(X)Y = ∇2σ(X)Y = 0.
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In the example with the square the eigenvalues of H(X) are

## [1] +0.33333333 +0.19526215 +0.19526215 +0.19526215 +0.13807119 +0.00000000
## [7] +0.00000000 +0.00000000

## [1] +0.52960443 +0.44261066 +0.27431040 +0.15854524 +0.07386436 +0.00000000
## [7] +0.00000000 -0.00000000

while those of ∇2σ(X) are

## [1] +0.33333333 +0.19526215 +0.13807119 +0.13807119 +0.13807119 +0.00000000
## [7] +0.00000000 +0.00000000

## [1] +0.33333333 +0.25946897 +0.17478810 +0.05902293 +0.00000000 +0.00000000
## [7] -0.10927733 -0.19627110

We can derive nicer expressions for the higher derivatives in coefficient space
(see section 2.1.3). This was done, perhaps for the first time, in De Leeuw
(1993), which was actually written around 1985. In Kearsley, Tapia, and
Trosset (1995) Newton’s method was used to minimize stress, so presum-
ably they implemented some formula for the Hessian. In De Leeuw (1988)
the expression involving H(X) from (2.72) was first given in configuration
space. We could use similar computations to obtain the third-order partial
derivatives, but for now we have no need for them in this book.

2.3.2 Special Expansions

cij(X, Y ) = 0 for all i < j

2.3.2.1 Infinitesimal Rotations

Suppose Y = XT , with T antisymmetric, so that X +ϵY = X(I +ϵT ). Then
cij(X, Y ) = 0 for all i < j, and thus from equations (2.60), (2.61), and (2.62)

d+σ(X; Y ) = 0, (2.80)
d

(2)
+ σ(X; Y, Y ) = tr Y ′(V − B(X))Y, (2.81)

d
(3)
+ σ(X; Y, Y, Y ) = 0. (2.82)
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2.3.2.2 Singularities

Suppose X = [X | 0] and Y = [0 | Y ] so that X + ϵY = [X | ϵY ]. Here X
and Y are n×p, underlineX is n× r, with r < p, and Y is n× (p− r). Then
again cij(X, Y ) = 0 for all i < j, and thus ()()() again.

σ(X + ϵY ) = σ(X) − ϵ
∑

dij(X)=0
wijδijdij(Y ) + 1

2ϵ2tr Y ′(V − B(X))Y + o(ϵ2)

(2.83)

2.3.2.3 Singularities

Suppose X = [X | 0] and Y = [Z | Y ] so that X + ϵY = [X + ϵZ | ϵY ]. Here
X and Y are n × p, X is n × r, with r < p, and Y is n × (p − r). Then

σ(X + ϵY ) = σ(X) − ϵ
∑

dij(X)=0
wijδijdij(Y ) + 1

2ϵ2tr Y ′(V − B(X))Y + o(ϵ2)

(2.84)

2.4 Convexity

Remember that a function f on an open subset X of a Euclidean space is
convex if for all x and y in X and 0 ≤ α ≤ 1 we have f(αx + (1 − α)y) ≤
αf(x)+(1−α)f(y). Thus on the line segment connecting x and y the function
f is never above the line segment connecting f(x) and f(y). Convex functions
are a.e. differentiable, in fact a.e. twice-differentiable. If the derivative exists
at x then for all y we have f(y) ≥ f(x) + df(x)(y − x), which says the
function majorizes its tangent plane at x. If the second derivative exists at
x then d2f(x; y, y) ≥ 0 for all y, which says that the Hessian at x is positive
semidefinite.
Stress is definitely not a convex function of the configuration. If it actu-
ally was convex, or even convex and differentiable, then this book would be
much shorter. Nevertheless convexity still play an important part in our
development of MDS, ever since De Leeuw (1977a).
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2.4.1 Distances

The convexity in the MDS problem comes from the convexity of the distance
and the squared distance. Although these are elementary facts, they are
important in our context, so we give a proof.
Theorem 2.10. On Rn×p both dij and d2

ij are convex.

Proof. First, for 0 ≤ λ ≤ 1,

d2
ij(λX + (1 − λ)Y ) = λ2d2

ij(X) + (1 − λ)2d2
ij(Y ) + 2λ(1 − λ)(xi − xj)′(yi − yj)

(2.85)
By corollary 2.2,

(xi − xj)′(yi − yj) ≤
√

d2
ij(X)d2

ij(Y ) ≤ 1
2(d2

ij(X) + d2
ij(Y )). (2.86)

Combining (2.85) and (2.86) proves convexity of the squared distance.
Now use equation (2.85) and the CS inequality in the form (xi−xj)′(yi−yj) ≤
dij(X)dij(Y ). This gives

d2
ij(λX + (1 − λ)Y ) ≤ (λdij(X) + (1 − λ)dij(Y ))2. (2.87)

Taking square roots on both sides of equation (2.87) proves convexity of the
distance.

Both ρ and η are norms on Rn×p.

Proof. homogeneous convex functions vanishing if and only if X = 0, which
means they are both norms on Rn×p.

2.4.2 Subdifferentials

Suppose f is a real-valued finite convex function on the finite-dimensional
inner-product space E . A subgradient of f at x ∈ E is a vector z ∈ E such
that f(y) ≥ f(x) + ⟨z, y − x⟩ for all y ∈ E . The set of all subgradients at x
is the subdifferential at x, written as ∂f(x). In general, the subdifferential
is a non-empty, closed, and convex set (rock). If f is differentiable at x then
the subdifferential is the singleton which has the gradient ∇f(x) as its sole
element (rock).
Apply this to dij on Rn×p.
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Theorem 2.11. The subdifferential of dij at X is

• If dij(X) > 0 then ∂dij(X) =
{
(ei − ej) (xi−xj)′

dij(X)

}
• If dij(X) = 0 then ∂dij(X) = {Y | Y = (ei − ej)z′ with ∥z∥ ≤ 1}

∂dij(X) =
⋃

∥z∥≤1
{(ei − ej)z′}

Proof. If dij(X) = 0 we must find the set of all Z ∈ Rn×p such that

dij(Y ) ≥ tr Z ′(Y − X) (2.88)

for all Y ∈ Rn×p.
First of all (2.88) must be true for all Y = αX with α ≥ 0. Thus (α −
1)tr Z ′X ≤ 0 for all α ≥ 0, which implies tr Z ′X = 0. We can use this to
simplify (2.88) to dij(Y ) ≥ tr Z ′Y for all Y . Next, it follows that zk = 0 for
k ̸= i, j. If zk ̸= 0 choose Y = ekz′

k. Then dij(Y ) = 0 and trZ ′Y = z′
kzk > 0.

Now (2.88) simplifies to dij(Y ) ≥ z′
iyi + z′

jyj If yi = zi and yj = 0 then we
must have ∥zi∥ ≥ ∥zi∥2 or ∥zi∥ ≤ 1. In the same way ∥zj∥ ≤ 1. Choose
yi = yj = y and some y ̸= 0. Then we must have (zi + zj)′y ≤ 0 for all y and
thus zi = −zj. This proves the second part.

By the sum rule for convex subdifferentials (rock)

∂ρ(X) = B(X)X + {Y | Y =
∑∑

1≤i<j≤n

{wijδij(ei − ej)z′
ij | dij(X) = 0}},

(2.89)
where the zij are arbitrary vectors satisfying ∥zij∥ ≤ 1∥.
Of course ∂d2

ij(X) = {2AijX} and thus ∂η2(X) = {2V X}.
But σ is not convex, and we do not have a definition yet for the subdifferential
of non-convex functions. We use the generalization introduced by Clarke.
Suppose f is locally Lipschitz, and thus differentiable almost everywhere.
Let x(k) be a sequence of points converging to x∞, with
f differentiable at all x(k).
Then y is in the Clarke subdifferential ∂Cf(x) if and only if y =
limk→∞ ∇f(x(k)).
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Clarke ∂Cσ(X) = {V X} − ∂ρ(X)
Combining this with #ref(eq:propsubdiffrho) gives

∂σ(X) = (V − B(X))X − {Y | Y =
∑∑

1≤i<j≤n

{wijδij(ei − ej)z′
ij | dij(X) = 0}},

(2.90)

2.4.3 DC Functions

In basic MDS

1. ρ is a non-negative convex function, homogeneous of degree one.
2. η2 is a non-negative convex quadratic form, homogeneous of degree two.
3. σ is a non-negative difference of two convex functions.

This follows because η2 is a weighted sum of squared distances and ρ is a
weighted sum of distances, both with non-negative coefficients, and thus they
are both convex.
Real-valued functions that are differences of two convex functions are also
known as a DC functions or delta-convex functions. DC functions are im-
portant in optimization, especially in non-convex and global optimization.
For excellent reviews of the various properties of DC functions, see Hiriart-
Urruty (1988) or Bacak and Borwein (2011). Interesting for our purposes is
that DC functions are almost everywhere twice differentiable, and that all
two times continuously differentiable functions are DC.
It follows from the general properties of convex and DC functions that σ is
both uniformly continuous and locally Lipschitz, in fact Lipschitz on each
compact subset of Rn×p (Rockafellar (1970), theorem 10.4). The fact that σ
is only locally Lipshitz is due entirely to the quadratic part η2, because ρ is
globally Lipschitz.

2.4.4 Negative Dissimilarities

There are perverse situations in which some weights and/or dissimilarities are
negative (Heiser (1991)). Define w+

ij := max(wij, 0) and w−
ij := − min(wij, 0).
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Thus both w+
ij and w−

ij are non-negative, and wij = w+
ij −w−

ij . Make the same
decomposition of the δij.
Then

ρ(X) =
∑

(w+
ijδ

+
ij + w−

ijδ
−
ij)dij(X) −

∑
(w+

ijδ
−
ij + w−

ijδ
+
ij)dij(X), (2.91)

and
η2(X) =

∑
w+

ijd
2
ij(X) −

∑
w−

ijd
2
ij(X). (2.92)

Note that both ρ and η2 are no longer convex, but both are DC, and conse-
quently so is σ.
A bit more

2.5 Stationary Points

• A function f has a global minimum on X at x̂ if f(x̂) ≤ f(x) for all
x ∈ X.

• A function f has a local minimum on X at x̂ if there is a neighborhood
N of x̂ such that f(x̂) ≤ f(x) for all x ∈ N ∩ X.

• A function f has a singular point at x if it is not differentiable at x.

• A function f has a stationary point at x if it is differentiable at x and
df(x) = 0.

• A function f has a saddle point at a stationary point x if it is neither
a local maximum nor a local minimum.

• Global and local maxima of f are global and local minima of −f .

Theorem 2.12. At a stationary point of stress we have η(X) ≤ 1.

Proof. If X is stationary we have V X = B(X)X and thus ρ(X) = η2(X).
Consequently σ(X) = 1−2ρ(X)+η2(X) = 1−η2(X) and because σ(X) ≥ 0
we see that X must be in the ellipse {Z ∈ Rn×p | η2(Z) ≤ 1}.

Theorem 2.12 is important, because it means that we can require without loss
of generality that X is in the ellipsoidal disk η(X) ≤ 1, which is a compact
convex set.
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2.5.1 Local Maxima

Theorem 2.13. stress has a single local maximum at X = 0 with value 1.

Proof. At X = 0 we have for the one-sided directional derivative

D+σ(0, Y ) = lim
α↓0

σ(0 + αY ) − σ(0)
α

= −2ρ(Y ) ≤ 0, (2.93)

which implies that stress has a local maximum at zero.
To show that the local maximum is unique suppose that there is a local
maximum at X ̸= 0. Then on the line through zero and X there should be
a local maximum at X as well. But

σ(αX) = 1 − 2αρ(X) + α2η2(X), (2.94)
is a convex quadratic, which consequently cannot have a local maximum at
X.

2.5.2 Local Minima

The main result on local minima of stress is due to De Leeuw (1984c). We give
a slight strengthening of the result, along the lines of De Leeuw (2018a), with
a slightly simplified proof. Theorem 2.14 proves that a necessary condition for
a local minimum at X is that for i and j with wijδij > 0 we have dij(X) > 0,
i.e. objects i and j are mapped to different points.

Theorem 2.14. If stress has a local minimum at X then * B(X)X = V X.
* dij(X) > 0 whenever wijδij > 0.

Proof. If stress has a local minimum at X then d+σ(X; Y ) ≥ 0 for all Y .
Equation (2.60) tell us that

d+σ(X; Y ) = tr Y ′(V −B(X))X−
∑∑

1 ≤i<j≤n

{wijδijdij(Y ) | dij(X) = 0 and wijδij > 0}.

(2.95)
ain) \end{equation} Consider a direction Y with all dij(Y ) > 0 and such that
then d+σ(X; Y ) ≤ 0. This is always possible, because if we have and Y with
d+σ(X; Y ) > 0 we simply switch to −Y . Now d+σ(X; Y ) in (2.95) is the sum
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of two terms which are both non-positive, and they satisfy d+σ(X; Y ) ≥ 0
if and only if they are both zero. For the second term this means that at a
local minimum the summation is empty and there is no dij(X) = 0 whenever
wijδij = 0. For the first term it means that (V − B(X))X = 0.

De Leeuw (1984c) concluded that if wijδij > 0 for all i < j then stress
is differentiable at a local minimum. But more is true, because it s not
necessary to require wijδij > 0 for this result.

Corollary 2.4. If stress has a local minimum at X then it is differentiable
at X and has ∇σ(X) = 0.

Proof. At a local minimum we can indeed have dij(X) = 0 if wijδij = 0. But
if wij = 0 then stress does not depend on dij(X) at all, so dij(X) = 0 does
not influence differentiability. If wij > 0 and δij = 0 then stress depends
on dij(X) only through the term wijd

2
ij(X), which is differentiable even if

dij(X) = 0.

Theorem 2.14 and its corollary 2.4 are the main reason why, at least in
basic scaling, we can largely ignore the problems with differentiability. These
results have been extended to least squares MDS with Minkovski distances
by Groenen, Mathar, and Heiser (1995). In a neighborhood of each local
minimum the loss function is differentiable, so eventually convergent descent
algorithms do not have problems with non-differentiable ridges. This result is
of major importance for both practical and theoretical reasons, as emphasized
for example by Pliner (1996).
Second order necessary conditions (since differentiable at local minimum)

2.5.3 Saddle Points

At a saddle point X stress is differentiable and dσ(X) = 0. But there are
directions of decrease and increase from X, and thus stress does not have a
local minimum there.
If V X = B(X)X and dij(X) = 0 for some wijδij > 0 then there is an Y such
that D+σ(X, Y ) < 0.
Theo Suppose V X = B(X)X then V (X | 0) = B(X|0)(X|0)
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Corr Suppose V X = B(X)X and X is of rank r < p. Then XL = (Z|0) and
thus V Z = B(Z)Z.

If V X = B(X)X and X is singular then X is a saddle point.

2.5.4 An Example

Let’s look at a small example, already analyzed in many different places
(e.g. De Leeuw (1988), Trosset and Mathar (1997)). It has four points, all
dissimilarities to one and all weights are equal to 1

6 .

2.5.4.1 Regular Tetrahedron

In three dimensions the global minimum is equal to zero, with the points
mapped into the vertices of a regular tetrahedron. Points can be assigned
to the vertices in 4! = 24 ways, and each such assignment defines a global
minimum. In fact each assigment defines a continuum of global minimizers,
because all rotations of any of the regular tetrahedra also give global mini-
mizers. It seems as if there are 24 rotation manifolds with global minimizers.
But some of the 24 assigments of points to vertices are equivalent in the sense
that they are rotations of each other (which includes reflections). It turns
out there are three equivalence classes of eight assignments each. Thus there
are three different disjoint rotation manifolds of global minimizers, not 24.

The stress value for any regular tetrahedron is zero, and the eigenvalues of
the Hessian are

## [1] +0.333333 +0.166667 +0.166667 +0.166667 +0.083333 +0.083333 +0.000000
## [8] +0.000000 +0.000000 +0.000000 +0.000000 -0.000000

For four points in three dimensions we have np − 1
2p(p + 1) = 6 non-trivial

eigenvalues. Since the six largest values are all positive our regular tetra-
hedra are isolated, in the sense that if we move away from the each of the
corresponding rotation manifolds the stress increases.
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2.5.4.2 Singularity

The next stationary point is somewhat deviously constructed. We take four
points equally spaced on a line (a stationary point in one dimension) and
add two zero dimensions. Then we do a random rotation of configuration
to somwhat hide its singularity. We already know this configuration defines
a saddle point in three-dimensional configuration space. For the resulting
configuration the stress is 0.083333, and the eigenvalues of the Hessian are

## [1] +0.333333 +0.333333 +0.333333 +0.000000 -0.000000 -0.000000 -0.000000
## [8] -0.000000 -0.166667 -0.166667 -0.277778 -0.277778

There are four negative eigenvalues, and thus we confirm we have a saddle-
point.

2.5.4.3 Equilateral Triangle with Centroid

The next configuration is an interesting one. It is in two-dimensions, with
three points in the corners of an equilateral triangle, and a fourth point
in the centroid of the first three. The 24 assigments of the four points to
the four positions in thus case give four rotational equivalence classes of six
assignments each. This particular arrangements has four disjoint rotational
manifolds. The stress is 0.033494, and the eigenvalues of the Hessian are

## [1] +0.333333 +0.255983 +0.255983 +0.000000 +0.000000 +0.000000 +0.000000
## [8] -0.000000

Note that the Hessian is positive semi-definite, with three positive eigenval-
ues. This made De Leeuw (1988) think that this arrangement of points de-
fined a non-isolated local minimum. Bad mistake. Since 3 < np− 1

2p(p+1) =
5 the singular Hessian does not guarantee that we have a local minimum.
Trosset and Mathar (1997) showed, using symbolic computations, that the
configuration and its permutations and rotations defines a family of saddle
points. Further on in this section we will look in more detail what happens
in this case.
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2.5.4.4 Square

Four points in the corners of a square give the global minimum in two di-
mensions (De Leeuw and Stoop (1984)). There are three isolated rotational
manifolds for such squares, all with stress 0.014298, and with eigenvalues of
the Hessian

## [1] +0.333333 +0.195262 +0.138071 +0.138071 +0.138071 +0.000000 +0.000000
## [8] -0.000000

In one dimension the global minimum is attained for four points equally
spaced on a line. Thus there are n! different global minimizers but by reflec-
tion only 1

2(n!) give different distances.

2.5.4.5 Non-global Local Minima

It turns out be be difficult in our example to find non-global local minima.
In an heroic effort we looked at 100,000 smacof runs with a random start
to find other local minima. In 9.9996 × 104 cases smacof converges to the
square, in 4 it stops at the equilateral triangle with center, but only because
the limit on the number of iterations (1000) is reached. This confirms the
computational results reported by De Leeuw (1988) and Trosset and Mathar
(1997). It also confirms the theoretical
result that gradient descent algorithms with random starts almost surely
avoid saddle points and converge to local minima (Lee et al. (2016)), al-
though avoiding the saddle points may take exponential time (Du et al.
(2017)). In any case, it seems safe to conjecture that for our small and
maximally symmetric example all local minima are global.
Trosset and Mathar (1997), in their search for non-global local minima, con-
sequently are forced to use another example. They used equal weights, but
choose the dissimilarities as the Euclidean distances between the four cor-
ners of a square, ordered counterclockwise from the origin. Thus the global
minimum of stress is zero. In 1000 smacof runs with random start we find a
this zero local minimum 599 times, while we converge 401 times to another
stationary point with stress 0.0334936.
The two configurations are plotted in figure 2.1, with the global minimizer in
red. The non-global configuration (in blue) is rotated to best least squares fit
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Figure 2.1: Trosset/Mathar Configurations
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with the first one, using simple Procrustus (Gower and Dijksterhuis (2004)).
Note that it is a rectangle, but not a square. The eigenvalues of the Hessian
at the non-global minimum configuration are

## [1] +0.333333 +0.211325 +0.122008 +0.122008 +0.122008 +0.000000 +0.000000
## [8] -0.000000

verifying that we indeed have an isolated local minimum. Trosset and Mathar
(1997) verify this using a mix of symbolic and floating point calculation.
We can generate an additional example using the function equalDelta() in
equaldelta.R. Its arguments are n, p, m, where n is the order of the dissimi-
larity and weight matrices, which have all their non-diagonal elements equal.
Argument n and p define the space of configuration matrices, and m is the
number of smacof runs with a random start.

## [1] 658

## [1] 342

## itel 1 eiff 0.0000000000 sold 0.0381249159 snew 0.0381249159

## itel 1 eiff 0.0000000000 sold 0.0357265590 snew 0.0357265590

## [1] +0.200000 +0.129354 +0.129354 +0.102242 +0.102242 +0.079940 +0.079940
## [8] +0.005686 +0.005686 +0.000000 -0.000000 -0.000000

## [1] +0.200000 +0.114739 +0.114739 +0.107180 +0.073205 +0.073205 +0.051287
## [8] +0.051287 +0.039230 +0.000000 -0.000000 -0.000000

2.5.4.6 Directions of Descent

We now go back to the stationary equilateral triangle with center. We have
seen that the gradient at this configuration is zero and the Hessian is positive
semi-definite but rank-deficient. A descent direction at X is any configuration
Y such that σ(X + ϵY ) < σ(X) if ϵ is small enough. In our example, with X
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the triangle with center, we must choose Y in the null space of the Hessian,
because otherwise Y is a direction of accent. The null space has two trivial
dimensions, X and XA with A anti-symmetric. The non-trivial null space
has dimension three, and we choose a basis of three orthonormal directions.
Then

σ(X + ϵY ) = σ(X) + 0 + 0 + 1
6ϵ3d3σ(X)(Y, Y, Y ) + o(ϵ3),

and we can find a descent direction if d3σ(X)(Y, Y, Y ) ̸= 0.

## [1] +0.066987 -0.000000 +0.000000 +0.015659

## [1] +0.066987 -0.000000 +0.000000 +0.421558

## [1] +0.066987 +0.000000 +0.000000 -0.003449
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Chapter 3

Stress Spaces

Stress is a function of many variables. Consequently there are many equiva-
lent ways to define it by transforming the parameter space. In this chapter
we discuss the major parametrizations that have actually been used. Each
has its advantages and disadvantages.

3.1 Configuration Space

So far we have defined stress on Rn×p, the space of all matrices with n rows
and p columns. We call this configuration space. The usual MDS represen-
tation of a dissimilarity matrix is a scatterplot of n points in p dimensions.
Therefor there is little doubt that configuration space is the most natural
MDS space, and most of our theorems and derivations use this space.
Nevertheless, configuration space has some disadvantages. Even for n as
small as four and p as small as two the dimension of the space of configura-
tions is eight, and there is no compelling way to visualize stress as a function
of eight variables. Secondly, if we work in configuration space we have to keep
the indeterminacies of the representation in mind. Because of translational
indeterminacy, minimizing stress over X ∈ Rn×p will give the same result as
minimizing stress over X ∈ Rn×p

C , the p(n − 1)-dimensional subspace of all
column-centered matrices. Because of translational and rotational indeter-
minacy it will also give the same result as minimizing stress over X ∈ Rn×p

CT ,
the np − 1

2p(p + 1) dimensional subspace of all centered lower triangular

81
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configurat ions (which have xij = 0 for all j > i). Or the same result as min-
imizing stress over the np− 1

2p(p+1) dimensional nonlinear manifold Rn×p
CO of

all centered orthogonal configurations. Especially rotational indeterminacy
complicates our analysis of MDS algorithms that operate on configuration
space.
Another disadvantage of configuration space is that it needlessly complicates
some of our formulas and derivations. Not all pairs of coordinate in a con-
figuration X have the same status. Some pairs belong to the same row of
the matrix, and some pairs to different rows. Some pairs of coordinates are
in the same column, and some are in different columns. This complicates
formulas which depend on considering pairs of coordinates, such as second
derivatives.
One way to make a picture in configuration space is to plot the np individual
coordinates as functions of a one-dimensional perturbation. In figure 3.1 we
illustrate this with an example. We have four objects, with all weights and
dissimilarities equal, and the 4 × 2 configuration is an equilateral triangle
together with its centroid. Everything is suitably scaled, and we perturb
each coordinate using 101 values equally spaced between -1 and +1.

delta <- wdef(4)
w <- wdef(4)
w <- w / sum(w)
s <- sum (w * delta ˆ 2)
delta <- delta / sqrt (s)
x <- matrix(c(0,0,1,0,.5,sqrt(3)/2),3,2,byrow = TRUE)
x <- rbind(x, apply(x, 2, mean))
x <- apply(x, 2, function(x) x - mean(x))
d <- as.matrix(dist(x))
s <- sum (w * delta * d) / sum (w * d * d)
x <- x * s
d <- d * s
h <- smacofR(w,

delta,
p=2,
xold = x,
eps=1e-15,
xstop=TRUE)
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## itel 1 eiff 0.0000000000 sold 0.0334936491 snew 0.0334936491

print(eigen(h$h)$values)

## [1] 3.333333e-01 2.559831e-01 2.559831e-01 2.580122e-16 2.238367e-16
## [6] 5.765257e-17 3.133650e-17 -1.657110e-16

x<-matrix(c(0,2,1,1,0,0,sqrt(3),sqrt(3)/3),4,2)
z<-matrix(c(0,-2,sqrt(3),-2-sqrt(3)/3,0,0,sqrt(3),2+sqrt(3)),4,2)
eps <- 0.00001
d <- as.matrix(dist(x + eps * z))
smacofLossR(d, w, delta)

## [1] 0.2559831

3.1.1 Zero Distance Subspaces

A zero-distance subspace is a subspace of configuration space in which one
or more distances are zero. That a zero distance indeed defines a subspace
follows from the fact that the nonlinear equation dij(X) = 0 is equivalent to
the homogeneous linear equation xi = xj.
The number of zero-distance subspaces is the same as the number of set
partitions of n objects, which is the Bell number Bn. Bell numbers are
defined by the recursion

Bn+1 =
n∑

k=0

(
n

k

)
Bk, (3.1)

with B0 = 1. The next ten Bell numbers B1, · · · , B10 are 1, 2, 5, 15, 52, 203,
877, 4140, 21147, 11597. So there are lots of zero-distance subspaces.
The gradient in configuration space for all X ∈ Rn×p is

∇σ(X) = (V − B(X))X.

∇σ̃(θ) = (Ṽ θ − B̃(θ)θ)
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1
2{∇σ̃(θ)}s = tr Y ′

s (V X − B(X)X) = tr Y ′
s ∇σ(X),

with X = ∑r
s=1 θsYs.

Thus ∇σ̃(θ) = 0 if and only if ∇σ(X) ∈ Y⊥, the subspace of Rn×p orthogonal
to Y . Specifically ∇σ(X) = 0 implies ∇σ̃(θ) = 0. If the Ys span all of Rn×p

then ∇σ̃(θ) = 0 if and only if ∇σ(X) = 0.
For the relationship between the minimization problems in coefficient space
and configuration space we also study the relationship between the two Hes-
sians.
For all X and Z in configuration space

1
2∇2σ(X)(Z, Z) = tr Z ′V Z−

∑∑
1≤i<j≤n

wij
δij

dij(X)

{
tr Z ′AijZ − {tr Z ′AijY }2

d2
ij(X)

}

For any θ in coefficient space

1
2∇2σ̃(θ) = Ṽ −

∑∑
1≤i<j≤n

wij
δij

dij(θ)

{
Ãij − Ãijθθ′Ãij

d2
ij(θ)

}

and thus

ξ′∇2σ̃(θ)ξ = ∇2σ(X)(Z, Z).
where Z := ∑r

s=1 ξsYs and X := ∑r
s=1 θsYs.

Thus if θ is a local minimum in coefficient space then ∇2σ(X) is positive
semi-definite on the subspace Y . If X ∈ Y but Z ̸∈ Y it is perfectly possible
that ∇2σ(X)(Z, Z) < 0, and thus X can be a saddle point in configuration
space. If X ∈ Y is a local minimum in configuration space, then θ is a local
minimum in coefficient space. Of course if Y is the whole space then θ is a
local minimum in coefficient space if and only if X is a local minimum in
configuration space.

σ(X(θ + ϵξ)) = σ(X(θ) + ϵDX(θ)(ξ) + 1
2ϵ2D2X(θ)(ξ, ξ)) =

σ(X(θ))+ϵDσ(X(θ))DX(θ)ξ+1
2ϵ2{Dσ(X(θ))D2X(θ)(ξ, ξ)+Dσ(X(θ))Dσ(X(θ))}

(3.2)
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{D2X(θ)(ξ, ξ)}ip =
∑∑

ξsξtDstxip(θ) = ξ′Hip(θ)ξ

{DX(θ)(ξ)}ip =
∑

ξsDsxip(θ) = Gip(θ)ξ

Dσ(X(θ)) = {V − B(X(θ))}X(θ) = F (θ)

Dσ(θ) = Dσ(X(θ))DX(θ)

σ(x11(θ), · · · , xnp(θ))

Dsσ(θ) =
n∑

i=1

p∑
s=1

Dipσ(X(θ))Dsxip(θ)

Dstσ(θ) =
n∑

i=1

p∑
s=1

n∑
j=1

p∑
r=1

Dis,jrσ(X(θ))Dsxis(θ)Dtxjr(θ)+
n∑

i=1

p∑
s=1

Disσ(X(θ))Dstxis(θ)

Now let Y1, Y2, · · · , Yr be linearly independent configurations in Rn×p, and
consider minimizing stress over all linear combinations X of the form X =∑r

s=1 θsYs.
Each linear combination can be identified with a unique vector θ ∈ Rr,
the coefficients of the linear combination. Thus we can also formulate our
problem as minimizing stress over coefficient space, which is simply Rr. We
write dij(θ) for dij(X) and σ(θ) for σ(X). Note that dij(θ) =

√
θ′Cijθ, where

Cij has elements {Cij}st := tr Y ′
s AijYt.

If the Yt are actually a basis for configuration space (i.e. if r = np) then
minimizing over configuration space and coordinate space is the same thing.
For the Yt we could choose all rank one matrices, for example, of the form
ai b

′
s where the ai are a basis for Rn and the bs are a basis for Rp. And, in

particular, the ai and bs can be chosen as unit vectors of length n and p,
respectively. That case we have Cij = Ip ⊗ Aij, i.e. the direct sum of p copies
of Aij. Also if θ = vec(X) then dij(X) =

√
θ′(Ip ⊗ Aij)θ

If r < np then coefficient space defines a proper subspace of configuration
space. If it happens to be the (n − 1)p dimensional subspace of all column-
centered matrices, then the two approaches still define the same minimization
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problem. But in general r < (n − 1)p with the Ys column-centered defines a
constrained MDS problem, which we analyze in more detail in chapter 15.
Coefficient space is also a convenient place to deal with rotational indetermi-
nacy in basic MDS. It follows from QR decomposition that any configuration
matrix can be rotated in such a way that it upper diagonal elements (the xij

with i < j) are zero (define Xp to be the first p rows of X, compute X ′
p = QR

with Q square orthonormal and R upper triangular, thus Xp = R′Q′ and
XpQ = R′, which is lower triangular). The column-centered upper triangu-
lar configurations are a subspace of dimension p(n − 1) − p(p − 1)/2, and
we can choose the Ys as a basis for this subspace. In this way we eliminate
rotational indeterminacy in a relatively inexpensive way.
If X = ∑r

s=1 θsYs then we define the symmetric positive definite matrix B(θ)
of order r with elements

bst(θ) := tr Y ′
s B(X)Yt, (3.3)

where B(X) is the usual B-matrix of order n in configuration space, defined
in equation (2.16). Also define V of order r by

vst := tr Y ′
s V Yt, (3.4)

where the second V , of order n, is given by equation (2.12). Then

σ(θ) = 1 − 2 θ′B(θ)θ + θ′V θ. (3.5)

The relationship between the stationary points in configuration space and
coefficient space is fairly straightforward.

Theorem 3.1. Suppose θ is in coefficient space and X = ∑r
s=1 θsYs is the

corresponding point in configuration space.

1. If X is a stationary point in configuration space then θ is a stationary
point in coefficient space.

2. If θ is a stationary point in coefficient space then X is a stationary
point in configuration space if and only if rank(Y1 | · · · | Yr) ≥ n − 1.
(THIS IS WRONG)
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Proof. We have B(X)X = V X, i.e.
r∑

s=1
θsB(X)Ys =

r∑
s=1

θsV Ys. (3.6)

Premultiplying both sides by Y ′
t and taking the trace gives B(θ)θ = V θ. This

proves the first part.
For the second part, suppose B(θ)θ = V θ and define X = ∑r

s=1 θsYs. Then

r∑
t=1

tr Y ′
s (B(X) − V )X = 0. (3.7)

Thus B(X)X = V X if and only if Y ′
s (B(X) − V )X = 0 for all s, which

translates to the rank condition in the theorem (this is WRONG, correct).

The advantage of working in coefficient space is that formulas tend to become
more simple. Functions are defined on Rr, and not a space of matrices, in
which some coordinates belong to the same point (row) and others to other
points (rows), and some are on the same dimension (column), while others
are on different dimensions (columns).
Note that expressions such as (3.6) and (3.6) simplify if the Ys are V -
orthonormal, i.e. if tr Y ′

s V Yt = δst and thus V = I. It is easy to generate
such an orthonormal set from the original Ys by using the Gram-Schmidt
process. The R function gramy() in utilities.R does exactly that. Coefficient
space, which is the span of the Ys, is not changed by the orthogonalization
process.
For a V -orthonormal set Y we have the stationary equations B(θ)θ = θ,
which says that θ is an eigenvector of B(θ) with eigenvalue 1.
The Hessian is

D2σ(θ) = I − H(θ), (3.8)

with

H(θ) := D2ρ(θ) =
∑∑

1≤i<j≤n

wij
δij

dij(θ)

{
Cij − Cijθθ′Cij

θ′Cijθ

}
. (3.9)
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We have 0 ≲ H(θ) ≲ B(θ) and thus I − B(θ) ≲ D2σ(θ) ≲ I.

Hessian in coef and conf space

3.2 Spherical Space

min
X

σ(X) = min
λ≥0

min
η2(X)=1

σ(λX) = min
η2(X)=1

min
λ≥0

σ(λX) = min
η2(X)=1

1 − ρ2(X).
(3.10)

We see that basic MDS can also be formulated as maximization of ρ over the
ellipsoid {X | η2(X) = 1} or, equivalently, over the convex ellipsoidal disk
{X | η2(X) ≤ 1}. A similar formulation is available in coefficient space.

This shows that the MDS problem can be seen as a rather special nonlinear
eigenvalue problem. Guttman (1968) also discusses the similarities of MDS
and eigenvalue problems, in particular as they relate to the power method. In
linear eigenvalue problems we maximize a convex quadratic form, in the MDS
problem we maximize the homogeneous convex function ρ, in both cases over
an ellipsoidal disk. The sublevel sets of ρ defined as Lr := {X | ρ(X) ≤ r}
are nested convex sets containing the origin. The largest of these sublevel
sets that still intersects the ellipsoid η2(X) = 1 corresponds to the global
minimum of stress.

In two and maybe three dimensions graphical method.

αX + βY in sphere space one-dimensional

3.3 Distance Space

σ(D) = min
D∈D

∑∑
1≤i<j≤n

wij(δij − dij)2.

D is the set of p-dimensional Euclidean distance matrices, which is not con-
vex.

D is the set of Euclidean distance matrices, which is not convex.

If D1 × D2 = 0 then they span a convex cone.
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τ(αD1 + (1 − α)D2)(2)) = α2τ(D2
1) + (1 − α)2τ(D2

2) + 2α(1 − α)τ(D1 × D2)

So if τ(D1 × D2) ≳ 0 convex.
D is the set of distance matrices, which is convex.
Distance matrices are defined by linear inequalities.
D is the set of ultrametric matrices, dij ≤ max(dik, djk), which is not convex.
If D ∈ D then

√
D ∈ D

3.4 Squared Distance Space

min
D∈E

∑∑
1≤i<j≤n

wij(δij − dij)2.

E is the set of squared Euclidean distance matrices, which is convex.
If E ∈ E then

√
E ∈ D

3.5 Gramian Space

We can write d2
ij(X) = tr X ′AijX = tr AijC, with C = XX ′. This shows

minimizing stress can also be formulated as minimizing

σ(C) = 1 + tr V C − 2
∑∑

1≤i<j≤n

wijδij

√
tr AijC (3.11)

over all C ≳ 0 of rank r ≤ p.

3.6 Pictures of Stress

Even for n as small as four and p as small as two the dimension of the space of
centered configurations is six, and there is no natural way to visualize a func-
tion of six variables. What we can do is plot stress on two-dimensional sub-
spaces, either as a contour plot or as a perspective plot. Our two-dimensional



3.6. PICTURES OF STRESS 91

subspaces are of the form αX +βY , where X and Y are fixed configurations.
Much of this chapter is a modified, and in some places expanded, version of
De Leeuw (2016c).

Throughout we use a small example of order n = 4 which all dissimilarities
equal. The same example has been analyzed by De Leeuw (1988), De Leeuw
(1993), Trosset and Mathar (1997), and Zilinskas and Poslipskyte (2003).
For this example a global minimum in two dimensions has its four points in
the corners of a square. That is our X, which has stress 0.0285955. Our
Y is another stationary point, which has three points in the corners of an
equilateral triangle and the fourth point in the center of the triangle. Its
stress is 0.0669873. We column-center the configurations and scale them
so that they are actually stationary points, i.e. so that η2(X) = ρ(X) and
η2(Y ) = ρ(Y ). The example is chosen in such a way that there are non-zero
α and β such that d12(αX + βY ) = 0. In fact d12 is the only distance that
can be made zero by a non-trivial linear combination.

Another way of looking at the two configurations is that X are four points
equally spaced on a circle, and Y are three points equally spaced on a circle
with the fourth point in the center of the circle. De Leeuw (1988) erroneously
claims that Y is a non-isolated local minimum of stress, but Trosset and
Mathar (1997) have shown there exists a descent direction at Y , and thus
Y is actually a saddle point. Of course the stationary points defined by X
and Y are far from unique, because we can permute the four points over the
corners of the square and the triangle in many ways.

3.6.1 Coefficient Space

Configurations as a linear combination of a number of given configurations
have already been discussed in general in chapter 2, section 3 as the trans-
formation from configuration space to coefficient space. Since we are dealing
here with the special case of linear combinations of only two configurations
we specialize some of these general results.

We start with d
(
ijθ) = θ′Tijθ, where θ has elements α and β, and where T is

the 2 × 2 matrix with elements

tij :=
[
tr X ′AijX tr X ′AijY
tr Y ′AijX tr Y ′AijY

]
(3.12)
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Then

σ̃(θ) := 1 − 2 θ′C(θ)θ + θ′Uθ, (3.13)

where, using Z(θ) = αX + βY ,

C(θ) :=
[
tr X ′B(Z(θ))X tr X ′B(Z(θ))Y
tr Y ′B(Z(θ))X tr Y ′B(Z(θ))Y

]
, (3.14)

and

U :=
[
tr X ′V X tr X ′V Y
tr Y ′V X tr Y ′V Y

]
. (3.15)

We have used σ̃ in equation (3.13) to distinguish stress on the two-
dimensional space of coefficients from stress on the eight-dimensional space
of 4 × 2 configurations. Thus σ̃(α, β) = σ(αX + βZ).
The gradient at θ is

∇σ̃(θ) = Uθ − C(θ)θ, (3.16)

and the Hessian is

∇2σ̃(θ) = U −
∑∑

1≤i<j≤n

wij
δij

dij(θ)

{
Tij − Tijθθ′Tij

θ′Tijθ

}
. (3.17)

Theorem 3.2. If B(X)X = V X and θ =
[
1 0

]
then C(θ)θ = Uθ.

Proof. If B(X)X = V X and θ =
[
1 0

]
then, by equations (3.14) and (3.15),

U − C(θ) =
[
0 0
0 tr Y ′(V − B(X))Y

]
. (3.18)

Thus (U − C(θ))θ = 0.
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Thus each stationary point of σ gives a stationary point of σ̃. The other way
around, however, we are not so lucky.

Theorem 3.3. If C(θ)θ = Uθ and if the n × 2p matrix
[
X Y

]
has rank

n − 1 then B(Z)Z = V Z.

Proof. If C(θ)θ = Uθ then both tr X ′(V − B(Z)Z) = 0 and tr Y ′(V −
B(Z))Z = 0. If the n × 2p matrix

[
X Y

]
has rank n − 1 then this implies

(V − B(Z))Z = 0.

In our example the singular values of
[
X Y

]
are 0.4879059, 0.4333287,

0.2242285, 1.4867245 × 10−17 and thus there is a one-one correspondence
between stationary points of σ and σ̃.

Theorem 3.4. If B(X)X = V X and θ =
[
1 0

]
then

1. If tr Y ′(V − B(X))Y > 0 then σ has a local minimum at theta.
2. If σ has a saddle point at θ then tr Y ′(V − B(X))Y < 0.

Proof. Suppose B(X)X = V X and θ =
[
1 0

]
. Then, from (3.17) and

(3.18),

∇2σ(θ) =
[
0 0
0 tr Y ′(V − B(X))Y

]
+
∑∑

1≤i<j≤n

wij
δij

dij(θ)
Tijθθ′Tij

θ′Tijθ
.

In our example tr X ′(V − B(Y ))X is -0.1502768 and tr Y ′(V − B(X))Y is
-0.0533599.
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3.6.2 Global Perspective

We first make a global perspective plot, over the range (−2.5, +2.5).

theta_1

th
et

a_
2

stress

Figure 3.2: Global Perspective

We see the symmetry, following from the fact that stress is even. We also see
the local maximum at the origin, where stress is not differentiable. Also note
the ridge, where d12(θ) = 0 and where stress is not differentiable either. The
ridge shows nicely that on rays emanating from the origin stress is a convex
quadratic. Also, far away from the origin, stress globally behaves very much
like a convex quadratic (except for the ridge). Clearly local minima must be
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found in the valleys surrounding the small mountain at the origin, all within
the sphere with radius

√
2.

3.6.3 Global Contour

Figure 3.2 is a contour plot of stress over (−2, +2) ⊗ (−2, +2). The red line
is {θ | d12(θ) = 0}. The blue line has the minimum of the convex quadratic
on each of the rays through the origin. Thus all local minima, and in fact all
stationary points, are on the blue line. Note that the plot uses θ to define the
coordinate axes, not γ = (α, β). Thus there are no stationary points at (0, 1)
and (1, 0), but at the corresponding points (1.3938469, 0) and (1.0406404,
0.8849253) in the θ coordinates (and, of course, at their mirror images).
Besides the single local maximum at the origin, it turns out that in this
example there are five pairs of stationary points. Or, more precisely, I have
not been able to find more than five. Each stationary point θ has a mirror
image −θ. Three of the five are local minima, two are saddle points. Local
minima are plotted as blue points, saddle points as red points.

3.6.4 Stationary Points

3.6.4.1 First Minimum

We zoom in on the first local minimum at (1.0406404, 0.8849253). Its stress
is 0.0669873, and the corresponding configuration has three points in the
corners of an equilateral triangle and the fourth point in its centroid. Note
that this local minimum is a saddle point in configuration space R4×2 (Trosset
and Mathar (1997)). The eigenvalues of B(θ) are (1.3686346, 1) and those
of the Hessian I − H(θ) are (1, 0.0817218). The area of the contour plot
around the stationary value is in figure 3.4.

3.6.5 Second Minimum

The second local minimum (which is the global minimum) at (1.3938469, 0)
has stress 0.0285955. The configuration are the four points at the corners
of a square. The eigenvalues of B(θ) are (1.1362799, 1) and those of the
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Hessian I − H(θ) are (1, 0.3743105). The area of the contour plot around
the stationary value is in figure 3.5.
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Figure 3.5: Contour Plot Second Minimum

3.6.6 Third Minimum

The third local minimum at (0.1096253, 1.3291942) has stress 0.1106125, and
the corresponding configuration is in figure 3.6.
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The eigenvalues of B(θ) are (1.5279386, 1) and those of the Hessian I −H(θ)
are (1, 0.2362079). The area of the contour plot around the stationary value
is in figure 3.7
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Figure 3.7: Contour Plot Third Minimum
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3.6.7 First Saddle Point

The saddle point at (0.3253284, 1.2916758) has stress 0.1128675, and the
corresponding configuration is in figure 3.8.
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Figure 3.8: Configuration First Saddlepoint

The eigenvalues of B(θ) are (1.7778549, 1) and those of the Hessian I −H(θ)
are (1, -0.311088). The area of the contour plot around the stationary value
is in figure 3.9

3.6.8 Second Saddle Point

The saddle point at (1.1238371, 0.7762046) has stress 0.0672483 and the
corresponding configuration is in figure 3.10

The eigenvalues of B(θ) are (1.4111962, 1) and those of the Hessian I −H(θ)
are (1, -0.0841169). The area of the contour plot around the stationary value
is in figure 3.11
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3.7 Another Look

Remember that ρ(θ) = θ′B(θ)θ. Thus σ(λθ) = 1 − λρ(θ) + 1
2λ2θ′θ, and

min
λ

σ(λθ) = 1 − 1
2

ρ2(θ)
θ′θ

.

Thus we can minimize σ over θ by maximizing ρ over the unit circle S :=
{θ | θ′θ = 1}. This is a nice formulation, because ρ is norm, i.e. a homoge-
neous convex function of θ. Consequently we have transformed the problem
from unconstrained minimization of the DC function (i.e. difference of convex
functions) stress to that of maximization of a ratio of norms. In turn this is
equivalent to maximization of the convex function ρ over the unit circle, or,
again equivalently, over the unit ball, a compact convex set. This transform
was first used in MDS by De Leeuw (1977a), partly because it made the
theory developed by Robert (1967) available.

The levels sets {θ | ρ(θ) = κ} are the ρ-circles defined by the norm ρ.
The corresponding ρ-balls {θ | ρ(θ) ≤ κ} are closed and nested convex sets
containing the origin. Thus we want to find the largest ρ-circle that still
intersects S. The similarity with the geometry of eigenvalue problems is
obvious.

In our example we know that the global optimum of stress is at (1.3938469, 0),
and if we project that point on the circle it becomes (1, 0). The corresponding
optimal ρ is 1.3938469. Figure 3.12 gives the contourplot for ρ, with the outer
ρ-circle corresponding with the optimal value. The fact that the optimal
value contour is disjoint from the interior of S is necessary and sufficient for
global optimality (Dür, Horst, and Locatelli (1998)). Notice the sharp corners
in the contour plot, showing the non-diffentiability of ρ at the points where
d12(θ) = 0. We could also look for the minimum of ρ on the unit circle, which
means finding the largest ρ-circle that touches S on the inside. Inspecting
figure 3.12 shows that this will be a point where ρ is not differentiable, i.e.
a point with d12(θ) = 0. This minimum ρ problem does not make much
sense in the context of multidimensional scaling, however, and it not related
directly to the minimization of stress.
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3.8 A Final Look

Now that we know that the MDS problem is equivalent to maximizing ρ
on the unit circle, we can use nonlinear coordinates (θ1, θ2) = (sin ξ, cos ξ)
to reduce the problem to a one-dimensional unconstrained one in, say, “cir-
cle space’ ’. Thus, with the same abuse of notation as for stress, ρ(ξ) :=
ρ(sin ξ, cos ξ), and we have to maximize ρ over 0 ≤ ξ ≤ π.

In figure 3.13 we have plotted ρ as a function of η. There are blue vertical
lines at the three local minima in coefficient space, red vertical lines at the
stationary points, and a green vertical line where d12(ξ) = 0. Note that in
circle space stress has both multiple local minima and multiple local maxima.

From lemma xxx we see that the second derivative D2ρ(ξ) is equal to
tr H(ξ) − ρ(ξ). For the three local minima in coordinate space we find
second derivatives 0, 0, 0 in circle space, i.e. they are properly converted to
local maxima. The two stationary points in coordinate space have second
derivatives 0, 0, and are turned into local minima.

For more general cases, with a basis of n configurations, we know from
Lyusternik and Schnirelmann (1934) that a continuously differentiable even
function on the unit sphere in Rn has at least n distinct pairs of stationary
points.

3.9 Discussion

Note that we have used σ for three different functions. The first one with
argument Z is defined on configuration space, the second one with argument
γ on coefficient space, and the third one with argument θ also on coefficient
space. This is a slight abuse of notation, rather innocuous, but we have to
keep it in mind.

From lemma xxx we see that Dσ(X) = Dσ(Y ) = 0 then Dσ(1, 0) =
Dσ(0, 1) = 0. Thus stationary points in configuration space are preserved
as stationary points in coefficient space, but the reverse implication may
not be true. If D2σ(X) and D2σ(Y ) are positive semi-definite, then so
are D2σ(1, 0) and D2σ(0, 1). Thus local minima are preserved. But it
is entirely possible that D2σ(X) and/or D2σ(Y ) are indefinite, and that



108 CHAPTER 3. STRESS SPACES

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.
25

1.
30

1.
35

1.
40

xi

rh
o

Figure 3.13: One-dimensional Rho
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D2σ(1, 0) and/or D2σ(0, 1) are positive semi-definite. Thus saddle points in
configuration space can be mapped into local minima in coefficient space.
As we will see this actually happens with Y , the equilateral triangle with
center, in our example.

3.10 Coordinates
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Let’s look at a small example with four points, all dissimilarities equal, and
all weights equal to one. There is a local minimum with four points in the
corners of a square, with stress equal to 0.0285955. And there is another local
minimum with three points forming an equilateral triangle, and the fourth
point in the center. This has stress 0.0669873. We can compute stress for
all points of the form αX + βY , where X and Y are the two local minima.
Figure 3.14 has a contour plot of σ(α, β), showing the local minima at (1, 0)
and (0, 1), and the local maximum at (0, 0).
Alternatively, we can plot stress on the line connecting X and Y . Note
that although stress only has a local maximum at the origin in configuration
space, it can very well have local maxima if restricted to lines. In fact on a
line connecting two local minima there has to be at least one local maximum.
A fundamental result, which forms the basis of chapter 13 in this book, is
that σ is convex on Gramian Space, i.e. on the closed convex cone of all
C ≳ 0.
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Chapter 4

Classical Multidimensional
Scaling

In the early days, exemplified by Messick and Abelson (1956), the key math-
ematical result used in MDS was Schoenberg’s theorem (Schoenberg (1935)),
which was made available to psychometricians by G. Young and Householder
(1938). Statisticians came to the scene much later, not until Gower (1966).

Schoenberg’s theorem gives necessary and sufficient conditions for a sym-
metric, hollow, and non-negative matrix of dissimilarities to be the distance
matrix of n points in Rp. Several variations of this basic theorem are possible
(see Blumenthal (1953), chapter 43). We give the result in the form popular-
ized by W. S. Torgerson (1958), with a simplified proof, using notation and
terminology due to Critchley (1988).

Classical scaling can be thought of as an independent MDS method, in fact
as the only MDS method available until the early 1960’s. More commonly
these days it is a method to provide a generally excellent starting point for
iterative procedures to minimize stress.

113



114 CHAPTER 4. CLASSICAL MULTIDIMENSIONAL SCALING

4.1 Algebra

4.1.1 Torgerson Transform

The Torgerson transform of a matrix is a linear function from the space of real
symmetric hollow matrices to the space of doubly-centered real symmetric
matrices defined as

τ(S) := −1
2JSJ, (4.1)

with J the centering matrix I − 1
n
ee′. For historical reasons @(eq:torgerson)

may be more familiar in elementwise notation. Spelled out it is

τij(S) = −1
2{sij − si• − s•j + s••}, (4.2)

where bullets are indices over which we average. The symbol τ was chosen
by Critchley (1988) to honor Torgerson.
Some simple calculation with (4.2), using the hollowness of S, gives

τii(S) + τjj(S) − 2τij(S) = sij. (4.3)

Accordingly, Critchley (1988) defines a linear operator κ on the space of
real symmetric matrices by κ(S) := sii + sjj − 2sij. From (4.3) we see that
κ(τ(S)) = S. Also for all double-centered S we have τ(κ(S)) = S. Thus τ
and κ are mutually inverse (Critchley (1988), theorem 2.2).

4.1.2 Schoenberg’s Theorem

Theorem 4.1. There is an X ∈ Rn×p such that ∆ = D(X) if and only if
τ(∆(2)) is positive semi-definite of rank r ≤ p.

Proof. If ∆ are the distances of a column-centered p-dimensional configura-
tion X, then the squared dissimilarities ∆(2) are of the form ue′ +eu′ −2XX ′,
where ui = x′

ixi are the squared row lengths. This implies τ(∆(2)) = XX ′,
which is positive semi-definite of rank r = rank(X) ≤ p.
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Conversely, suppose τ(∆(2)) = XX ′. Applying κ to both sides and using
κ(XX ′) = D(2)(X) gives ∆(2) = D(2)(X).

Accordingly, we call a dissimilarity matrix ∆ Euclidean if it is symmetric,
hollow, and non-negative and has τ(∆(2)) ≳ 0. The dimension of a Euclidean
dissimilarity matrix is the rank of τ(∆(2)), which is always less than or equal
to n − 1.

4.2 Approximation

4.2.1 Low Rank Approximation of the Torgersen
Transform

In classical MDS we minimize

σ(X) = tr
{
W (τ(∆(2)) − XX ′)W

}2
(4.4)

over X ∈ Rn×p, where W is a square non-singular matrix of weights. The
minimizer X for the loss function in (4.4) is given by a slight variation of
Eckart and Young (1936), discussed first by Keller (1962). See also De Leeuw
(1974) and the generalizations to rectangular and singular weight matrices
in De Leeuw (1984d). The solution is X = W −1KΛ, where K are the
normalized eigenvectors corresponding with the p largest eigenvalues of the
positive part of W (τ(∆(2))W (i.e. the matrix that results by replacing the
negative eigenvalues with zeroes). Thus the rank of the solution X is equal
to the minimum of p and the number of positive eigenvalues of τ(∆(2).
In the original versions of classical scaling (W. S. Torgerson (1952), W. S.
Torgerson (1958)) there are no weights and the problem that the Torgerson
transform may be indefinite is ignored. In fact, going from τ(∆(2) to X is
done by “any method of factoring”, including the centroid method, so no
specific loss function is minimized.
The loss function (4.4) has been called, somewhat jokingly, strain by Takane,
Young, and De Leeuw (1977), mainly because stress and sstress had already
been taken. Stress is a weighted least squares loss function defined on the
distances, sstress on the squared distances, and strain on the inner products.
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4.2.2 Minimization of Strain

It may be considered a disadvantage of the classical approach, even if it is
described as the minimization of strain, that the MDS equations are ∆(2) =
D(2)(X) while loss is measured on the scalar products and not the distances
or the squared distances.

It was first pointed out by De Leeuw and Heiser (1982) that strain can also
be written as a loss function defined on the squared distances. In fact strain
is equal to

σ(X) = 1
4tr

{
WJ(∆(2) − D(2)(X))JW

}2
, (4.5)

i.e. to an appropriately weighted version of sstress.

An advantage of the classical scaling approach via minimizing strain is that
there is no local minimum problem. Finding the optimal configuration is
an eigenvalue problem, which allows us to find the global minimum. This
has not been emphasized enough, so I’ll emphasize it here once again. If
iterative basic MDS algorithms use the classical minimum strain solution as
their starting point, then they start at the global minimum of a related loss
function. Since they are descent algorithms they will improve their own loss
functions, but having such an excellent starting point means they avoid many
local minima.

Another advantage of the loss function formulation in @ref{eq:strainer} is
that it is immediately obvious how to generalize classical scaling when there
are missing data or when there is only rank order information. As with stress
and sstress we minimize strain over both the configuration X and the missing
information.

4.2.3 Approximation from Below

Suppose the Torgerson transform τ(∆(2) is PSD of rank r, with eigen de-
composition KΛ2K ′, and, using the largest p eigenvalues with corresponding
eigenvectors, define Cp := KpΛ2

pK ′
p. Then, in the Loewner order,

C1 ≲ C2 ≲ · · · ≲ Cr = τ(∆(2)).
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Define Xp = KpΛp. Then applying Critchley’s inverse Torgerson transform
κ it follows from . . . that elementwise

D(2)(X1) ≤ D(2)(X2) ≤ · · · ≤ D(2)(Xr) = ∆(2),

and thus also
D(X1) ≤ D(X2) ≤ · · · ≤ D(Xr) = ∆.

Thus in the PSD case classical scaling we approximate the dissimilarities
from below. This result is implicit in Gower (1966) and explicit in De Leeuw
and Meulman (1986) and Meulman (1986).
If τ(∆(2) is not psd then

D(X1) ≤ D(X2) ≤ · · · ≤ D(Xp) = · · · = D(Xn−1) ≥ ∆.

Benzecri plot
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Chapter 5

Minimization of Basic Stress

5.1 Gradient Methods

The initial algorithms for nonmetric MDS Kruskal (1964b) and Guttman
(1968) were gradient methods. Thus the gradient, or vector of partial deriva-
tives, was computed in each iteration step, and a step was taken in the direc-
tion of the negative gradient (which is also known as the direction of steepest
descent).

Informally, if f is differentiable at x then f(x + h) ≈ f(x) + h′Df(x)
and the direction h that minimizes the diferential (the second term) is
−Df(x)/∥Df(x)∥, the normalized negative gradient. Although psychome-
tricians had been in the business of minimizing least squares loss functions
in the linear and bilinear case, this result for general nonlinear functions
was new to them. And I, and probably many others, hungrily devoured the
main optimization reference in Kruskal (1964b), which was the excellent
early review by Spang (1962).

Kruskal’s paper also presents an elaborate step-size procedure, to determine
how far we go in the negative gradient direction. In the long and convoluted
paper Guttman (1968) there is an important contribution to gradient meth-
ods in basic MDS. Let’s ignore the complications arising from zero distances,
which is after all what both Kruskal and Guttman do as well, and assume
all distances at configuration X are positive. Then stress is differentiable at
X, with gradient

119
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∇σ(X) = −
n∑

i=1

n∑
j=1

wij(δij − dij(X)) 1
dij(X)(ei − ej)(xi − xj)′

Geometrical interpretation - Gleason, Borg-Groenen p 20

Guttman C-matrix

Ramsay C-matrix

5.1.1 Step Size

5.1.1.1 Kruskal Step Size

elaborate

5.1.1.2 Guttman Step Size

constant

5.1.1.3 Cauchy Step Size

In the classical version of the steepest descent method we choose the step-size
α by minimizing h(α) = f(x + αy) over α

d+h(α; β) = lim
ϵ↓0

f(x + (α + ϵβ)y) − f(x + αy)
ϵ

= β d+f(x + αy; y)

or local minimum closest to zero

Newton version

d2
+h(α; β, γ) = βγd2

+f(x + αy; y, y)
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5.1.1.4 Majorization Step Size

Lagrange form of the remainder

e(ϵ) = η2(X + ϵY ) r(ϵ) = ρ(X + ϵY ) s(ϵ) = σ(X + ϵY ) = 1 − r(ϵ) + 1
2e(ϵ)

r(ϵ) ≥ r(0) + r′(0)ϵ

e(ϵ) = e(0) + e′(0)ϵ + 1
2e′′(0)ϵ2

s(ϵ) ≤ s(0) + s′(0)ϵ + 1
2e′′(0)ϵ2

ϵ̂ = s′(0)
e′′(0)

underestimates newton step

r(ϵ) ≥ r(0) + ϵ r′(0) + 1
2ϵ2 min

0≤ξ≤ϵ
r′′(ξ)

ϵ̂ = s′(0)
e′′(0) − min0≤ξ≤ϵ r′′(ξ)

r′′(ξ) = D2σ(X + ξY ; Y, Y )

5.2 Initial Configurations

Random

L

Torgerson

Guttman
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5.3 On MM Algorithms

The term majorization is used in mathematics in many different ways. In this
book we use it as a general technique for the construction of stable iterative
minimization algorithms. An iterative minimization algorithm is stable if it
decreases the objective function in each iteration.
Ortega, Rheinboldt Weber Bohning, Lindsay Vosz, Eckart
Special cases of majorization had been around earlier, most notably the sma-
cof algorithm for MDS and the EM algorithm for maximum likelihood with
missing data, but in full generality majorization was first discussed in De
Leeuw (1994) and Heiser (1995).
Majorization can be used to construct minimization methods, while minoriza-
tion can construct maximization methods. This cleverly suggests to use the
acronym MM algorithms for this class of techniques. An excellent compre-
hensive account of MM algorithms is Lange (2016 (in press)). Another such
account is slowly growing in one of the companion volumes in this series of
personal research histories (De Leeuw (2021)).
Here we just give a quick introduction to majorization. Suppose f is a real-
valued function on X ⊆ Rn. Then a real-valued function g on X ⊗ X is said
to majorize f on X if

g(x, y) ≥ f(x) ∀(x, y) ∈ X ⊗ X, (5.1)

and

g(y, y) = f(y) ∀y ∈ X. (5.2)

Thus for each y ∈ X the function g(•, y) lies above f , and it touches f from
above at x = y. Majorization is strict if g(x, y) = f(x) if and only if x = y,
i.e. if y is the only point in X where g(•, y) and f touch.
A majorization algorithm to minimize f on X starts with an initial estimate,
and then updates the estimate in iteration k by

x(k+1) ∈ argmin
x∈X

g(x, x(k)), (5.3)
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with the understanding that the algorithms stops when x(k) ∈ argminx∈X g(x, x(k)).
If we do not stop we have an infinite sequence satisfying the sandwich in-
equality

f(x(k+1)) ≤ g(x(k+1), x(k)) ≤ g(x(k), x(k)) = f(x(k)). (5.4)

The first inequality in this chain comes from (5.1). It is strict when ma-
jorization is strict. The second inequality comes from (5.3), and it is strict
if g(•, y) has a unique minimum on X for each y.
Necessary conditions through MM

5.4 Smacof Algorithm

5.4.1 Guttman Transform

The Guttman Transform is named to honor the contribution of Louis
Guttman to non-metric MDS (mainly, but by no means exclusively, in
Guttman (1968)). Guttman introduced the transform in a slightly different
way, and partly for different reasons. In chapter 5 we shall see that the
Guttman Transform plays a major role in defining and understanding the
smacof algorithm.
The Guttman Transform of a configuration X is defined as

Γ(X) := V +B(X)X, (5.5)

which is simply equal to Γ(X) = n−1B(X)X if all weights are equal. For
some purposes it is useful to think of V +B(X)X as a function of the weights,
the dissimilarities, and the configuration (see, for exam0ple, chapter 24), but
we reserve the name Guttman transform for a map from Rn×p into Rn×p .
What we have called B(X) is what Guttman calls the correction matrix or
C-matrix (see De Leeuw and Heiser (1977) for a comparison).
Completing the square in equation (2.19) gives

σ(X) = 1 + η2(X − Γ(X)) − η2(Γ(X)), (5.6)
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which shows that

1 − η2(Γ(X)) ≤ σ(X) ≤ 1 + η2(X − Γ(X)). (5.7)

Note that it follows from (5.7) that σ(X) ≥ 1 − η2(Γ(X)), with equality if
and only if X = Γ(X).

Theorem 5.1. The Guttman transform is

• self-scaling (a.k.a. homogeneous of degree zero) because Γ(αX) = Γ(X)
for all −∞ < α < +∞. With our definition (2.16) of B(X) we also
have Γ(0) = 0.

• self-centering, because Γ(X + eµ′) = Γ(X) for all µ ∈ Rp.

• Bounded

• Lipschitz

::: { ,proof} We already know, from the CS inequality, that

ρ(X) ≤ η(X). (5.8)

With the Guttman transform in hand we can apply CS once more, and find

ρ(X) = tr X ′B(X)X = tr X ′V Γ(X) ≤ η(X)η(Γ(X)) (5.9)

Note that the Guttman transform is bounded. In fact, using the Euclidean
norm throughout,

Γ(X) ≤ ∥V +∥∥B(X)X∥

Now
B(X)X =

∑∑
1≤i<j≤n

wijδij
xi − xj

dij(X) (ei − ej),

and thus

∥B(X)X∥ ≤
∑∑

1≤i<j≤n

wijδij

∥∥∥∥∥xi − xj

dij(X)

∥∥∥∥∥ ∥ei − ej∥ =
√

2
∑∑

1≤i<j≤n

wijδij,



5.4. SMACOF ALGORITHM 125

and
∥Γ(X)∥ ≤

√
2∥V +∥

∑∑
1≤i<j≤n

wijδij.

In fact

B(X)X − B(Y )Y =
∑∑

1≤i<j≤n

wijδij

{
xi − xj

dij(X) − yi − yj

dij(Y )

}
(ei − ej),

and thus
∥Γ(X) − Γ(Y )∥ ≤ 2∥V +∥

∑∑
1≤i<j≤n

wijδij,

and thus the Guttman transform is Lipschitz. ::: ;’ ’ ’ ’ytyh ### Subdiffer-
entials

5.4.2 Derivative

The basic smacof algorithm, which is the main building block for most of
the MDS techniques discussed in this book, updates the configuration X(k)

in iteration k by

X(k+1) = Γ(X(k)) = V +B(X(k))X(k). (5.10)

so that first X(1) = Γ(X(0)), then X(2) = Γ(X(1)) = Γ(Γ(X(0))), and generally
X(k) = Γk(X0), where Γk is the k-times composition (or iteration) of Γ.

We shall show in this chapter that as k → ∞ both
σ(X(k+1))−σ(X(k)) → 0, and η2(X(k)−X(k+1)) = (X(k+1)−X(k))′V (X(k+1)−
X(k)) → 0. The iterations stop either if σ(X(k)) − σ(X(k+1)) < ϵ or if
η2(X(k) − X(k+1)) < ϵ, where the ϵ are small cut-off numbers chosen by the
user, or if we reach a user-defined maximum number of iterations, and we
give up on convergence. The user also chooses if the stop criterion is based
on function value changes or configuration changes.
Some quick remarks on implementation. We only have to compute V + once,
but premultiplying by a full symmetric matrix in each iteration does add quite
a few multiplications to the algorithm. If all wij are one, then V + = 1

n
J and

thus Γ(X(k)) = 1
n
B(X(k))X(k). In fact we do not even have to carry out this

division by n, because the basic algorithm is self scaling. which means in
this context that Γ(αX) = Γ(X) for all α ≥ 0.
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5.4.3 Global Convergence

The iterations in (5.10) start at some X(0) and then generate five sequences
of non-negative numbers. Define λ(X) := ρ(X)/η(X) and Γ(X) := η2(X −
Γ(X)). The five sequences we will look at are

σk := σ(X(k)),
ρk := ρ(X(k)),
ηk := η(X(k)),
λk := λ(X(k)),
Γk := Γ(X(k)),

(5.11)

Depend on X(0)

Zangwill
Argyros

5.4.3.1 From the CS Inequality

Theorem 5.2.

1. σk is a decreasing sequence, bounded below by 0.

2. ρk, ηk, amd λk are increasing sequences, bounded above by 1.

3. Γk is a null-sequence.

To prove convergence of these sequences we slightly modify and extend the
proofs in De Leeuw (1977a) and De Leeuw and Heiser (1977) (while I say to
myself: that’s 44 years ago).

Proof. 1. For each X ∈ Rn×p we have ρ(X) ≤ η(X) and thus λ(X) ≤ 1.

2. For each X, Y ∈ Rn×p we have ρ(X) ≥ tr X ′B(Y )Y and thus ρ(X) ≥
tr X ′V Γ(Y ). Taking X = Γ(Y ) we see that ρ(X) ≥ η2(Γ(Y )). Now
σ(Γ(Y )) = 1 − 2ρ(Γ(Y )) + η2(Γ(Y )) ≤ 1 − η2(Γ(Y )) and thus for all X
η2(Γ(X)) ≤ 1.
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3. For each X ∈ Rn×p we have ρ(X) = tr X ′B(X)X and thus ρ(X) ≤
η(X)η(Γ(X)) and thus λ(X) ≤ η(Γ(X))

ρ(X(k)) = tr {X(k)}′V X(k+1) ≤ η(X(k))η(X(k+1)),

ρ(X(k+1)) ≥ tr {X(k+1)}′B(X(k))X(k) = η2(X(k+1)),

η(X(k)) ≤ λ(X(k)) ≤ η(X(k+1))

and

ρ(X(k)) ≤ η(X(k)

X(k+1) ρ(X(k+1)) ≤ ρ(X(k+1))

5.4.3.2 From Majorization

Smacof is based on the majorization, valid for all configurations X and Y ,

σ(X) ≤ 1 + η2(X − Γ(Y )) − η2(Γ(Y )), (5.12)

with equality if and only if X ∝ Y . If Y = αX for some α then

σ(X) = 1 + η2(X − Γ(Y )) − η2(Γ(Y )), (5.13)

and specifically we have (5.13) if Y = X.
Now suppose we have an Y with Y ̸= Γ(Y ). If η2(X −Γ(Y )) ≤ η2(Y −Γ(Y ))
then

σ(X) ≤ 1 + η2(Y − Γ(Y )) − η2(Γ(Y )) = σ(Y ) (5.14)

The obvious choice for X is X = Γ(Y ), which makes η2(X − Γ(Y )) = 0, and
thus

σ(X) ≤ 1 − η2(Γ(Y )) < 1 + η2(Y − Γ(Y )) − η2(Γ(Y )) = σ(Y ) (5.15)
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5.4.3.3 From Ratio of Norms

De Leeuw (1977a)

DC Algorithm

Robert

5.4.4 Component Rotated Smacof

Consider the modified smacof iterations X̃(k+1) = X(k+1)L(k+1), where L(k+1)

are the normalized eigenvectors of {X(k+1)}T V X(k+1). Then

σ(X̃(k)) = σ(X(k))

Thus the modified update produces the same sequence of stress values as the
basic update. Also

Γ(X̃(k)) = Γ(X(k))L(k)

Thus X̃(k) and X(k) differ by a rotation for each k. It follows that we can
actually compute X̃(k) from the basic sequence X(k) by rotating the X(k)

to principal components. Specifically if X∞ is a subsequential limit of X(k)

then the corresponding limit of X̃(k) is X∞ rotated to principal components.
Modifying the intermediate updates is just a waste of time, we can simply
rotate the final smacof solution. And we should, as we explain in the next
section, 5.4.5.

5.4.5 Local Convergence

DΓ(X)(Y ) = V +

B(X)Y −
∑∑

1≤i<j≤n

wij
δij

dij(X)

(
tr Y ′AijX

d2
ij(X)

)
Aij


For any X: one zero eigenvalue DΓ(X)(X) = 0

If on Rn×p then an additional p zero eigenvalues DΓ(X)(eµT ) = 0

For X = Γ(X) and M anti-symmetric: 1
2p(p − 1)E unit eigenvalues

DΓ(X)(XM) = Γ(X)M = XM
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5.4.5.1 Cross Product Iterations

Map of C into C. No rotational indeterminacy. Same stress sequence.

C(k+1) = V +B(C(k))C(k)B(C(k))V +

Map of D into D. Guttman transform as function of distances. Not very
nice.

D(k+1) := D(X(k+1)) = D(Γ(X(k)))

5.4.5.2 Rotation to PC

We suppose the configfuration X is n × p, with rank p. If the singular value
decomposition is X = KΛL′ then the rotation to principle components is
Γ(X) := KΛ = XL. Thus DΓ(X)(Y ) = Y L + XDL(X)(Y ). So we need to
compute DL(X), with L the right singular vectors of X, i.e. the eigenvectors
of XT X. We use the methods and results from De Leeuw (2007b), which were
applied to similar problems in De Leeuw (2008b), De Leeuw and Sorenson
(2012), and De Leeuw (2016a).

Theorem 5.3. If the n × p matrix has rank p, singular value decomposition
X = KΛLT , with all singular values different, then Γ(X + ∆) = Γ(X) +
∆L + XLM + o(∥∆∥), where M is antisymmetric with off-diagonal elements

mij = λisij + λjsji

λ2
i − λ2

j

. (5.16)

Proof. The proof involves computing the derivatives of the singular value
decomposition of X, which is defined by the equations

XL = KΛ, (5.17)
XT K = LΛ, (5.18)
KT K = I, (5.19)
LT L = LLT = I. (5.20)
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We now perturb X to X + ∆, which perturbs L to L + L∆ + o(∥∆∥), K to
K + K∆ + o(∥∆∥), and Λ to Λ + Λ∆ + o(∥∆∥). Substutute this into the four
SVD equations for X + ∆ and keep the linear terms.

XL∆ + ∆L = K∆Λ + KΛ∆, (5.21)
XT K∆ + ∆T K = L∆Λ + LΛ∆, (5.22)

LT
∆L + LT L∆ = 0, (5.23)

KT
∆K + KT K∆ = 0. (5.24)

Define M := LT L∆ and N := KT K∆. Then equations (5.23) and (5.24) say
that M and N are antisymmetric. Also define S := KT ∆L. Premultiplying
equation (5.21) by KT and (5.22) by LT gives

ΛM + S = NΛ + Λ∆, (5.25)
ΛN + ST = MΛ + Λ∆. (5.26)

Either of these two equations gives, using the antisymmetry, and thus hol-
lowness, of M and N , that Λ∆ = diag(S). Define the hollow matrix U :=
S − diag(S). Then

ΛM − NΛ = U, (5.27)
ΛN − MΛ = UT . (5.28)

Premultiply (5.27) and postmultiply (5.28) by Λ.

Λ2M − ΛNΛ = ΛU, (5.29)
ΛNΛ − MΛ2 = UT Λ. (5.30)

If we add these two equations we can solve for the off-diagonal elements of
M and find the expression in the theorem. Since L∆ = LM this completes
the proof.
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5.4.6 Data Asymmetry

The non-basic situation in which there are asymmetric weights and/or asym-
metric dissimilarities in basic MDS is analyzed in De Leeuw (1977a), although
it is just standard linear least squares projection theory. We give a slightly
different partitionng ofd the sum of squares here. Note that it is not even
necessary that the weights and dissimilarities are hollow and/or non-negative.
We decompose the weights and dissimilarities additively into a symmetric
and anti-symmetric part. Thus wij = wS

ij + wA
ij and δij = δS

ij + δA
ij . Now

in general if A is anti-symmetric and B is symmetric, then tr AB = 0.
Also their Hadamard (element-wise) product A ∗ B is anti-symmetric, and
the Hadamard product of two anti-symmetric matrices is symmetric. Using
these rules gives after some calculation

σ(X) = 1
4

n∑
i=1

n∑
j=1

wij(δij − dij(X))2 =

= 1
4

n∑
i=1

wiiδ
2
ii + 1

2
∑∑

1≤i<j≤n

wS
ij

{
δij − dij(X)

}2
+ 1

2
∑∑

1≤i<j≤n

wijwji

wS
ij

{δA
ij}2,

(5.31)

where
δij := δS

ij +
wA

ijδ
A
ij

wS
ij

. (5.32)

Thus minimizing stress in the case of asymmetric weights and dissimilarities,
which even can be non-hollow and non-positive, reduces to a symmmetric
basic MDS problem for adjusted dissimilarities defined by equation (5.32).
If the original weights and dissimilarities are non-negative, then so are the
weights wS

ij and the dissimilarities δij.

5.4.7 Replications

If there are replications in basic MDS we can use a simple partitioning of
stress to reduce the problem to standard form. We start with

σ(X) = 1
2

m∑
k=1

∑∑
1≤i<j≤n

wijk(δijk − dij(X))2.#(eq : inddiffstress) (5.33)
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Let

wij• =
m∑

k=1
wijk (5.34)

δij• =
∑m

k=1 wijkδijk

wij•
. (5.35)

Then

σ(X) = 1
2
∑∑

1≤i<j≤n

wij•(δij• −dij(X))2 + 1
2

m∑
k=1

∑∑
1≤i<j≤n

wijk(δijk −δij•)2, (5.36)

and it suffices to minimize the first term, which is a standard basic MDS
problem.
In the nonmetric case, in which in principle each of the ∆k can be trans-
formed, we must alternate minimization of #ref(eq:inddiffstress) over the ∆k

and minimization of (5.36) over X. In the case in which Xk is different pover
replications we use the methods of chapter 16.

5.4.8 Negative Dissimilarities

σ(X) = 1 −
∑

k∈K1+

wkδkdk(X) +
∑

k∈K1−

wk|δk|dk(X) + 1
2
∑
k∈K

wkd2
k(X)). (5.37)

Split rho
Heiser (1991)

5.4.9 Normalization

In actual computer output using the scaling in formula (1.3) and (1.3) has
some disadvantages. There are, say, M non-zero weights. The summation in
#ref(eq:stressall) is really over M terms only. If n is at all large the scaled
dissimilarities, and consequently the distances and the configuration, will
become very small. Thus, in actual computation, or at least in the computer
output, we scale our dissimilarities as 1

2
∑∑

1≤j<i≤n wijδ
2
ij = M . So, we scale

our dissimilarities to one in formulas and to M in computations. Thus the
computed stress will b
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In fact, we do not even use it in our computer programs, except at the
very last moment when we return the final stress after the algorithm has
completed.

5.4.10 Unweighting

Consider the general problem of minimizing a least squares loss function,
defined as f(x) := (x − y)′W (x − y) over x in some set X, where W is a
symmetric weight matrix. Sometimes W complicates the problem, maybe
because it is too big, too full, too singular, or even indefinite. We will use
iterative majorization to give W a more subordinate role. See also Kiers
(1997) and Groenen, Giaquinto, and Kiers (2003).
Suppose z is another element of X. Think of it as the current best approxi-
mation to y that we have, which we want to improve. Then

f(x) = (x − y)′W (x − y)
= ((x − z) + (z − y))′W ((x − z) + (z − y))
= f(z) + 2(x − z)′W (z − y) + (x − z)′W (x − z)

(5.38)

Now choose a non-singular V such that W ≲ V and define u := V −1W (z−y).
Then we have the majorization

f(x) ≤ f(z)+2(x−z)′W (z−y)+(x−z)′V (x−z) = f(z)+2(x−z)′V u+(x−z)′V (x−z) = f(z)+(x−(z−u))′V (x−(z−u))−u′V u.
(5.39)

Here are some ways to choose V . We use λmax(W ) and λmin(W ) for the
largest and smallest eigenvalues of the symmetric matrix W .
For any W we can choose V = λmax(W )I. Or, more generally,
V = λmax(D−1W )D for any positive definite D. If W is singular we
can choose V = W + ϵD for any positive definite D. And in the unlikely
case that W is indefinite we can choose V = W + (ϵ − λmin(W ))I. But if W
is indefinite we have more serious problems.
In appendix A.1.19 the R function lsuw(), implements the iterative majoriza-
tion algorithm minimizing (x − y)′W (x − y) over x in some set X. One of
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the parameters of lsuw() is a function proj(), which projects a vector on X
in the metric define by V . The projection could be on the positive orthant,
on a cone with isotone vectors, on a linear subspace, on a sphere, on a set of
low-rank matrices, and so on.

As an example choose W as a banded matrix of order 10 with wij = 1 if
|i − j| ≤ 3 and i ̸= j, wij = i if i = j, and wij = 0 otherwise. We require all
10 elements of x to be the same, and we use V = λmax(W )I (the default).

The iterations are

w<-ifelse(outer(1:10,1:10,function(x,y) abs(x-y) <= 3),1,0)
w <- w + diag(0:9)
h1 <- lsuw(1:10, w, projeq)

If we use λmax(D−1W )D with D = diag(W ) for V we see the following
majorization iterations.

d <- diag(w)
v <- max(eigen((1 / d) * w)$values) * diag(d)
h2 <- lsuw(1:10, w, v = v, projeq)

So the second method of choosing V is a tiny bit less efficient in this
case, but it really does not make much of a difference. In both cases
x is 6.3009558, 6.3009558, 6.3009558, 6.3009558, 6.3009558, 6.3009558,
6.3009558, 6.3009558, 6.3009558, 6.3009558 with function value 595.6699029.

Apply to stress and to

Inner iterations, use one.

σc(X) :=
∑∑

1≤i<j≤n

∑∑
1≤k<l≤n

wijkl(δij − dij(X))(δkl − dkl(X))

If A ≤ B (elementwise) then ∑∑(bij − aij)(xi − xj)2 ≥ 0 and thus V (A) ≲
V (B).



5.5. STRESS ENVELOPES 135

5.4.10.1 Symmetric non-negative matrix factorization

wij = ∑r
s=1 v2

isv
2
js for all i ̸= j. Then

σ(X) =
p∑

s=1

∑∑
1≤i<j≤n

(δijs − dijs(X))2

with δijs := visvjsδij and dijs(X) := visvjsdij(X).

5.5 Stress Envelopes

intro

5.5.1 CS Majorization

Theorem 5.4. σ is the lower envelop of an infinite number of convex
quadratics.

Proof. By the CS inequality

dij(X) = max
Y

tr XT AijY

dij(Y ) , (5.40)

which implies

σ(X) = min
Y

(
1 − tr XT B(Y )Y + 1

2tr XT V X
)

, (5.41)

which is what we set out to prove.

We can use the lower envelop of a finite number of the quadratics from
theorem 5.4 to approximate stress. This is illustrated graphically, using a
small example in which the configuration is a convex combination of two
fixed configurations. Thus in the example stress is a function of the single
parameter 0 ≤ λ ≤ 1 defining the convex combination. In figure 5.1 stress
is in red, and we have used the three quadratics corresponding with λ equal
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to 0.25, 0.5, 0.75. The maximum of the three quadratics is in blue, and the
approximation is really good, in fact almost perfect in the areas where the
blue is not even visible. As an aside, we also see three points in the figure
where stress is not differentiable. The minimum of the three quadratics is
also not differentiable at a point, but that point is different from the points
where stress is non-smooth.
Note that by definition stress and the lower envelop of the quadratics are
equal at the three points where λ is 0.25, 0.5, 0.75, i.e at the three vertical
lines in the plot.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

lbd

Figure 5.1: Piecewise Quadratic Upper Approximation

5.5.2 AM/GM Minorization

Instead of approximating stress from above, we can also approximate it from
below.

Theorem 5.5. σ is the upper envelop of an infinite number of quadratics.

Proof. By AM/GM
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dij(X) ≤ min 1
2

1
dij(Y ){d2

ij(X) + d2
ij(Y )} (5.42)

Thus

σ(X) = max
Y

(
1 − 1

2ρ(Y ) + 1
2tr X ′(V − B(Y ))X

)
(5.43)
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Figure 5.2: Piecewise Quadratic Lower Approximation

Again we illustrate this result using a finite number of quadratics. In figure
5.2 we choose λ equal to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Although
we now use 11 quadratics, and thus force the envelop to be equal to the
function at the 11 points on the vertical lines in the plot, the approximation
is poor. This seems to be mainly because the convex-like function stress must
be approximated from below by quadratics which are often concave.
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5.5.3 Dualities

min
X

σ(X) = min
Y

(
1 − 1

2tr Y ′B(Y )V +B(Y )Y
)

=

1 − 1
2 max

Y
tr Y ′B(Y )V +B(Y )Y. (5.44)

Thus minimizing stress is equivalent to maximizing η2(V +B(X)X).

min
X

σ(X) ≥ max
B(Y )≲V

(1 − ρ(Y ))

By the minimax inequality minX σ(X) = minX maxY θ(X, Y ) ≥
maxY minX θ(X, Y ). Now minX θ(X, Y ) is −∞, unless B(Y ) ≲ V , in
which case minX θ(X, Y ) = 0. Thus

max
Y

min
X

θ(X, Y ) = max
B(Y )≲V

(1 − ρ(Y )) = 1 − min
B(Y )≲V

ρ(Y )

5.6 Smacof in Coefficient Space

5.7 Newton in MDS

5.7.1 Regions of Attraction

delta <- as.matrix (dist (diag (4)))
delta <- delta * sqrt (2 / sum (delta ˆ 2))

5.7.1.1 Smacof

We use the smacof() function from the code in the appendix with 100 dif-
ferent starting points of θ, equally spaced on the circle. Figure 5.3 is a
histogram of the number of smacof iterations to convergence within 1e-15.
In all cases smacof converges to a local minimum in coefficient space, never
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to a saddle point. Figure 5.4 shows which local minima are reached from the
different starting points. This shows, more or less contrary to what Trosset
and Mathar (1997) suggests, that non-global minima can indeed be points of
attraction for smacof iterations.
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Figure 5.3: Histogram Number of Smacof Iterations

5.7.1.2 Newton

We repeat the same exercise with Newton’s method, which also converges
from all 100 starting points in our example. In higher dimensions we may
not be so lucky.

The histogram of iteration counts is in figure 5.5. It shows in this example
that smacof needs about 10 times the number of iterations that Newton
needs. Because smacof iterations are much less expensive than Newton ones,
this does not really say much about computing times. If we look at figure 5.6
we see the problem with non-safeguarded Newton. Although we have fast
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Figure 5.4: Path Endpoints of Smacof Iterations
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convergence from all 100 starting points, Newton converges to a saddle point
in 45 cases.
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Figure 5.5: Histogram Number of Newton Iterations

5.8 Distance Smoothing

In sections 2.4 and 2.5 we show the lack of differentiability in basic MDS is
not a serious problem in the actual computation of local minima.

There is another rather straightforward way to circumvent the differentia-
bily issue, which actually may have additional benefits. The idea is to use
an approximation of the Euclidean distance that is as close as possible on
the positive real axis, but smooth at zero. This was first applied in unidi-
mensional MDS by Pliner (Pliner (1986), Pliner (1996)) and later taken up
and generalized to pMDS for arbitrary p, and even for arbitrary Minkovski
metrics, by Groenen, Heiser, and Meulman (1998) and Groenen, Heiser, and
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Meulman (1999). They coined the term distance smoothing for this variation
of the smacof framework for MDS.
Pliner (1986) uses a smooth approximation of the sign function, while Groe-
nen, Heiser, and Meulman (1998) borrow the smooth Huber approximation
of the absolute value function from robust regression. We use another clas-
sical and efficient approximation |x| ≈

√
x2 + ϵ2 to the absolute value func-

tion, used in image analysis, location analysis, and computational geometry
(De Leeuw (2018b), Ramirez et al. (2014)). In our context that becomes
dij(X) ≈ dij(X, ϵ) :=

√
d2

ij(X) + ϵ2. Note that on the non-negative reals

max(ϵ, dij(X)) ≤ dij(X, ϵ) ≤ dij(X) + ϵ. (5.45)
Figures 5.7 and 5.8 show the absolute value function and its derivative are
approximated for ϵ equal to 0, 0.01, 0.05, 0.1, 0.5.
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Figure 5.7: Function for Various Epsilon

The distance smoother we use fits nicely into smacof. Define Xϵ :=[
X | ϵI

]
. Then dij(Xϵ) =

√
d2

ij(X) + ϵ2. Thus we can define

σϵ(X) := σ(Xϵ) =
∑∑

1≤i<j≤n

wij(δij − dij(Xϵ))2, (5.46)
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Figure 5.8: Derivative for Various Epsilon
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with ρϵ and η2
ϵ defined in the same way.

For a fixed ϵ > 0 now dij(Xϵ), and thus stress, is (infinitely many times)
differentiable on all of Rn×p. Moreover dij(X, ϵ) is convex in X for fixed ϵ
and jointly convex in X and ϵ, and as a consequence so are ρϵ and η2

ϵ .

Figure 5.9: Jan de Leeuw, Gilbert Saporta, Yutaka Kanaka in Kolkata,
December 1985
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Chapter 6

Acceleration of Convergence

6.1 Simple Acceleration

A simple and inexpensive way to accelerate smacof iterations was proposed
by
De Leeuw and Heiser (1980).

On the other hand, if we choose X = 2Γ(Y ) − Y then again X ̸= Y , but
η2(X − Γ(Y )) = η2(Y − Γ(Y )). Thus

σ(X) ≤ 1+η2(X −Γ(Y ))−η2(Γ(Y )) = 1+η2(Y −Γ(Y ))−η2(Γ(Y )) = σ(Y ).
(6.1)

Let’s define the two update rules upA(X) := Γ(X) and upB(X) = 2Γ(X)−X.

147
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This is illustrated in figure . . . . We want to locate a local minimum of f , in
red, in the interval (−4, 2). In this case we happen to know that f is a quartic
polynomial, with minimum -0.8894476 at -1.8044048. In the interval we are
looking at we have f ′′(x) ≤ 8. Suppose our initial guess for the location of
the minimum is x = −3, the first vertical line from the left, with f(−3) equal
to 1.51. The upper bound on the second derivative allows us to construct a
quadratic majorizer g, in blue, touching f at −3. Update rule upA tells us to
go to the minimum of g, which is at -2.4275, the second vertical line. Here g
is equal to 0.198975 and f is -0.3245082.

Rule upB “overrelaxes” and goes all the way to -1.855, the third vertical line
from the left, where g is equal to both g(−3) and f(−3), and where f is -
0.8862781, indeed much closer to the minimum. Examples such as this make
upB look good.

De Leeuw and Heiser give a rather informal theoretical justification of upB

as well. Suppose the sequence X+ = Γ(X) generated by upA has slow linear
convergence with ACR 1 − ϵ, where ϵ is positive and small. Then choosing
the upB will change the ACR of 1 − ϵ to 2(1 − ϵ) − 1 = 1 − 2ϵ ≈ (1 − ϵ)2,
and will approximately halve the number of iterations to convergence. This
argument is supported by numerical experiments which seem to show that
indeed about half the number of iterations are needed. It seems that upB will
get you something for almost nothing, and thus it has been implemented in
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various versions of the smacof programs as the default update. Unfortunately
this may mean that many users have obtained, and presumably reported,
MDS results that are incorrect.
What is ignored in De Leeuw and Heiser (1980) is that majorization only
guarantees that the sequence of loss function values converges for both up-
date methods. The general convergence theory discussed earlier in this chap-
ter shows that for both upA and upB the sequence {X(k)} has at least one
accumulation point, and that the accumulation points of the sequence {X(k)}
are fixed points of the update rule, which means for both upA and upB that
at accumulation points X we have X = Γ(X). But it does not say that
{X(k)} converges.
The argument also ignores that at any X the derivative of upA has a zero
eigenvalue, with eigenvector X. For upB the eigenvector X has eigenvalue
equal to −1, which is the largest one in modulus near any local minimum.
And so . . .
Suppose we have a configuration of the form αX with X = Γ(X). Then
upB(αX) = 2Γ(αX) − αX = (2 − α)X and upB((2 − α)X) = αX. Thus
starting with X(1) = αX upB generates a sequence with even members (2 −
α)X and odd members αX. Thus there are two convergent subsequences
with accumulation points αX and (2 − α)X. And never the twain shall
meet.
As far as stress is concerned, note that if X = Γ(X) then σ(αX) = σ((2 −
α)X). Thus the stress values never change, and consequently form a conver-
gent sequence.
We also see that up(2)

B (αX) := upB(upB(αX)) = αX, which means that αX

is a fixed point of up(2)
B for any fixed point X of upA and any α.

Another way to express the difference between the two update rule is that
upA is self-scaling, i.e. Γ(αX) = Γ(X), while upB is not. Self-scaling implies
DΓ(X)(X) = 0, while for upB D(2Γ(X) − X)(X) = −X.
Let’s now look at a real example. We use the Ekman color similarity data
again, this time transformed by δij = (1 − sij)3, The analysis is in two
dimensions, with no weights. We run four analyses, by crossing update rules
upA and upB with stopping criteria σ(X(k))−σ(X(k+1)) < ϵ and maxi,s |x(k)

is −
x

(k+1)
is | < ϵ. Let’s call these stopping criteria stop_s and stop_x. In all cases

we allow a maximum of 1000 iterations and we set ϵ to 1e-10.
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stop_f stop_x
rule A 17 32
rule B 15 1000

stop_f stop_x
rule A 0.4696867 0.4696867
rule B 0.6176456 0.6176456

The results are in table . . . The first subtable gives the number of iterations,
the second the final stress value. We see that generally stop_x requires more
iterations than stop_s, because it is a stricter criterion. If we use stop_x
then upB does not converge at all. Both with stop_s and stop_x upB gves
a higher stress value than upA. And yes, with stop_s (which is the default
stop criterion in the smacof programs so far) upB use fewer iterations than
upA.

To verify that something is seriously wrong with running upB, we compute
the maximum absolute value of the gradient at convergence for both rules
and stop_s. For upA it is 0.0000000010 and for upB it is 0.7834335001. Once
again, with upB both loss function and configuration converge to an incorrect
value.

This can also be illustrated graphically. We see from table . . . that upB with
stop_x ends after 1000 iteration. We perform an extra iteration, number
1001, and see how the configuration changes. In figure . . . iteration 1000 is
in black, iteration 1001 in red with slightly bigger characters. Except for a
scaling factor the two configurations are the same. Elementwise dividing the
upB by the upA final configuration gives a shrinkage factor α of 1.0595315.
This shrinkage factor can also be computed from the final stress values. Using
ρ(X) = η2(X) and σ(X) = 1−η2(X) we find σ(αX)−σ(X) = (α−1)η2(X),
and thus

α = 1 ±

√√√√σ(αX) − σ(X)
1 − σ(X)) . (6.2)

There are two values α and 2−α, equal to 0.9595728 and 1.0404272, because
the sequence has two accumulation points.
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Things do not look good for upB but simple remedies are available. The
first one is renormalization. After the iterations, with say stop_s, have con-
verged, we scale the configuration such that ρ(X) = η2(X) and recompute
stress. This corrects both stress and the confguration to the correct outcome.
Another way to normalize is to do another single upA step after convergence
of upB. This has the same effect. We tried upB with both renormalization
approaches and both stop_s and stop_b. The number of upB iterations is
still the same as in table . . . because we just compute something additional
at the end. All stress values for the four combinations are now the correct
0.4696867. It seems that using upB with stop_s and renormalization at the
end gives us the best of both worlds. It accelerates convergence and it gives
the correct loss function values.
Of course upB with stop_x still does not converge, and probably the best way
to deal with that unfortunate fact is to avoid the combination alltogether.
We can still use stop_x and get acceleration by define a single interation as
upAB(x) := upA(upB(X)). For comparison purposes we also run upAA(x) :=
upA(upA(X)). Both converge to the correct values, upAA in 17 and upAB(x)
in 10 iterations.
Again upAB is an attractive strategy. It works with both stop_s and stop_x
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and it accelerates. Less so than upB, however. If the ACR of upA is 1 − ϵ,
then, by the same reasoning as before, the ACR of upAB is (1 − ϵ) 3

2 .

6.2 One-Parameter Methods

In psychometrics, and perhaps in multivariate analysis, Ramsay (1975) was
the first to apply a general acceleration methods to sequences in Rn of the
form x(k+1) = f(x(k)).
De Leeuw (2006)

6.3 SQUAREM

6.4 Vector Extrapolation Methods

De Leeuw (2008a)
De Leeuw (2008c)
Sidi (2017)



Chapter 7

Nonmetric MDS

7.1 Generalities

In non-metric MDS the dissimilarities are not a vector of known non-negative
numbers, but they are only known up to a transformation or quantification.
Ever since Kruskal (1964a) the approach for dealing with this aspect of the
MDS problem is to define stress as a function of both X and ∆, and to
minimize

σ(X, ∆) :=
∑∑

1≤i<j≤n

wij(δij − dij(X))2 (7.1)

over both configurations X and feasible disparities (i.e. transformed dissim-
ilarities). The name disparities was coined, as far as I know, by Forrest
Young and used in our joint ALS work from the seventies (Takane, Young,
and De Leeuw (1977)). Kruskal’s name for the transformed or quantified
dissimilarities is pseudo-distances.
To work with a general notion of the feasability of a matrix of disparities we
use the notation ∆ ∈ D. Typically, although not necessarily, D is a convex
set in disparity space. In interval, polynomial, splinical, and ordinal MDS it
usually is a convex cone with apex at the origin. This implies that 0 ∈ D,
and consequently that

min
X∈Rn×p

min
∆∈D

= 0, (7.2)

with the minimum attained at X = 0 and ∆ = 0. Of course this is a
trivial solution, which is completely independent of the data. Thus we cannot
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formulate the NMDS problem as the minimization of stress from equation
(7.1) over unconstrained X and over ∆ in its cone. We need some way
to exclude either X = 0 or ∆ = 0, or both, from the feasible solutions.
This we can do either by normalization of the loss function, or by using
constraints that explicitly exclude one or both zero solutions. The commonly
used options will be discussed in section 7.4.1 of this chapter.

7.1.1 Kruskal’s Stress

. . . we shall find ourselves doing arithmetic with dissimilarities. This we
must not do, because we are committed to using only the rank ordering of
the dissimilarities. (Kruskal (1964a), p 6-7)
section 7.4.1

7.2 Single and Double Phase

The distinction between single phase and double phase NMDS algorithms,
introduced by Guttman (1968), has caused a great deal of confusion in the
early stages of non-metric MDS (say between 1960 and 1970).

This beguiling complex distinction has given rise to an almost
endless debate (among > Guttman, Kruskal, Lingoes, Roskam,
and Shepard – for all permutations of five things taken two at a
time) and has caused anguish and despair (accompanied by an
imprecation or two by at least four of the five) extending over
a three year period – only occasionally alleviated by evanescent
flashes of partial insight (Lingoes and Roskam (1973))

I was an active, although late-arriving, participant in discussing, and perhaps
perpetuating, this confusion (De Leeuw (1973b)). For raking up this debate
at this late stage I was sternly spoken to by Jim Lingoes, who pointed me to
the discussion in Lingoes and Roskam (1973).

I would hate to believe that after this heroic attempt on our part
that “we all” would once more be engaged in a “correspondence
musical chairs” on these issues. (Lingoes in De Leeuw (1973b)).
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Nevertheless, even in later discussions of the distinction between single-phase
and double-phase (such as Roskam (1979)) I still get the feeling that there
are some unresolved misunderstandings. Thus I will pay some more attention
to the musical chairs here.

By the very definition of the minimum of a function we have the mathematical
truism

min
(X,∆)∈X⊗D

σ(X, ∆) = min
X∈X

min
∆∈D

σ(X, ∆) = min
X∈X

{
min
∆∈D

σ(X, ∆)
}

= min
∆∈D

{
min
X∈X

σ(X, ∆)
}

,

(7.3)
provided all minima exist. This is true no matter what the subsets X of
configuration space and D of disparity space are.

7.2.1 Double Phase

In a double phase algorithm we alternate the minimization of stress over X
and ∆. Thus

X(k+1) = argmin
X∈X

σ(X, ∆(k)), (7.4)

∆(k+1) = argmin
∆∈D

σ(X(k+1), ∆).. (7.5)

Thus double phase algorithms are alternating least squares or ALS algo-
rithms. The designation “alternating least squares” was first used, AFAIK,
by De Leeuw (1968b), and of course it was widely disseminated by the series
of ALS algorithms of Young, Takane, and De Leeuw in the seventies (see F.
W. Young (1981) for a retrospective summary).

There are some possible variations in the ALS scheme. In equation (7.4)
we update X first, and then in equation (7.4) we update ∆. That order
can be reversed without any essential changes. More importantly, we have
to realize that minimizing over X in equation (7.4) is a basic metric MDS
problem, which will generally take an infinite number of iterations for an
exact solution. This means we have to truncate the minimization, and stop
at some point. And, in addition, equation (7.4) implies we have to find the
global minimum over X, which is generally infeasible as well.Thus the ALS
scheme as defined cannot really be implemented.



156 CHAPTER 7. NONMETRIC MDS

We remedy this situations by switching from minimization in each substep to
a decrease, or, notationwise, from argmin to arglower. The resulting update
sequence

X(k+1) = arglower
X∈X

σ(X, ∆(k)), (7.6)

∆(k+1) = arglower
∆∈D

σ(X(k+1), ∆).. (7.7)

is much more loosely defined than the previous one, because arglower can be
implemented in many different ways. More about that later. But at least
the new scheme can actually be implemented.
Algorithm #ref(eq:nmslte1) and #ref(eq:nmslte2) is still considered to be
ALS, but it is also firmly in the class of block relaxation algorithms. General
block relaxation, which has alternating least squares, coordinate relaxation,
augmentation, EM, and majorization as special cases, was used to describe
many different data analysis algorithms in De Leeuw (1994). As with ALS,
special cases of block relaxation have been around for a long time.

7.2.2 Single Phase

From equation (7.3)

min
X∈X

min
∆∈D

σ(X, ∆) = min
X∈X

{
min
∆∈D

σ(X, ∆)
}

. (7.8)

So if we define
σ⋆(X) := min

∆∈D
σ(X, ∆), (7.9)

the NMDS problem is to minimize σ⋆ from (7.9) over X. Note there is a
σ defined by equation (7.1) on X ⊗ D, and a σ⋆, defined by equation (7.9),
which is a function only of X. It is sometimes said that that ∆ is projected
when going from (7.1) to (7.9), or that σ⋆ is a marginal function.
Once more with feeling. The two-phase σ is a function of two matrix variables
X and ∆, the one-phase σ⋆is a function of the single matrix variable X. To
make this even more clear we can write σ⋆(X) = σ(X, ∆(X)), where

∆(X) := argmin
∆∈D

σ(X, ∆). (7.10)
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Of course by projecting out X instead of ∆ we could also have defined a loss
function which is a function of ∆ only, but typically we do not use the alter-
native projection because it is complicated and heavily nonlinear. Projecting
out X is, in fact, solving a standard basic MDS problem. Projecting out ∆ is
usually much simpler. In most applications D is convex, so computing ∆(X)
is computing the projection on a convex set, and projections on convex sets
always exist and are unique and continuous.
As an aside, projection creates a function of one variable out of a function of
two variables. The inverse of projection is called augmentation, which starts
with a function f of one variable on X and tries to find a function of two
variables g on X⊗Y such that f(x) = miny∈Y g(x, y). If we have found such
a g then we can minimize f over X by minimizing g over X⊗Y, for example
by block relaxation (De Leeuw (1994)).
One reason there was some confusion, and some disagreement between
Kruskal and Guttman, was a result on differentiation of the minimum
function, which was not known in the psychometric community at the time.
Guttman thought that σ⋆ was not differentiable at X, because ∆ from (7.10)
is a step function. Kruskal proved in Kruskal (1971) that σ⋆ is differentiable,
and saw that the result is basically one in convex analysis, not in classical
linear analysis. The result follows easily from directional differentiability
in Danskin’s theorem (Danskin (1967)) or from the minimax theorems of,
for example, Demyanov and Malozemov (1990), using the fact that the
projection is unique. More directly, deleeuw_R_73g refers to discussion on
page 255 of Rockafellar (1970), following his corollary 26.3.2. We will go into
more detail about differentiability, and the differences between Kruskal’s
and Guttman’s loss functions, in the next chapter 10. For now it suffices to
note that

Dσ⋆(X) = D1σ(X, ∆(X)), (7.11)

or, in words, that the derivative of σ⋆ at X is the partial derivative of σ at
(X, ∆(X)).

7.3 Affine NMDS

Basic MDS can now be interpreted as the special case of NMDS in which
D = {∆} is a singleton, a set with only one element. Thus 0 ̸∈ D and we do
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not have to worry about trivial zero solutions for X.
This extends to basic MDS with missing data. We have so far dealt with
missing data by setting the corresponding wij equal to zero. But for the
non-missing part we still have fixed numbers in ∆, and thus again 0 ̸∈ D
(unless all dissimilarities are missing). In a sense missing data are our first
example of non-metric MDS, because D can also be defined as the set

D =

∆ | ∆0 +
∑∑

1≤i<j≤n

{αij(Eij + Eji) | δij is missing}

 , (7.12)

where the Eij are the unit matrices defined in section @ref(#propmatrix)
and ∆0 is the non-missing part (which has zeroes for the missing elements).
Single/double phase
Another example in which 0 ̸∈ D is the additive constant problem, which
we will discuss in detail in section 8.1. Here D is the set of all hollow and
symmetric matrices of the form ∆ + α(E − I), where the dissimilarities in
∆0 are known real numbers and where α is the unknown additive constant.
Affine MDS problems also have single phase and double phase algorithms.
For missing data single phase stress is
σ⋆(X) = min

∆∈D

∑∑
1≤i<j≤n

wij(δij − dij(X))2 =
∑∑

1≤i<j≤n

w̃ij(δij − dij(X))2, (7.13)

where w̃ij = 0 if δij is missing, and w̃ij = wij otherwise. In this case σ⋆(X) =
σ(X), the sigma of basic MDS with zero weights for missing data.
For the additive constant problem single phase stress is
σ⋆(X) = min

α

∑∑
1≤i<j≤n

wij(δij+α−dij(X))2 =
∑∑

1≤i<j≤n

wij(δij−dij(X))2−(δ−d(X))2 ∑∑
1≤i<j≤n

wij,

(7.14)
where δ and d(X) are the weighted means of the dissimilarities and distances.

7.4 Conic NMDS

7.4.1 Normalization

In “wide-sense” non-metric MDS D can be any set of hollow, non-negative
and symmetric matrices. In “narrow-sense” non-metric MDS D is defined by
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homogeneous linear inequality constraints of the form δij ≤ δkl (in addition
to hollow, non-negative, and symmetric). These constraints, taken together,
define a polyhedral convex cone in disparity space. This just means that if
∆1 and ∆2 are in D then so is α∆1 + β∆2 for all non-negative α and β.
The disparities define a cone, and thus 0 ∈ D. This implies that always
minX min∆∈D σ(X, ∆) = 0, independently of the data. This is our first ex-
ample of a trivial solution, which have plagued non-metric scaling from the
start. Note that D for missing data and for the additive constant are not
convex cones, and do not contain the zero matrix.
In our versions of non-metric MDS we actually require that the transformed
dissimilarities satisfy ηδ = 1, so that formula (2.6) is still valid. We call this
explicit normalization of the dissimilarities.
To explain the different forms of normalization of stress that are needed
whenever D is a cone we look at some general properties of least squares loss
functions. More details are in Kruskal and Carroll (1969) and in De Leeuw
(1975a), De Leeuw (2019).
Suppose K and L are cones in Rn, nor necessarily convex. Our problem is
to minimize ∥x − y∥2 over both x ∈ K and y ∈ L. Here ∥x∥2 = x′Wx for
some positive definite W . In the MDS context, for x think disparities, for y
think distances.
Of course minimizing ∥x − y∥2 is too easy, because x = y = 0 is the (trivial,
and useless) solution. So we need some form of normalization. We distinguish
six different ones.

1. implicit x-normalization

min
x∈K

min
y∈L

∥x − y∥2

∥x∥2

2. implicit y-normalization

min
x∈K

min
y∈L

∥x − y∥2

∥y∥2

3. implicit xy-normalization

min
x∈K

min
y∈L

∥x − y∥2

∥x∥2∥y∥2
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4. explicit x-normalization
min

x∈K∩S
min
y∈L

∥x − y∥2

5. explicit y-normalization
min
x∈K

min
y∈L∩S

∥x − y∥2

6. explicit xy-normalization
min

x∈K∩S
min

y∈L∩S
∥x − y∥2

If we use a positive definite W to define our inner products and norms,
then implicit normalization of x means

min
x∈X

min
y∈Y

(x − y)′W (x − y)
x′Wx

.

Let Sx and Sy be the ellipsoids of all x with x′Wx = 1 and of all y with
y′Wy = 1. Then our implicit normalization problem is equivalent to

min
α≥0

min
β≥0

min
x∈X∩Sx

min
y∈Y ∩Sy

(αx − βy)′W (αx − βy)
α2x′Wx

= min
x∈X∩Sx

min
y∈Y ∩Sy

min
α≥0

min
β≥0

α2 + β2 − 2αβx′Wy

α2 = min
x∈X∩Sx

min
y∈Y ∩Sy

{1−(x′Wy)2}.

Thus implicit normalization of x means maximizing (x′Wy)2 over x ∈
X ∩ Sx and y ∈ Y ∩ Sy.

In the same way implicit normalization of y minimizes

min
x∈X

min
y∈Y

(x − y)′W (x − y)
y′Wy

,

and in the same way it also leads to maximization of (x′Wy)2 over x ∈ X ∩Sx

and y ∈ Y ∩Sy. In terms of normalized stress it does not matter if we use the
distances or the dissimilarities in the denominator for implicit normalization.
In explicit normalization of x we solve

min
x∈X∩Sx

min
y∈Y

{1+y′Wy−2y′Wx} = min
β≥0

min
x∈X∩Sx

min
y∈Y ∩Sy

{1+β2−2βx′Wy} = min
x∈X∩Sx

min
y∈Y ∩Sy

{1−(x′Wy)2},

and the same thing is true for explicit normalization of y, which is
min
x∈X

min
y∈Y ∩Sy

{1 + x′Wx − 2y′Wx}

So, again, it does not matter which one of the four normalizations we use, ex-
plicit/implicit on disparities/distances, the solutions will all be proportional
to each other, i.e. the same except for scale factors.
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7.4.2 Normalized Cone Regression

7.4.3 Hard Squeeze and Soft Squeeze

7.4.4 Inner Iterations

7.4.5 Stress-1 and Stress-2

In his original papers Kruskal (1964a) and Kruskal (1964b) defined two ver-
sions of normalized stress for nonmetric MDS. The first was

σJBK1(X) :=

√√√√∑∑
1≤i<j≤n(d̂ij − dij(X))2∑∑

1≤i<j≤n d2
ij(X)

σJBK2(X) :=

√√√√ ∑∑
1≤i<j≤n(d̂ij − dij(X))2∑∑

1≤i<j≤n(dij(X) − d(X))2

where the hatdij (the d-hats) are the pseudo-distances obtained by projecting
the dij(X) on the isocone defined by the order of the dissimilarities, i.e. by
monotone regression (see section 10.1.1). The d(X) in the denominator of
σJBK2 is the average of the distances.
There are some differences with the definition of stress in this book.

1. We do not use the square root.
2. We use explicit and not implicit normalization.
3. In NMDS we think of stress as a function of both X and ∆, not of X

only (see section 10.3).
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Chapter 8

Interval MDS

intro: additive vs interval basic vs ratio

8.1 The Additive Constant

8.1.1 Early

In the early history of MDS dissimilarities were computed from comparative
judgments in the Thurstonian tradition.

triads paired comparisons etc positive orthant

These early techniques only gave numbers on an interval scale, i.e. dissim-
ilarities known only up to a linear transformation. In order to get positive
dissimilarities a rational origin needed to be found in some way. This is the
additive constant problem. It can be seen as the first example of nonmetric
MDS, in which we have only partially known dissimilarities (up to an additive
constant).

(δij + α) ≈ dij(X),
δij ≈ dij(X) + α.

(8.1)

163
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The additive constant techniques were more important in the fifties and
sixties than they are these days, because they have largely been replaced by
iterative nonmetric MDS techniques.

An early algorithm to fit the additive constant based on Schoenberg’s the-
orem was given by Messick and Abelson (1956). Ii was Torgerson based,
i.e. it used the eigenvalues of τ(∆(2)). It was a somewhat hopeful iterative
technique, without a convergence proof, designed to make the sum of the
n − p smallest eigenvalues equal to zero. This is of course only a necessary
condition for best approximation, not a sufficient one.

In addition, the Messick-Abelson algorithm sometimes yielded solutionsin
which the Torgerson transform of the squared dissimilarities had negative
eigenvalues, which could even be quite large. That is also somewhat of a
problem.

8.1.2 Cooper

Consequently Cooper (1972) proposed an alternative additive constant algo-
rithm, taking his clue from the work of Kruskal.

The solution was to redefine stress as a function of both the configuration
and the additive constant. Thus

σ(X, α) :=
∑∑

1≤j<i≤n

wij(δij + α − dij(X))2, (8.2)

and we minimize this stress over both X and α.

Double phase (ALS)

δij + α ≥ 0

Single Phase (Cooper)

σ(X) := min
α

∑∑
1≤j<i≤n

wij(δij + α − dij(X))2, (8.3)
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8.2 Algebra

The additive constant problem is to find X ∈ Rn×p and α such that ∆ +
α(E − I) ≈ D(X). In this section we look for all α such that ∆ + α(E − I)
is Euclidean, i.e. such that there is a configuration X with ∆ + α(E − I) =
D(X). This is a one-parameter generalization of Schoenberg’s theorem.
It makes sense to require α ≥ 0, because a negative α would more appropri-
ately be called a subtractive constant. Also, we may want to make sure that
the off-diagonal elements of ∆+α(E −I) are non-negative, i.e. that α ≥ −δij

for all i > j. Note that if we allow a negative α then if all off-diagonal δij

are equal, say to δ > 0, we have the trivial solution α = −δ and X = 0.

8.2.1 Existence

We start with a simple construction.

Theorem 8.1. For all ∆ there is an α0 ≥ 0 such that for all α ≥ α0 we
have ∆ + α(E − I)) Euclidean of dimension r ≤ n − 1.

Proof. We have, using ∆ × (E − I) = ∆ and (E − I) × (E − I) = E − I,

τ((∆ + α(E − I)) × (∆ + α(E − I))) = τ(∆ × ∆) + 2ατ(∆) + 1
2α2J. (8.4)

Thus each off-diagonal element is a concave quadratic in α, which is negative
for α big enough. Choose α0 ≥ 0 to make all off-diagonal elements negative
(and all dissimilarities non-negative). A doubly-centered matrix with all off-
diagonal elements negative is positive semi-definite of rank n − 1 (Taussky
(1949)).

Note that by the same argument we can also find a negative α0 that makes all
off-diagonal elements negative and thus ∆ + α(E − I)) is again Euclidean of
dimension r ≤ n−1. But this α0 will usually result in negative dissimilarities.
Theorem 8.1 can be sharpened for non-Euclidean ∆. Define the following
function of α:
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λ⋆(α) := min
x′x=1,x′e=0

x′{τ(∆ × ∆) + 2ατ(∆) + 1
2α2J}x. (8.5)

This is the smallest non-trivial eigenvalue of the Torgerson transform in (8.4).
The matrix ∆ + α(E − I) is Euclidean if and only if λ⋆(α) ≥ 0. Note that
λ⋆ is continuous, by a simple special case of the Maximum Theorem (Berge
(1963), Chapter VI, section 3), and coercive, i.e. λ⋆(α) → +∞ if |α| → +∞.

Theorem 8.2. For all non-Euclidean ∆ there is an α1 > 0 such that for all
α ≥ α1 we have that ∆ + α(E − I)) Euclidean of dimension r ≤ n − 2.

Proof. Because ∆ is non-Euclidean we have λ⋆(0) < 0. By the construction
in theorem 8.1 there is an α0 such that λ⋆(α) > 0 for all α > α0. By the
Maximum Theorem the function λ⋆ is continuous, and thus, by Bolzano’s
theorem, there is an α1 between 0 and α0 such that λ⋆(α1) = 0. If there is
more than one zero between 0 and α0 we take the largest one as α1.

The problem with extending theorem 8.2 to Euclidean ∆ is that the equation
λ⋆(α) = 0 may have only negative roots, or, even more seriously, no roots at
all. This may not be too important from the practical point of view, because
observed dissimilarities will usually not be exactly Euclidean. Nevertheless I
feel compelled to address it.

Theorem 8.3. If ∆ is Euclidean then λ⋆(α) is non-negative and non-
decreasing on [0, +∞).

Proof. If ∆ is Euclidean, then
√

∆, which is short for the matrix with the
square roots of the dissimilarities, is Euclidean as well. This follows be-
cause the square root is a Schoenberg transform (Schoenberg (1937), Bavaud
(2011)), and it implies that τ(∆) = τ(

√
∆ ×

√
∆) is positive semi-definite.

Thus the matrix (8.4) is positive semi-definite for all α ≥ 0. By Danskin’s
Theorem the one-sided directional derivative of λ⋆ at α is 2x(α)′τ(∆)x(α)+α,
where x(α) is one of the minimizing eigenvectors. Because the one-sided
derivative is non-negative, the function is non-decreasing (in fact increasing
if α > 0).

Of course λ⋆(α) = 0 can still have negative solutions, and in particular it will
have at least one negative solution if λ⋆(α) ≤ 0 for any α. There can even
be negative solutions with ∆ + α(E − I) non-negative.
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8.2.2 Solution

The solutions of λ⋆(α) = 0 can be computed and studied in more detail,
using results first presented in the psychometric literature by Cailliez (1983).
We reproduce his analysis here, with a somewhat different discussion that
relies more on existing mathematical results.

In order to find the smallest α we solve the quadratic eigenvalue problem
(Tisseur and Meerbergen (2001)). WHY ??

{τ(∆ × ∆) + 2ατ(∆) + 1
2α2J}y = 0. (8.6)

A solution (y, α) of #ref(eq:qep1) is an eigen pair, in which y is an eigenvec-
tor, and α the corresponding eigenvalue. The trivial solution y = e satisfies
#ref(eq:qep1) for any α. We are not really interested in the non-trivial eigen-
vectors here, but we will look at the relationship between the eigenvalues and
the solutions of λ⋆(α) = 0.

The eigenvalues can be complex, in which case they do not interest us. If α
is a non-trivial real eigenvalue, then the rank of the Torgerson transform of
the matrix in #ref(eq:qep1) is n − 2, but

To get rid of the annoying trivial solution y = e we use a square orthonormal
matrix whose first column is proportional to e. Suppose L contains the
remaining n − 1 columns. Now solve

{L′τ(∆ × ∆)L + 2αL′τ(∆)L + 1
2α2I}y = 0. (8.7)

Note that the determinant of the polynomial matrix in (8.7) is a polynomial
of degree 2(n − 1) in α, which has 2(n − 1) real or complex roots.

The next step is linearization (Gohberg, Lancaster, and Rodman (2009),
chapter 1), which means finding a linear or generalized linear eigen problem
with the same roots as (8.7). In our case this is the eigenvalue problem for
the matrix

[
0 I

−2L′τ(∆ × ∆)L −4L′τ(∆)L

]
(8.8)
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8.2.3 Examples

8.2.3.1 Small Example

Here is a small artificial dissimilarity matrix.

## 1 2 3 4
## 1 +0 +1 +2 +5
## 2 +1 +0 +4 +2
## 3 +2 +4 +0 +1
## 4 +5 +2 +1 +0

It is constructed such that δ14 > δ12 + δ24 and that δ23 > δ21 + δ13. Because
the triangle inequality is violated the dissimilarities are not distances in any
metric space, and certainly not in a Euclidean one. Because the minimum
dissimilarity is +1, we require that the additive constant α is at least −1.
The R function treq() in appendix A.1.10 finds the smallest additive constant
such that all triangle inequalities are satisfied. For this example it is α = 2.
The Torgerson transform of ∆ × ∆ is

## 1 2 3 4
## 1 +4.312 +2.688 +1.188 -8.188
## 2 +2.688 +2.062 -5.938 +1.188
## 3 +1.188 -5.938 +2.062 +2.688
## 4 -8.188 +1.188 +2.688 +4.312

with eigenvalues

## [1] +12.954 +7.546 +0.000 -7.750

The smallest eigenvalue -7.75 is appropriately negative, and theorem 8.2
shows that ∆ × ∆ + 7.75(E − I) are squared distances between four points
in the plane.
The upper bound for the smallest α from theorem 8.1, computed by the R
function acbound(), is 9.309475.
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It is useful to look at a graphical representation of the minimum non-trivial
eigenvalue of τ((∆ + α(E − I)) × (∆ + α(E − I))) as a function of α. The R
function aceval() generates the data for the plot.
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We see that the minimum non-trivial eigenvalue is a continuous function of
α,but one which certainly is not convex or concave or differentiable. The
graph crosses the horizontal axes near -8, -3, and +6.
To make this precise we apply the theory of section xxx. The R function
acqep() finds the six non-trivial eigenvalues

## [1] -8.192582+0.000000i 5.713075+0.000000i -3.500000+2.179449i
## [4] -3.500000-2.179449i -2.807418+0.000000i -2.713075+0.000000i

Two of the eigenvalues are complex conjugates, four are real. Of the real
eigenvalues three are negative, and only one is positive, equal to +5.713.
The table above gives the eigenvalues of the Torgerson transform, using all
four real eigenvalues for α. The three negative ones do result in a positive
semi-definite matrix with rank equal to n − 2, but they also create negative
dissimilarities.

## -8.193 ****** +38.098 +13.885 +0.000 -0.000
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## +5.713 ****** +61.116 +43.441 +0.000 -0.000
## -2.807 ****** +3.115 +0.402 -0.000 -0.000
## -2.713 ****** +3.228 +0.215 +0.000 +0.000

8.2.3.2 De Gruijter Example
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## [1] -20.527411+0.000000i -10.174103+0.000000i -9.472504+0.000000i
## [4] -6.622263+0.352619i -6.622263-0.352619i -5.885691+0.287544i
## [7] -5.885691-0.287544i -5.640580+0.366889i -5.640580-0.366889i
## [10] -4.391289+0.253248i -4.391289-0.253248i -3.708911+0.386844i
## [13] -3.708911-0.386844i -3.238930+0.000000i -2.311379+0.000000i
## [16] -1.369315+0.000000i
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8.2.3.3 Ekman Example
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## [1] -5.713009655+0.0000000i -3.782729083+0.0000000i -1.791313475+0.0000000i
## [4] -1.628964140+0.0000000i -0.976213035+0.0000000i -0.744289350+0.0495939i
## [7] -0.744289350-0.0495939i -0.682321433+0.0000000i -0.534849034+0.0000000i
## [10] -0.513033529+0.0000000i -0.497908376+0.0248145i -0.497908376-0.0248145i
## [13] -0.372321687+0.1313892i -0.372321687-0.1313892i -0.388308013+0.0000000i
## [16] -0.229813135+0.1825985i -0.229813135-0.1825985i -0.286712033+0.0000000i
## [19] -0.212601059+0.1185199i -0.212601059-0.1185199i 0.206312577+0.0000000i
## [22] -0.194299448+0.0000000i 0.132767430+0.0000000i -0.079646956+0.0000000i
## [25] -0.024193535+0.0000000i -0.006762279+0.0000000i
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## [1] -7.9740652+0.0000000i -4.8679294+0.0000000i -1.2242342+0.0000000i
## [4] -0.9822376+0.0000000i 0.7856448+0.0000000i 0.6486775+0.0000000i
## [7] -0.5540332+0.0000000i -0.5426006+0.0129703i -0.5426006-0.0129703i
## [10] 0.4864182+0.0000000i -0.1118921+0.3923586i -0.1118921-0.3923586i
## [13] 0.3829746+0.0000000i 0.3530897+0.0000000i -0.3516103+0.0000000i
## [16] -0.3073607+0.0000000i -0.1265941+0.2630789i -0.1265941-0.2630789i
## [19] -0.0735448+0.2698631i -0.0735448-0.2698631i -0.2333027+0.0000000i
## [22] -0.0081376+0.1948006i -0.0081376-0.1948006i -0.1380254+0.1175071i
## [25] -0.1380254-0.1175071i 0.1205026+0.0000000i

8.2.4 A Variation

Alternatively, we could define our approximation problem as finding X ∈
Rn×p and α such that

√
δ2

ij + α ≈ dij(X), or, equivalently, ∆×∆+α(E−I) ≈
D(X) × D(X).

Theorem 8.4. For any X ∈ Rn×p with p = n − 2 there is an α such that√
δ2

ij + α = dij(X).

Proof. Now we have
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τ(∆ × ∆ + α(E − I))) = τ(∆ × ∆) + 1
2αJ. (8.9)

The eigenvalues of τ(∆ × ∆) + 1
2αJ are zero and λs + 1

2α, where the λs are
the n − 1 non-trivial eigenvalues of τ(∆ × ∆). If λ is smallest eigenvalue
we choose α = −2λ, and τ(∆ × ∆) + 1

2αJ is positive semi-definite of rank
r ≤ n − 2.

Note that theorem 8.2 implies that for any ∆ there is a strictly increas-
ing differentiable transformation to the space of Euclidean distance matrices
in n − 2 dimensions. This is a version of what is sometimes described as
Guttman’s n-2 theorem (Lingoes (1971)). The proof we have given is that
from De Leeuw (1970), Appendix B.

8.3 Interval smacof

In this section we introduce a double-phase alternating least squares al-
gorithm that fits better into the smacof framework than the single-phase
method proposed by Cooper (1972). We also restrict our linear transforma-
tions to be to be increasing and non-negative on the positive real axes.

To avoid various kinds of trivialities, assume not all dij(X) are zero.

In the optimal scaling phase we must minimize

σ(X, α, β) =
∑∑

1≤i<j≤n

wij(αδij + β − dij(X))2 (8.10)

The constraints are αδij + β ≥ 0 and αδij + β ≥ αδkl + β if δij ≥ δkl. These
define pointed convex cone in the space of disparities. We need to project
D(X) on that cone, in the metric defined by W . But it is easy to see that
and equivalent set of constraints in R2 is α ≥ 0 and αδmin + β ≥ 0. Again
these two constraints define a pointed cone in two-dimensional (α, β) space,
where proje ction is much easier to handle thanin the generally much larger
disparity space. Of course the projection metric in (α, β) is different from
the one in disparity space.
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In addition to the inequality constraints we have the normalization constraint∑∑
1≤i<j≤n

wij(αδij + β)2 = 1, (8.11)

but as we have seen in chapter 7 we can initially ignore that constraint,
project on the cone, and then normalize the projection.
In order to simplify the notation we collect the dij(X) in a vector d, the δij

in a vector δ and the wij in a diagonal matrix W .
Let’s first get the trivial case where all δij are equal out of the way. In that
case the linear regression is singular, and we simply choose all αδ + β equal
to the constant e′Wd, for example by setting α = 0 and β = e′Wd. Applying
the normalization condition (8.11) then sets β = 1. From now on we assume
in this section that not all δij are equal.
Projecting on the cone gives us four possibilities. We can have α = 0 or
αδmin + β = 0, or both, or neither. We first analyze the case in which the
unconstrained minimum of (8.10) is in the cone, which will be the most
common case, especially in later smacof iterations. Using the fact that
δ′Wδ = e′We = 1 we find that[

α̃

β̃

]
= 1

1 − (e′Wδ)2

[
δ′(W − Wee′W )d
e′(W − Wδδ′W )d

]
. (8.12)

If α̃ ≥ 0 and β̃ ≥ −αδmin we are done. If not, we know the projection is on
the line α = 0 or on the line β̃ = −αδmin, or on their intersection, which is
the origin.
First suppose the projection is on α = 0. We find the minimizing β equal
to β := e′Wd, which strictly satisfies the second constraint because β >
−αδmin = 0, and thus (0, e′Wd) is on the boundary of the cone. This also
show that the origin, which has σ(X, 0, 0) = d′Wd, can never be the projec-
tion. The minimum at (0, e′Wd) is

σ(X, 0, e′Wd) = d′Wd − (d′We)2 (8.13)

Or, alternatively, we can assume that the projection is on the vertex β =
−αδmin, in which case the minimizing α is

α := (δ − δmin)′Wd

(δ − δmin)′W (δ − δmin) , (8.14)
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which is always positive, and thus (α, −αδmin) is on the boundary of the cone.
The minimum is

σ(X, α, −αδmin) = d′Wd − ((δ − δmin)′Wd)2

(δ − δmin)′W (δ − δmin) (8.15)

If the unconstrained solution is not in the cone, then we choose the projection
as the solution corresponding with the smallest of (8.13) and ((8.15).

8.3.1 Example

We illustrate finding the optimal linear transformation with a small example.
We choose some arbitrary w, δ, and d and normalize them in the usual way.

w <- c(rep(1,5),rep(2,5))
w <- w / sum(w)
delta <- 1:10
s <- sum(w * delta ˆ 2)
delta <- delta / sqrt (s)
d <- c(1, 2, 3, 4, 4, 3, 3, 3, 1, 1)
s <- sum (w * d ˆ 2)
t <- sum (w * d * delta)
d <- d * (t / s)

After normalization the δmin is 0.1448414. The pink region in figure 8.1 is the
cone formed by the intersection of the half-spaces α ≥ 0 and αδmin + β ≥ 0.
The unconstrained minimum is attained at -0.2541855, 0.9484652, the red
point in figure 8.1, with stress equal to 0.0939827. That is clearly outside
the cone, so we now consider projection on the two one-dimensional bound-
ary rays. The blue point is 0, 0.7152935, the projection on α ≥ 0. It is
fairly close to the unconstrained minimum, with stress 0.1042239. The green
point 0.6782764, -0.0982425is the projection on β = −αδmin, which has stress
0.2684117. Thus the blue point 0, 0.7152935is the actual projection on the
cone in (α, β) space, and the best fitting line has slope zero (which, in smacof,
would make all disparities equal for the next iteration).
This is illustrated in a different way (with Shepard plots) in figure 8.2, where
we see the red, blue, and green lines corresponding with the red, blue, and
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Figure 8.1: Cone Projection
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green points in figure 8.1. Note that the green line goes through the point
(δmin, 0). The horizontal blue line is the best fitting one under the constraints.
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Figure 8.2: Fitted Lines
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Chapter 9

Polynomial MDS

9.1 Introduction

9.2 Fitting Polynomials

σ(X) =
∑∑

1≤i<j≤n

wij(Pr(δij) − dij(X))2

Pr(δij) :=
r∑

s=0
αsδ

s
ij.

The polynomial Pr is tied down if α0 = 0, and thus Pr(0) = 0.

Vandermonde matrix

9.3 Positive and Convex, Monotone Polyno-
mials

9.3.1 Introduction

Constraints on values, constraints on coefficients

179
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f <- function(x) return(x * (x - 1) * (x - 2))
x <- seq(0, 3, length = 100)
y <- f(x)
plot(x, y, type="l", lwd = 3, col = "RED")
x <- c(.10, .45, 2.25, 2.75)
y <- f(x)
abline(h = y[1])
abline(h = y[2])
abline(h = y[3])
abline(h = y[4])
abline(v = x[1])
abline(v = x[2])
abline(v = x[3])
abline(v = x[4])
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Tied-down increasing non-negative cubic.
Write the tied-down cubic in the form f(x) = ax(x2 +2bx+c). Since we must
have f(x) → +∞ of x → +∞ we have a > 0. Since f must be increasing
at zero, we must have f ′(0) = c > 0. No real roots on the positive reals.
Case 1: no real roots at all b2 − c < 0. Case 2: two real roots, both negative
b2 − c ≥ 0 and b ≥ 0. Since c > 0 the product of roots is positive. If the sum
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is negative, i.e. if b > 0 both roots are negative. Since f ′′(x) = 6x + b we see
that f is convex on the positive real axis if b ≥ 0.

9.3.2 A QP Algorithm

In this section we construct an algorithm for a general weighted linear least
squares projection problem with equality and/or inequality constraints. It
uses duality and unweighting majorization. The section takes the form of a
small diversion, with examples. This may seem somewhat excessive, but it
provides an easy reference for both you and me and it serves as a manual for
the corresponding R code.
We start with the primal problem, say problem P , which is minimizing

f(x) = 1
2(Hx − z)′V (Hx − z) (9.1)

over all x satisfying equalities Ax ≥ b and equations Cx = d. We suppose
the Slater condition is satisfied, i.e. there is an x such that Ax > b. And, in
addition, we suppose the system of inequalities and equations is consistent,
i.e. has at least one solution.
We first reduce the primal problem to a simpler, and usually smaller, one by
partitioning the loss function. Define

W := H ′V H,

y := W −1H ′V z,

Q := (I − H(H ′V H)−1H ′V ).
(9.2)

Then

(Hx − y)′V (Hx − y) = (x − y)′W (x − y) + y′Q′V Qy, (9.3)

The simplified primal problem P ′ is to minimize (x−y)′W (x−y) over Ax ≥ b
and Cx = d, where W is assumed to be positive definite. Obviously the
solutions to P and P ′ are the same. The two loss function values only differ
by the constant term y′Q′V Qy.
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We do not solve P ′ drectly, but we use Lagrangian duality and solve the dual
quadratic programmng problem. The Lagrangian for P ′ is

L(x, λ, µ) = 1
2(x − y)′W (x − y) − λ′(Ax − b) − µ′(Cx − d), (9.4)

where λ ≥ 0 and µ are the Lagrange multipliers.
Now

max
λ≥0

max
µ

L(x, λ, µ) =

=


1
2(x − y)′W (x − y) − λ′(Ax − b) − µ′(Cx − d) if Ax ≥ b,

+∞ otherwise,

(9.5)

and thus

min
x

max
λ≥0

max
µ

L(x, λ, µ) = min
Ax≥b

min
Cx=d

1
2(x − y)′W (x − y), (9.6)

which is our original simplified primal problem P ′.
We now look at the dual problem D′ (of P ′), which means solving

max
λ≥0

max
µ

min
x

L(x, λ, µ). (9.7)

The inner minimum over x for given λ and µ is attained at

x = y + W −1(A′ | C ′)
[
λ
µ

]
, (9.8)

and is equal to −g(λ, µ), where

1
2
[
λ µ

] [AW −1A′ AW −1C ′

CW −1A′ CW −1C ′

] [
λ
µ

]
+ + λ′(Ay − b) + µ′(Cy − d) (9.9)
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Our strategy is to solve D′ for λ ≥ 0 and/or µ. Because of our biases we do
not maximize −g, we minimize g. Then compute the solution of both P ′ and
P from (9.8). The duality theorem for quadratic programming tells us the
values of f at the optimum of P ′ and −g at the optimum of D′ are equal,
and of course the value at the optimum of P is that of P ′ plus the constant
y′QV Qy.

From here on we can proceed with unweighting in various ways. We could,
for instance, minimize out µ and then unweight the resulting quadratic form.
Instead, we go the easy way. Majorize the partitioned matrix K in the
quadratic part of (9.9) by a similarly partitioned diagonal positive matrix E.

E :=
[
F ∅
∅ G

]
≳ K :=

[
AW −1A′ AW −1C ′

CW −1A′ CW −1C ′

]
(9.10)

Suppose λ̃ ≥ 0 and µ̃ are the current best solutions of the dual problem. Put
them on top of each other to define γ̃, and do the same with λ and µ to get
γ. Then g(λ, µ) becomes

1
2(γ̃+(γ−γ̃))′E(γ̃+(γ−γ̃))+γ′(Ry−e) = = 1

2(γ−γ̃)′E(γ−γ̃)+(γ−γ̃)′E(γ̃+(Ry−e))++1
2 γ̃′Eγ̃+γ̃′(Ry−e)

(9.11)

The last two terms do not depend on γ, so for the majorization algorithm is
suffices to minimize

1
2(γ − γ̃)′F (γ − γ̃) + (γ − γ̃)′E(γ̃ + (Ry − e)) (9.12)

Let

ξ := γ̃ − F −1E(γ̃ + (Ry − e)) (9.13)

then (9.12) becomes

1
2(γ − ξ)′F (γ − ξ) − 1

2ξ′Fξ (9.14)



184 CHAPTER 9. POLYNOMIAL MDS

Because F is diagonal λi = max(0, ξi) for i = 1, · · · m1 and and µi = ξi+m1

for i = 1, · · · m2.

Section A.1.19 has the R code for qpmaj(). The defaults are set to do a
simple isotone regression, but of course the function has a much larger scope.
It can handle equality constraints, linear convexity constraints, partial orders,
and much more general linear inequalities. It can fit polynomials, monotone
polynomials, splnes, and monotone splines of various sorts. It is possible
to have only inequality constraints, only equality constraints, or both. The
matrix H of predictors in (9.1) can either be there or not be there.

The function qpmaj() returns both x and λ, and the values of P , P ′, and
D′. And also the predicted values Hx, and the constraint values Ax − b
and Cx − d, if applicable. It’s always nice to check complimentary slackness
λ′(Ax − b) = 0, and another check is provided because the values of P ′ and
D′ must be equal. Finally qpmaj() returns the number of iterations for the
dual problem.

The function qpmaqj() does not have the pretense to compete in efficiency
with the sophisticated pivoting and active set strategies for quadratic pro-
gramming discussed for example by Best (2017). But it seems to do a reliable
job on our small examples, and it is an interesting example of majorization
and unweighting.

9.3.2.1 Example 1: Simple Monotone Regression

Here are the two simple monotone regression examples from section 10.1.1,
the first one without weights and the second one with a diagonal matrix of
weights.

y<-c(1,2,1,3,2,-1,3)
qpmaj(y)

## $x
## [1] 1.0 1.4 1.4 1.4 1.4 1.4 3.0
##
## $fprimal
## [1] 4.6
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##
## $fdual
## [1] 4.6
##
## $lambda
## [1] 0.0000000 0.5999999 0.1999999 1.7999999 2.3999999 0.0000000
##
## $inequalities
## [1] 4.000001e-01 -2.760349e-08 -4.466339e-08 -4.466339e-08 -2.760349e-08
## [6] 1.600000e+00
##
## $itel
## [1] 146

qpmaj(y, v = diag(c(1,2,3,4,3,2,1)))

## $x
## [1] 1.000000 1.400000 1.400000 1.777778 1.777778 1.777778 3.000000
##
## $fprimal
## [1] 11.37778
##
## $fdual
## [1] 11.37778
##
## $lambda
## [1] 0.000000 1.200000 0.000000 4.888889 5.555555 0.000000
##
## $inequalities
## [1] 4.000000e-01 0.000000e+00 3.777778e-01 -3.451610e-08 -2.391967e-08
## [6] 1.222222e+00
##
## $itel
## [1] 82
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9.3.2.2 Example 2: Monotone Regression with Ties

Now suppose the data have tie-blocks, which we indicate with {1} ≤
{2, 3, 4} ≤ {5, 6} ≤ {7}. The Hasse diagram of the partial order (courtesy
of Ciomek (2017)) is

1

2 3 4

5 6

7

In the primary approach to ties the inequality constraints Ax ≥ 0 are coded
with A equal to

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -1 +1 +0 +0 +0 +0 +0
## [2,] -1 +0 +1 +0 +0 +0 +0
## [3,] -1 +0 +0 +1 +0 +0 +0
## [4,] +0 -1 +0 +0 +1 +0 +0
## [5,] +0 -1 +0 +0 +0 +1 +0
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## [6,] +0 +0 -1 +0 +1 +0 +0
## [7,] +0 +0 -1 +0 +0 +1 +0
## [8,] +0 +0 +0 -1 +1 +0 +0
## [9,] +0 +0 +0 -1 +0 +1 +0
## [10,] +0 +0 +0 +0 -1 +0 +1
## [11,] +0 +0 +0 +0 +0 -1 +1

Applying our algorithm gives

qpmaj(y, a = a)

## $x
## [1] 1.000000 1.333333 1.000000 1.333333 2.000000 1.333333 3.000000
##
## $fprimal
## [1] 4.333333
##
## $fdual
## [1] 4.333333
##
## $lambda
## [1] 0.000000e+00 2.069906e-15 0.000000e+00 0.000000e+00 6.666667e-01
## [6] 0.000000e+00 0.000000e+00 0.000000e+00 1.666667e+00 0.000000e+00
## [11] 0.000000e+00
##
## $inequalities
## [1] 3.333333e-01 4.107825e-15 3.333334e-01 6.666667e-01 8.182895e-08
## [6] 1.000000e+00 3.333333e-01 6.666666e-01 -8.182895e-08 1.000000e+00
## [11] 1.666667e+00
##
## $itel
## [1] 96

In the secondary approach we require Cx = 0, with C equal to

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
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## [1,] +0 +1 -1 +0 +0 +0 +0
## [2,] +0 +1 +0 -1 +0 +0 +0
## [3,] +0 +0 +0 +0 +1 -1 +0

In addition we construct A to require x1 ≤ x2 ≤ x5 ≤ x7. This gives

qpmaj(y, a = a, c = c)

## $x
## [1] 1.0 1.4 1.4 1.4 1.4 1.4 3.0
##
## $fprimal
## [1] 4.6
##
## $fdual
## [1] 4.6
##
## $lambda
## [1] 0.0 1.8 0.0
##
## $inequalities
## [1] 4.000000e-01 -5.100425e-08 1.600000e+00
##
## $mu
## [1] -0.4 1.6 -2.4
##
## $equations
## [1] -2.055633e-08 -2.055633e-08 3.443454e-08
##
## $itel
## [1] 163

In the tertiary approach, without weights, we require x1 ≤ x2+x3+x4
3 ≤

x5+x6
2 ≤ x7 which means
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a <- matrix(c(-1,1/3,1/3,1/3,0,0,0,
0,-1/3,-1/3,-1/3,1/2,1/2,0,
0,0,0,0,-1/2,-1/2,1),
3,7,byrow = TRUE)

matrixPrint(a, d = 2, w = 5)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -1.00 +0.33 +0.33 +0.33 +0.00 +0.00 +0.00
## [2,] +0.00 -0.33 -0.33 -0.33 +0.50 +0.50 +0.00
## [3,] +0.00 +0.00 +0.00 +0.00 -0.50 -0.50 +1.00

This gives

qpmaj(y, a = a)

## $x
## [1] 1.0 1.4 0.4 2.4 2.9 -0.1 3.0
##
## $fprimal
## [1] 1.35
##
## $fdual
## [1] 1.35
##
## $lambda
## [1] 0.0 1.8 0.0
##
## $inequalities
## [1] 4.000000e-01 -1.716935e-08 1.600000e+00
##
## $itel
## [1] 30

9.3.2.3 Example 3: Weighted Rounding

This is a silly example in which a vector y = 0.5855288, 0.709466,
-0.1093033, -0.4534972, 0.6058875, -1.817956, 0.6300986, -0.2761841, -
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0.2841597, -0.919322 is “rounded” so that its elements are between −1 and
+1. The weights V = W are a banded positive definite matrix.

a<-rbind(-diag(10),diag(10))
b<-rep(-1, 20)
w<-ifelse(outer(1:10,1:10,function(x,y) abs(x-y) < 4), -1, 0)+7*diag(10)
qpmaj(y, v = w, a = a, b = b)

## $x
## [1] 0.737345533 0.917584527 0.215666042 -0.075684750 1.000000017
## [6] -1.000000039 1.000000023 0.061944776 -0.002332657 -0.754345762
##
## $fprimal
## [1] 1.110748
##
## $fdual
## [1] 1.110749
##
## $lambda
## [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0722112 0.0000000 0.1554043
## [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15] 0.0000000 2.8209838 0.0000000 0.0000000 0.0000000 0.0000000
##
## $inequalities
## [1] 2.626545e-01 8.241547e-02 7.843340e-01 1.075685e+00 -1.735205e-08
## [6] 2.000000e+00 -2.303727e-08 9.380552e-01 1.002333e+00 1.754346e+00
## [11] 1.737346e+00 1.917585e+00 1.215666e+00 9.243153e-01 2.000000e+00
## [16] -3.922610e-08 2.000000e+00 1.061945e+00 9.976673e-01 2.456542e-01
##
## $itel
## [1] 224

9.3.2.4 Example 4: Monotone Polynomials

This example has a matrix H with the monomials of degree 1, 2, 3 on the 20
points 1, · · · 20. We want to fit a third-degree polynomial which is monotone,
non-negative, and anchored at zero (which is why we do not have a monomial
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of degree zero, i.e. an intercept). Monotonicity is imposed by (hi+1−hi)′x ≥ 0
and non-negativity by h′

1x ≥ 0. Thus there are 19 + 1 inequality restrictions.
For y we choose points on the quadratic curve y = x2, perturbed with random
error.

set.seed(12345)
h <- cbind(1:20,(1:20)ˆ2,(1:20)ˆ3)
a <- rbind (h[1,],diff(diag(20)) %*% h)
y<-seq(0,1,length=20)ˆ2+rnorm(20)/20
plot(1:20, y)
out<-qpmaj(y,a=a,h=h,verbose=FALSE,itmax=1000, eps = 1e-15)
lines(1:20,out$pred,type="l",lwd=3,col="RED")

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1:20

y

The plot above and the output below shows what qpmaj() does in this case.

## $x
## [1] -2.311264e-03 2.292295e-03 1.895686e-05
##
## $fprimal
## [1] 0.0003265426
##
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## $fdual
## [1] 0.0003265446
##
## $ftotal
## [1] 0.01655943
##
## $predict
## [1] -1.255287e-08 4.698305e-03 1.420869e-02 2.864490e-02 4.812065e-02
## [6] 7.274970e-02 1.026458e-01 1.379226e-01 1.786940e-01 2.250737e-01
## [11] 2.771753e-01 3.351127e-01 3.989996e-01 4.689497e-01 5.450767e-01
## [16] 6.274945e-01 7.163167e-01 8.116571e-01 9.136294e-01 1.022347e+00
##
## $lambda
## [1] 0.1587839 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##
## $inequalities
## [1] -1.255287e-08 4.698318e-03 9.510389e-03 1.443620e-02 1.947576e-02
## [6] 2.462905e-02 2.989609e-02 3.527686e-02 4.077138e-02 4.637964e-02
## [11] 5.210164e-02 5.793738e-02 6.388687e-02 6.995009e-02 7.612706e-02
## [16] 8.241776e-02 8.882221e-02 9.534040e-02 1.019723e-01 1.087180e-01
##
## $itel
## [1] 97

We now want to accomplish more or less the same thing, but using a cubic
of the form f(x) = x(c + bx + ax2). Choosing a, b and c to be nonnegative
guarantees monotonicity (and convexity) on the positive axis, with a root
at zero. If b2 ≥ 4ac then the cubic has two additional real roots, and by
AM/GM we can guarantee this by b ≥ a + c. So a ≥ 0, c ≥ 0, and b ≥ a + c
are our three inequalities.

h <- cbind(1:20,(1:20)ˆ2,(1:20)ˆ3)
a <- matrix(c(1,0,0,0,0,1,-1,1,-1), 3, 3, byrow = TRUE)
plot(1:20, y)
out<-qpmaj(y,a=a,h=h,verbose=FALSE,itmax=10000, eps = 1e-15)
lines(1:20,out$pred,type="l",lwd=3,col="RED")
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The results of this alternative way of fitting the cubic are more or less indis-
tinguishable from the earlier results, although this second approach is quite
a bit faster (having only three inequalities instead of 21).

## $x
## [1] -5.673813e-09 1.945808e-03 3.098195e-05
##
## $fprimal
## [1] 0.0007170899
##
## $fdual
## [1] 0.000717091
##
## $ftotal
## [1] 0.01694997
##
## $predict
## [1] 0.001976784 0.008031075 0.018348765 0.033115745 0.052517907 0.076741142
## [7] 0.105971343 0.140394402 0.180196208 0.225562656 0.276679635 0.333733038
## [13] 0.396908757 0.466392682 0.542370707 0.625028722 0.714552619 0.811128290
## [19] 0.914941626 1.026178519
##
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## $lambda
## [1] 0.2021458 0.0000000 0.0000000
##
## $inequalities
## [1] -5.673813e-09 3.098195e-05 1.914831e-03
##
## $itel
## [1] 25

9.3.3 Examples



Chapter 10

Ordinal MDS

10.1 Monotone Regression

Is it really what we want

10.1.1 Simple Monotone Regression

Ever since Kruskal (1964a) and Kruskal (1964b) monotone regression has
played an important part in non-metric MDS. Too important, perhaps. Ini-
tially there was some competition with the rank images of Guttman (1968),
but that competition has largely faded over time.

We only give the barest outline in this section. More details are in De Leeuw,
Hornik, and Mair (2009). In (simple least squares) monotone (or isotone)
regression we minimize (x − y)′W (x − y), where W ≳ 0 is diagonal, over x
satisfying x1 ≤ · · · ≤ xn. The vector y is the target or the data.

The algorithm, which is extremely fast and of order n, is based on the sim-
ple rule that if elements are out of order, then you compute their weighted
average, forming blocks, keeping track of the block sizes and block weights.
This reduces the MR problem to a smaller MR problem, and following the
rule systematically leads to a finite algorithm. A particularly efficient imple-
mentation is in Busing (2021).

195
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A simple illustration. The first column are the value that we compute the
best monotone fit for, the second columns are the size of the blocks after
merging. In this case there are no weights, in fact the block sizes serve as
weights.

(1, 2, 1, 3, 2, −1, 3) (1, 1, 1, 1, 1, 1, 1) (10.1)

(1,
3
2 , 3, 2, −1, 3) (1, 2, 1, 1, 1, 1) (10.2)

(1,
3
2 ,

5
2 , −1, 3) (1, 2, 2, 1, 1) (10.3)

(1,
3
2 ,

4
3 , 3) (1, 2, 3, 1) (10.4)

(1,
7
5 , 3) (1, 5, 1) (10.5)

Expanding using the block size gives the solution (1, 7
5 , 7

5 , 7
5 , 7

5 , 7
5 , 3).

In the second example we do have weights, in the second column, and we use
a third column for blocks size.

(1, 2, 1, 3, 2, −1, 3) (1, 2, 3, 4, 3, 2, 1) (1, 1, 1, 1, 1, 1, 1) (10.6)

(1,
7
5 , 3, 2, −1, 3) (1, 5, 4, 3, 2, 1) (1, 2, 1, 1, 1, 1) (10.7)

(1,
7
5 ,

18
7 , −1, 3) (1, 5, 7, 2, 1) (1, 2, 2, 1, 1) (10.8)

(1,
7
5 ,

16
9 , 3) (1, 5, 9, 1) (1, 2, 3, 1) (10.9)

Expansion gives the solution (1, 7
5 , 7

5 , 16
9 , 16

9 , 16
9 , 3).

The usual monotone regression algorithms used in MDS allow for slightly
more complicated orders to handle ties in the data . There are basically
three approaches to ties implemented. In what Kruskal calls the primary
approach, only order relations between tie blocks are maintained. Within
blocks no order s mposed. In the secondary approach we require equality in
tie blocks. Ties in the data means we impose ties in the isotone regression.
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Both approaches can be incorporated in simple monotone regresson by pre-
processing. The secondary approach starts with the weighted averages of the
tie blocks, the primary approach orders the data within tie blocks so they
are non-decreasing. De Leeuw (1977b) showed that this preprocessing does
indeed give the least squares solution for both approaches. In the same paper
he also introduces a less restrictive tertiary approach, which merely requires
that the averages of the tie blocks are in the required order.

10.1.2 Weighted Monotone Regression

(x − y)′V (x − y)

V (x − y) = A′λ

Ax ≥ 0

λ ≥ 0

λ′Ax = 0

x = y + V −1A′λ

go to the dual if λi > 0 then a′
ix = 0

unweighting actually proves weighted is unweighted for something else

MR(x + ϵy) = MR(x) + ϵB(y) if MR(x) = Bx

10.1.3 Normalized Cone Regression

De Leeuw (1975a)

Bauschke, Bui, and Wang (2018)

10.1.4 Iterative MR

primal-dual: MR is dual Dykstra vertices of cone plus CCA one iteration
only
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10.2 Alternating Least Squares

smacof: hard squeeze double phase

10.3 Kruskal’s Approach

10.3.1 Kruskal’s Stress

Remember that Kruskal’s definition of stress was intended for ordinal multi-
dimensional scaling only. Thus dissimilarities are not necessarily numerical,
as in basic MDS, only their rank order is known. He first defined raw stress
as

σ⋆
K(X) :=

∑∑
1≤i<j≤n

(d̂ij − dij(X))2, (10.10)

where the d̂ij is some set of numbers monotone with the dissimilarities.

To simplify the discussion, we delay the precise definition of d̂,
for a little while. (Kruskal (1964a), p. 8)

Kruskal then mentions that raw stress satisfies σ⋆
K(αX) = α2σ⋆

K(X), which is
clearly undesirable because the size of the configuration should not influence
the quality of the fit.

An obvious way to cure this defect in the raw stress is to divide
it by a scaling factor, that is, a quantity which has the same
quadratic dependence on the scale of the configuration that raw
stress does. (Kruskal (1964a), p. 8).

By the way, although the precise definition of D̂ has been delayed, the uni-
form stretching/shrinking argument already assumes that if we multiply D
by α then D̂ also gets multiplied by α. Thus it sort of gives away that D̂ is
also a function of X, at least of the scale of X.
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For the normalization of raw stress Kruskal chooses

τ ⋆
K(X) :=

∑∑
1≤i<j≤n

d2
ij(X), (10.11)

Finally, it is desirable to use the square root of this expression,
which is analogous to choosing the standard deviation in place of
the variance. (Kruskal (1964a), p. 9)

Thus Kruskal’s normalized loss function for ordinal MDS becomes

σK(X) :=

√√√√σ⋆
K(X)

τ ⋆
K(X) =

√√√√∑∑
1≤i<j≤n(d̂ij − dij(X))2∑∑

1≤i<j≤n d2
ij(X) . (10.12)

At this point in Kruskal (1964a) the definition of D̂ still hangs in the air,
although we know that the D̂ are monotone with ∆, and that multiplying X
by a constant will multiply both D(X) and D̂ by the same constant. Matters
are clarified right after the definition of stress.

Now it is easy to define the d̂ij. They are the numbers which
minimize σ (or equivalently, σ⋆) subject to the monotonicity con-
straints. (Kruskal (1964a), p. 9)

Thus, actually, raw stress is the minimum over the pseudo-distance matrices
Ω in D, the set of all monotone transformations of the dissimilarities.

σ⋆(X) := min
Ω∈D

∑∑
1≤i<j≤n

(ωij − dij(X))2, (10.13)

and D̂ is the minimizer, which is now clearly a function of X,

D̂(X) := argmin
Ω∈D

∑∑
1≤i<j≤n

(ωij − dij(X))2. (10.14)

So, finally,
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σ(X) := min
Ω∈D

√√√√σ⋆(X)
τ ⋆(X) =

√√√√∑∑
1≤i<j≤n(ωij − dij(X))2∑∑

1≤i<j≤n d2
ij(X) . (10.15)

In Guttman’s terminology Kruskal’s approach is hard squeeze single phase.
Thus what is minimized is

σJBK(X) := min
∆∈D

√√√√∑∑
1≤i<j≤n(δij − dij(X))2∑∑

1≤i<j≤n d2
ij(X)

10.3.2 Stress1 and Stress2

10.4 Guttman’s Approach

The main alternative to the Kruskal approach to MDS, besides smacof, is the
Smallest Space Analysis (SSA) of Guttman and Lingoes. I have mixed feel-
ings about the fundamental SSA paper of Guttman (1968). It is, no doubt, a
milestone MDS paper, and some of the distinctions it makes (which we will
discuss later in this section) are clearly important. Its use of matrix algebra,
wherever possible, is an improvement over Kruskal (1964a), and the correc-
tion matrix algorithm for SSA is an immediate predecessor of smacof. But it
seems to me the derivation of the correction matrix algorithm is incomplete
and could even be called incorrect. The rank images used by Guttman and
Lingoes in SSA seem an ad-hoc solution invented by someone who did not
yet know about monotone regression. And, above all, the paper exudes a
personality cult-like atmosphere that is somewhat repellent to me. There
are no gurus in science. Or at least there should not be. It is true that
between 1930 and 1960 Guttman invented and elucidated about 75% of the
psychometrics of his time, but 75% is still less than 100%. This book you are
reading now may set a record in self-citation, but that makes sense because
it is supposed to document my work in MDS and to give access to the pdf’s
of my unpublished work. I try to be careful not to take credit for results that
did not originate with me, and to give appropriate attributions in all cases.
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Table 10.1: Semi-strong Rank Images

1 2 3 4 5 6 7
$\Delta$ 1 2 2 3 3 4 5
$D(X)$ 1 3 1 3 4 3 4
$D(X)\ \text{ordered}$ 1 1 3 3 3 4 4
$D^\star$ 1 1 3 3 3 4 4

10.4.0.1 Rank Images

The rank image transformation, which replaces the monotone regression in
Kruskal’s approach, has a rather complicated definition. It is simple enough
when both ∆ and D(X) have no ties. In that case the rank image D⋆ is just
the unique permutation of D(X) that is monotone with ∆. Thus

δij < δkl ⇔ d⋆
ij < d⋆

kl. (10.16)

If there are ties in ∆ and/or D(X) then some of the uniqueness and simplicity
will get lost. Guttman (1968) introduces an elaborate notation for rank
images with ties, but that notation does neither him nor the reader any
favors.

If there are ties in D(X) you use the rank order of the corresponding elements
of ∆ to order D(X) within tie blocks. If two elements are tied both in D(X)
and ∆, then their order in the tie block is arbitrary.

Suppose the ∆ have R tie-blocks, in increasing order, with m1, · · · , mR ele-
ments. The smallest m1 elements of the vector of distances become the first
m1 elements of D⋆, the next m2 elements of D⋆ are the next smallest m2

elements of distance vector, and so on for all tie blocks. Thus tied elements
in ∆ can become untied in D⋆ and untied elements in ∆ can becomes tied
in D⋆. We require

δij < δkl ⇒ d⋆
ij ≤ d⋆

kl (10.17)

This corresponds with Kruskal’s primary approach to ties. Guttman calls it
semi-strong monotonicity. There is a small numerical example in table 10.1.
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Table 10.2: Strong Rank Images

1 2 3 4 5 6 7
$\Delta$ 1 2 2 3 3 4 5
$D(X)$ 1 3 1 3 4 3 4
$D(X)\ \text{ordered}$ 1 1 3 3 3 4 4
$D^\star$ 1 2 2 3 3 4 4

The sum of the squared differences between D(X) and D⋆ is 6.
Alternatively, we can require that tied elements in ∆ correspond with tied
elements in D⋆. Guttman calls this strong monotonicity, and requires in ad-
dition that D⋆ has the same number of blocks, with the same block sizes,
as ∆. Instead of copying ordered blocks from the sorted distances, we com-
pute averages of blocks, and copy those into Dstar. This corresponds with
Kruskal’s secondary approach to ties. Thus the elements of D⋆ are no longer
a permutation of those in D(X). We have @eq:nmrankimage1, and also

δij = δkl ⇒ d⋆
ij = d⋆

kl (10.18)

Our numerical example is now in table 10.2.
Now the sum of squared differences between D(X) and D⋆ is 4, which means,
surprisingly, that strong monotonicity gives a better fit than semi-strong
monotonicity. This cannot happen with monotone regression, where the
primary approch to ties always has a better fit than the secondary approach.

10.4.0.2 Single and Double Phase

Note: suppose ∥D⋆
1 − D(X2)∥2 < ∥D⋆

1 − D(X1)∥2 but ∥D⋆
2 − D(X2)∥2 >

∥D⋆
1 − D(X2)∥2

σG(X) =
∑∑

1≤i<j≤n wij(d⋆
ij(X) − dij(X))2∑∑

1≤i<j≤n wijd2
ij(X) .

σG(X, D⋆) =
∑∑

1≤i<j≤n(d⋆
ij − dij(X))2∑∑

1≤i<j≤n d2
ij(X) .
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10.4.0.3 Hard and Soft Squeeze

σ(X) := min
δ∈K∩S

∑
k∈K

wk(δk − dk(X))2

question: in double phase do rank images decrease stress ? My guess is yes.
Are they continuous ?

ρG(X) = max
P ∈Π

δ′Pd(X)

is a continuous function of X. Also (Shepard)

D+ρG(X) = max
P ∈Π(X)

δ′PDd(X)

rank-images Pd are not continuous

10.4.1 Smoothness of Ordinal Loss Functions

Kruskal

min
D̂∈D

∑∑
wij(d̂ij − dij(X))2

is a differentiable function of X

Double phase rank image

σLG(X) = min
P

∥Pd(X) − d(X)∥2

P in the Birkhoff polytope and satisfying inequalities, equalities.
P given by maxP d(X)′Pd(X)
De Leeuw (1973b)

10.5 Scaling with Distance Bounds

αij ≤ dij(X) ≤ βij
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10.6 Bounds on Stress

De Leeuw and Stoop (1984)
Stress1 and Stress2



Chapter 11

Splinical MDS

11.1 Splines

In this section we give a short introduction, with examples, to (univariate)
splines, B-splines, and I-splines. It is taken from De Leeuw (2017a), with
some edits to make it fit into the book. The report it was taken from has
more detail and more examples.
To define spline functions we first define a finite sequence of knots T = {tj}
on the real line, with t1 ≤ · · · ≤ tp, and an order m. In addition each
knot tj has a multiplicity mj, the number of knots equal to tj. We suppose
throughout that mj ≤ m for all j.
A function f is a spline function of order m for a knot sequence {tj} if

1. f is a polynomial πj of degree at most m−1 on each half-open interval
Ij = [tj, tj+1) for j = 1, · · · , p,

2. the polynomial pieces are joined in such a way that D(s)
− f(tj) =

D(s)
+ f(tj) for s = 0, 1, · · · , m − mj − 1 and j = 1, 2, · · · , p.

Here we use D(s)
− and D(s)

+ for the left and right sth-derivative operator. If
mj = m for some j, then the second requirement is empty, if mj = m−1 then
the second requirement means πj(tj) = πj+1(tj), i.e. we require continuity of
f at tj. If 1 ≤ mj < m − 1 then f must be m − mj − 1 times differentiable,
and thus continuously differentiable, at tj.

205
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In the case of simple knots (with multiplicity one) a spline function of order
one is a step function which steps from one level to the next at each knot.
A spline of order two is piecewise linear, with the pieces joined at the knots
so that the spline function is continuous. Order three means a piecewise
quadratic function which is continuously differentiable at the knots. And so
on.

11.1.1 B-splines

Alternatively, a spline function of order m can be defined as a linear combi-
nation of B-splines (or basic splines) of order m on the same knot sequence.
A B-spline of order m is a spline function consisting of at most m non-
zero polynomial pieces. A B-spline Bj,m is determined by the m + 1 knots
tj ≤ · · · ≤ tj+m, is zero outside the interval [tj, tj+m), and positive in the
interior of that interval. Thus if tj = tj+m then Bj,m is identically zero.

For an arbitrary finite knot sequence t1, · · · , tp, there are p − m B-splines to
of order m to be considered, although some may be identically zero. Each
of the splines covers at most m consecutive intervals, and at most m − 1
different B-splines are non-zero at each point.

11.1.1.1 Boundaries

B-splines are most naturally and simply defined for doubly infinite sequences
of knots, that go to ±∞ in both directions. In that case we do not have to
worry about boundary effects, and each subsequence of m + 1 knots defines
a B-spline. For splines on finite sequences of p knots we have to decide what
happens at the boundary points.

There are B-splines for tj, · · · , tj+m for all j = 1, · · · , p − m. This means
that the first m − 1 and the last m − 1 intervals have fewer than m splines
defined on them. They are not part of what De Boor (2001), page 94, calls
the basic interval. For doubly infinite sequences of knots there is not need to
consider such a basic interval.

If we had m additional knots on both sides of our knot sequence we would
also have m additional B-splines for j = 1 − m, · · · , 0 and m additional B-
splines for j = p − m + 1, · · · , p. By adding these additional knots we make
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sure each interval [tj, tj+1) for j = 1, · · · , p − 1 has m B-splines associated
with it. There is stil some ambiguity on what to do at tp, but we can decide
to set the value of the spline there equal to the limit from the left, thus
making the B-spline left-continuous there.
In our software we will use the convention to define our splines on a closed
interval [a, b] with r interior knots a < t1 < · · · < tr < b, where interior knot
tj has multiplicity mj. We extend this to a series of p = M + 2m knots, with
M = ∑r

j=1 mj, by starting with m copies of a, appending mj copies of tj for
each j = 1, · · · , r, and finishing with m copies of b. Thus a and b are both
knots with multiplicity m. This defines the extended partition (Schumaker
(2007), p 116), which is just handled as any knot sequence would normally
be.

11.1.1.2 Normalization

The conditions we have mentioned only determine the B-spline up to a nor-
malization. There are two popular ways of normalizing B-splines. The N -
splines Nj,m, a.k.a. the normalized B-splines j or order m, satisfies∑

j

Nj,m(t) = 1. (11.1)

Note that in general this is not true for all t, but only for all t in the basic
interval.
Alternatively we can normalize to M -splines, for which∫ +∞

−∞
Mj,m(t)dt =

∫ tj+k

tj

Mj,m(t)dt = 1. (11.2)

There is the simple relationship

Nj,m(t) = tj+m − tj

m
Mj,m(t). (11.3)

11.1.1.3 Recursion

B-splines can be defined in various ways, using piecewise polynomials, divided
differences, or recursion. The recursive definition, first used as the preferred



208 CHAPTER 11. SPLINICAL MDS

definition of B-splines by De Boor and Höllig (1985), is the most convenient
one for computational purposes, and that is the one we use.

The recursion is due independently to M. G. Cox (1972) for simple knots and
to De Boor (1972) in the general case, is

Mj,m(t) = t − tj

tj+m − tj

Mj,m−1(t) + tj+m − t

tj+m − tj

Mj+1,m−1(t), (11.4)

or

Nj,m(t) = t − tj

tm+j−1 − tj

Nj,m−1(t) + tj+m − t

tj+m − tj+1
Nj+1,m−1(t). (11.5)

A basic result in the theory of B-splines is that the different B-splines are
linearly independent and form a basis for the linear space of spline functions
(of a given order and knot sequence).

In section A.1.19 the basic BSPLVB algorithm from De Boor (2001), page
111, for normalized B-splines is translated to R and C. There are two auxiliary
routines, one to create the extended partition, and one that uses bisection
to locate the knot interval in which a particular value is located (Schumaker
(2007), p 191). The R function bsplineBasis() takes an arbitrary knot se-
quence. It can be combined with extendPartition(), which uses inner knots
and boundary points to create the extended partion.

11.1.1.4 Illustrations

For our example, which is the same as the one from figure 1 in Ramsay
(1988), we choose a = 0, b = 1, with simple interior knots 0.3, 0.5, 0.6. First
the step functions, which have order 1.

Now the hat functions, which have order 2, again with simple knots.

Next piecewise quadratics, with simple knots, which implies continuous dif-
ferentiability at the knots. This are the N-splines corresponding with the
M-splines in figure 1 of Ramsay (1988).

If we change the multiplicities to 1, 2, 3, then we lose some of the smoothness.
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Figure 11.1: Zero Degree Splines with Simple Knots

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

B
−

sp
lin

e 
 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

B
−

sp
lin

e 
 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

B
−

sp
lin

e 
 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

B
−

sp
lin

e 
 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

B
−

sp
lin

e 
 5

Figure 11.2: Piecewise Linear Splines with Simple Knots
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Figure 11.3: Piecwise Quadratic Splines with Simple Knots

11.1.2 I-splines

There are several ways to require splines to be monotone increasing. Since
B-splines are non-negative, the definite integral of a B-spline of order m from
the beginning of the interval to a value x in the interval is an increasing spline
of order m+1. Integrated B-splines are known as I-splines (Ramsay (1988)).
Non-negative linear combinations I-splines can be used as a basis for the
convex cone of increasing splines. Note, however, that if we use an extended
partition, then all I-splines start at value zero and end at value one, which
means their convex combinations are those splines that are also probability
distributions on the interval. To get a basis for the increasing splines we need
to add the constant function to the I-splines and allow it to enter the linear
combination with either sign.
I-splines are most economically computed by using the formula first given by
Gaffney (1976). If ℓ is defined by tj+ℓ−1 ≤ x < tj+ℓ then

∫ x

xj

Mj,m(t)dt = 1
m

ℓ−1∑
r=0

(x − xj+r)Mj+r,m−r(x)



11.1. SPLINES 211

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x

B
−

sp
lin

e 
 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

x
B

−
sp

lin
e 

 9

Figure 11.4: Piecewise Quadratic Splines with Multiple Knots

It is somewhat simpler, however, to use lemma 2.1 of De Boor, Lyche, and
Schumaker (1976). This says

∫ x

a
Mj,m(t)dt =

∑
ℓ≥j

Nℓ,m+1(x) −
∑
ℓ≥j

Nℓ,m+1(a),

If we specialize this to I-splines, we find , as in De Boor (1976), formula 4.11,

∫ x

−∞
Mj,m(t)dt =

j+r∑
ℓ=j

Nℓ,m+1(x)

for x ≤ tj+r+1. This shows that I-splines can be computed by using cumula-
tive sums of B-spline values.

Note that using the definition using integration does not give a natural way
to define increasing splines of degree one, i.e. increasing step functions. There
is no such problem with the cumulative sum approach.
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11.1.2.1 Increasing Coefficients

As we know, a spline is a linear combination of B-splines. The formula for
the derivative of a spline, for example in De Boor (2001), p 116, shows that a
spline is increasing if the coefficients of the linear combination of B-splines are
increasing. Thus we can fit an increasing spline by restricting the coefficients
of the linear combination to be increasing, again using the B-spline basis.

It turns out this is in fact identical to using I-splines. If the B-spline values
at n points are in an n × r matrix H, then non-decreasing coefficients β are
of the form β = Sα + γer, where S is lower-diagonal with all elements on
and below the diagonal equal to one, where α ≥ 0, where er has all elements
equal to one, and where γ can be of any sign. So Hβ = (HS)α + γen. Thus
non-decreasing coefficients is the same thing as using cumnulative sums of
the B-spline basis.

11.1.2.2 Increasing Values

Finally, we can simply require that the n elements of Hβ are increasing.
This is a less restrictive requirement, because it allows for the possibility
that the spline is decreasing between data values. It has the rather serious
disadvantage, however, that it does its computations in n-dimensional space,
and not in r-dimensional space, where r = M + m, which is usually much
smaller than n. Software for the increasing-value restrictions has been written
by De Leeuw (2015). In our software, however, we prefer the cumsum()
approach. It is less general, but considerably more efficient.

We use the same Ramsay example as before, but now cumulatively. First
we integrate step functions with simple knots, which have order one, using
isplineBasis(). The corresponding I-splines are piecewise linear with order
two.

Now we integrate the hat functions, which have order 2, again with simple
knots, to find piecewise quadratic I-splines of order 3. These are the functions
in the example of Ramsay (1988).

Finally, we change the multiplicities to 1, 2, 3, and compute the correspond-
ing piecewise quadratic I-splines.
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Figure 11.5: Not Sure
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Figure 11.6: Monotone Piecewise Linear Splines with Simple Knots
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Figure 11.7: Monotone Piecewise Quadratic Splines with Multiple Knots

11.1.3 Time Series Example

Our first example smoothes a time series by fitting a spline. We use the
number of births in New York from 1946 to 1959 (on an unknown scale),
from Rob Hyndman’s time series archive.

11.1.3.1 B-splines

First we fit B-splines of order three. The basis matrix uses x equal to 1 : 168,
with inner knots 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, and
interval [1, 168].

innerknots <- 12 * 1:13
multiplicities <- rep(1, 13)
lowend <- 1
highend <- 168
order <- 3
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x <- 1:168
knots <-

extendPartition (innerknots, multiplicities, order, lowend, highend)$knots
h <- bsplineBasis (x, knots, order)
u <- lm.fit(h, births)
res <- sum ((births - h %*% u$coefficients) ˆ 2) / 2

Time
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Figure 11.8: Monotone Piecewise Quadratic Splines with Simple Knots

The residual sum of squares is 114.6917709.

11.1.3.2 I-splines

We now fit the I-spline using the B-spline basis. Compute Z = HS using
cumsum(), and then y and Z by centering (substracting the column means).
The formula is

min
α≥0,γ

SSQ (y − Zα − γen) = min
α≥0

SSQ (y − Zα).

We use pnnls() from Wang, Lawson, and Hanson (2015).
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knots <- extendPartition (innerknots, multiplicities, order, lowend, highend)$knots
h <- isplineBasis (x, knots, order)
g <- cbind (1, h[,-1])
u <- pnnls (g, births, 1)$x
v <- g%*%u
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Figure 11.9: Monotone Piecewise Linear Splines with Simple Knots

The residual sum of squares is 144.2027491.

11.1.3.3 B-Splines with monotone weights

Just to make sure, we also solve the problem

min
β1≤β2≤···≤βp

SSQ(y − Xβ),

which should give the same solution, and the same loss function value, be-
cause it is just another way to fit I-splines. We use the lsi() function from
Wang, Lawson, and Hanson (2015).
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knots <-
extendPartition (innerknots, multiplicities, order, lowend, highend)$knots

h <- bsplineBasis (x, knots, order)
nb <- ncol (h)
d <- matrix(0, nb - 1, nb)
diag(d) = -1
d[outer(1:(nb - 1), 1:nb, function(i, j)

(j - i) == 1)] <- 1
u <- lsi(h, births, e = d, f = rep(0, nb - 1))
v <- h %*% u

Time
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The residual sum of squares is 144.2027491, indeed the same as before.

11.1.3.4 B-Splines with monotone values

Finally we solve

min
x′

1β≤···≤x′
nβ

SSQ (y − Xβ)

using qpmaj() from section ???.
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knots <-
extendPartition (innerknots, multiplicities, order, lowend, highend)$knots

h <- bsplineBasis (x, knots, order)
a <- diff(diag(nrow(h))) %*% h
u <- qpmaj(births, h = h, a = a)
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Figure 11.10: Monotone Piecewise Quadratic Splines with Multiple Knots

The residual sum of squares is 144.1574541 , which is indeed smaller than
the I-splines value, although only very slightly so.

11.1.4 Local positivity, monotonicity, convexity



Chapter 12

Unidimensional Scaling

For Unidimensional Scaling (UDS or 1MDS) the configuration is a matrix
X ∈ Rn×1. We can trivially identify this single-column matrix X with the
vector x of coordinates of n points on the real line. All our previous general
MDS results remain valid for UDS, but we will use the additional structure
that comes with p = 1 to discuss a number of special results.
Unidimensional scaling appears under different names in the literature such
as seriation in archeology and sequencing in genetics. Often the algorithms
permute the rows and columns of a matrix of dissimilarities to approximate
some special structure. In this book seriation and sequencing are always
understood to be the minimization of stress over x, i.e. minimization of

σ(x) =
∑∑

1≤i<j≤n

wij(δij − |xi − xj|)2 (12.1)

12.1 An example

We start the chapter with some pictures, similar to the ones in chapter 2.
There are four objects. Dissimilarities are again chosen to be all equal, in
this case to 1

6

√
6. Weights are all equal to one.

We look at stress on the two-dimensional subspace spanned by the two
vectors y = (0, −1, +1, 0) and z = (−1.5, −.5., +.5, +1.5). First we nor-
malize both y and z by ρ = η2. This gives y = (0, −1

8

√
6, +1

8

√
6, 0) and

219
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z = (−1
8

√
6, − 1

24

√
6, + 1

24

√
6, +1

8

√
6). We know from previous results (for ex-

ample, De Leeuw and Stoop (1984)) that the equally spaced configuration
z is the global minimizer of stress over R4. Of course it is far from unique,
because all 24 permutations of z have the same function value, and are con-
sequently also global minima. In fact, there are 24 local minima, which are
all global minima as well. (paired)

In the example, we do not minimize over all of R4, but only over the subspace
of linear combinations of y and z. These linear combinations, with coefficients
α and β, are given by

x = αy + βz = 1
24

√
6


−3β

−3α − β
3α + β

3β

 , (12.2)

with distances

D(x) = 1
24

√
6


0

|3α − 2β| 0
|3α + 4β| |6α + 2β| 0

|6β| |3α + 4β| |3α − 2β| 0

 . (12.3)

We see that on the line β = 3
2α both d12(x) and d34(x) are zero, on β = −3α

we have d23(x) = 0, on β = 0 we have d14(x) = 0, and finally d13(x) =
d24(x) = 0 on β = −3

4α. On those lines, through the origin, stress is not
differentiable.

12.1.1 Perspective

We first make a global perspective plot, with both α and β in the range
(−2.0, +2.0).
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alpha

be
ta

stress
What do we see ? Definitely more ridges and valleys than in the two-
dimensional example of chapter 2. In the one-dimensional case there is a
ridge wherever two coordinates are equal, and thus one or more distances are
zero. It is clear that at the bottom of each of the valleys there sits a local
minimum.

12.1.2 Contour

A contour plot gives some additional details. In the plot we have drawn the
four lines through the origin where one or more distances are zero (in red),
and we have drawn the curve where η2(x) = ρ(x) (in blue). Thus all local
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minima are on the blue line. The intersections of the red and the blue lines
are the local minima of stress restricted to the red line. In those points there
are both directions of ascent (along the red lines, in both directions) and of
descent (into the adjoining valleys, in all directions).
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We see once more the importance of the local minimum result from De Leeuw
(1984c) that we discussed in section 2.5.2. The special relevbance of this re-
sult for UMDS was already pointed out by Pliner (1996). At a local minimum
all distances are positive, and thus local minima must be in the interior of
the eight cones defined by the four zero-distance lines. There are no saddle
points, and only a single local maximum at the origin.
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12.2 Order Formulation

Define an isocone as a closed convex cone of isotone vectors, and int(K) as
its interior. Thus

K := {x ∈ Rn | xi1 ≤ · · · ≤ xin}, (12.4)

and

int(K) = {x ∈ Rn | xi1 < · · · < xin}. (12.5)

where (i1, · · · , in) is a permutation of (1, · · · , n). There are n! such closed iso-
cones, and their union is all of Rn. Thus minx σ(x) = minK∈K minx∈K σ(x) =
where K are the n! isocones.
For UMDS purposes the isocones are paired, because the negative of each
configuration has the same distances between the n points, and thus the same
stress. Thus each isocone and its negative cone are equivalent for UMDS,
and we only have to consider (n!)/2 distinct orders.
Let us consider the problem of minimizing σ over a fixed K ∈ K. Now

ρ(x) =
∑∑

1≤i<j≤n

wijδijsij(xi − xj),

and sij = sign(xi − xj) is the sign matrix of x.
S(x) is the sign matrix of x ∈ Rn if sij(x) = sign(xi − xj) for all i and j, i.e.

sij(x) :=


+1 if xi > xj,

−1 if xi < xj,

0 if xi = xj.

(12.6)

The set of all sign matrices is S.
Sign matrices are hollow and anti-symmetric. A sign matrix S is strict if its
only zeroes are on the diagonal, i.e. S = S(Pι) for some permutation matrix
P . The set of strict sign matrices is S+. Since there is a 1:1 correspon-
dence between strict sign matrices and permutations, there are n! strict sign



224 CHAPTER 12. UNIDIMENSIONAL SCALING

matrices. The row sums and column sums of a strict sign matrix are some
permutation of the numbers n − 2ι + 1.
For all x ∈ int(K) the matrix S is the same strict sign matrix. Now

ρ(x) = 1
2

n∑
i=1

n∑
j=1

wijδijsij(xi − xj) = x′tK ,

where tK is the vector of row sums of the Hadamard product W × ∆ × S, or

{tK}i :=
n∑

j=1
wijδijsij.

Again tK only depends of K, not on x as long as x ∈ int(K).
Thus on K

σ(x) = 1 − 2x′tK + x′V x = 1 + (x − V −1tK)′V (x − V −1tK) − t′
KV −1tK .

If there are no weights the tK were first defined using isocones in De Leeuw
and Heiser (1977). They point out that minimizing (x − V −1t)′V (x − V −1t)
over x ∈ K is a monotone regression problem (see 10.1).
A crucial next step is in De Leeuw (2005b), using the basic result in De
Leeuw (1984c). De Leeuw (2005b) does use weights. We know if x is a local
minimum then it must be in the interior of the isocone. If V −1tK is not in
interior, then monotone regression will creates ties, and thus x will not be
in the interior either. In fact for local minima of UMDS it is necessary and
sufficient that V −1tK is in the interior of K. This result, without weights and
in somewhat different language, is also in Pliner (1984). Thus we can limit
our search to those isocones for which V −1tK ∈ int(K). For those isocones,
say the set K◦, the local minimum is at x = V −1tK .
Thus

min
K∈K

min
x∈K

σ(x) = 1 − max
K∈K◦

t′
KV −1tK .

There is also an early short but excellent paper by Defays (1978), which
derives basically the same result in a non-geometrical way. Defays does not
use weights, so in his paper V −1 is n−1I.
In the two-dimensional subspace of the example some of the n! cones are
empty.
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12.3 Permutation Formulation

12.4 Sign Matrix Formulation

ρ(x) = max
S∈S

∑∑
1≤i<j≤n

wijδijsij(xi − xj), (12.7)

with the maximum attained for S = S(x). If we define

ti(y) :=
n∑

j=1
wijδijsij(y), (12.8)

then

σ(x) = min
y

{1 + (x − V −1t(y))′V (x − V −1t(y)) − t(y)′V −1t(y)}. (12.9)

This implies

min
x

σ(x) = 1 − max
y

t(y)′V −1t(y) (12.10)

12.5 Algorithms for UMDS

12.5.1 SMACOF

12.5.2 SMACOF (smoothed)

Now local minimum xi ̸= xj

min
x∈K

σ(x) =
∑∑

1≤i<j≤n

wij(δij − sij(x))(xi − xj))2

Each isocone has a sign matrix (hollow, antisymmetric)
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sij(x) =


+1 if xi > xj,

−1 if xi < xj,

0 if xi = xj.

ρ(x) =
n∑

i=1

n∑
j=1

wijδijsij(x)(xi−xj) ≥
n∑

i=1

n∑
j=1

wijδijsij(y)(xi−xj) = 2
n∑

i=1
xi

n∑
j=1

wijδijsij(y)

Now

ρ(x) =
n∑

i=1

n∑
j=1

wijδijsij(x)(xi − xj), (12.11)

and for all y ∈ Rn

ρ(x) ≥
n∑

i=1

n∑
j=1

wijδijsij(y)(xi − xj) = 2
n∑

i=1
xi

n∑
j=1

wijδijsij(y). (12.12)

Stress is the maximum of a finite number of quadratics.

12.5.3 Branch-and-Bound

12.5.4 Dynamic Programming

12.5.5 Simulated Annealing

12.5.6 Penalty Methods



Chapter 13

Full-dimensional Scaling

13.1 Convexity

13.2 Optimality

13.3 Iteration

13.4 Cross Product Space

So far we have formulated the MDS problem in configuration space. Stress
is a function of X, the n × p configuration matrix. We now consider an
alternative formulation, where stress is a function of a positive semi-definite
C or order n. The relevant definitions are

σ(C) := 1 − 2ρ(C) + η(C), (13.1)

where

ρ(C) := tr B(C)C,

η(C) := tr V C,

with

B(C) :=
∑∑

1≤i<j≤n

wij
δij

dij(C)Aij if dij(C) > 0,

0 if dij(C) = 0.

227
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and d2
ij(C) := tr AijC.

We call the space of all positive semi-definite n × n matrices cross product
space. The problem of minimizing σ over n × p-dimensional configuration
space is equivalent to the problem of minimizing σ over the set of matrices
C in n×n-dimensional cross product space that have rank less than or equal
to p. The corresponding solutions are related by the simple relationship
C = XX ′.

Theorem 13.1. Stress is convex on cross product space.

Proof. First, η is linear in C. Second,

ρ(C) =
∑∑

1≤i<j≤n

wijδij

√
tr AijC.

This is the weighted sum of square roots of non-negative functions that are
linear in C, and it is consequently concave. Thus σ is convex.

Unfortunately the subset of cross product space of all matrices with rank less
than or equal to p is far from simple (see Datorro (2015)), so computational
approaches to MDS prefer to work in configuration space.

13.5 Full-dimensional Scaling

Cross product space, the set of all positive semi-definite matrices, is a closed
convex cone K in the linear space of all n × n symmetric matrices. This has
an interesting consequence.

Theorem 13.2. Full-dimensional scaling, i.e. minimizing σ over K, is a
convex programming problem. Thus in FDS all local minima are global. If
wijδij > 0 for all i, j then the minimum is unique.

This result has been around since about 1985. De Leeuw (1993) gives a proof,
but the report it appeared in remained unpublished. A published proof is in
“Inverse Multidimensional Scaling” (2007). Another treatment of FDS, with
a somewhat different emphasis, is in De Leeuw (2014a).
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Now, by a familiar theorem (Theorem 31.4 in Rockafellar (1970)), a matrix
C minimizes σ over K if and only if

C ∈ K, (13.2)
V − B(C) ∈ K, (13.3)

tr C(V − B(C)) = 0. (13.4)

We give a computational proof of this result for FDS that actually yields a
bit more.

Theorem 13.3. For ∆ ∈ K we have

σ(C + ϵ∆) = σ(C) − 2ϵ
1
2

∑
tr AiC=0

wiδi

√
tr Ai∆ + ϵ tr (V − B(C))∆ + o(ϵ).

(13.5)

::: {.proof} Simple expansion. :::

Theorem 13.4. Suppose C is a solution to the problem of minimizing σ over
K. Then

• tr AijC > 0 for all i, j for which wijδij > 0.
• V − B(C) is positive semi-definite.
• tr C(V − B(C)) = 0.
• If C is positive definite then V = B(C) and σ(C) = 0.

Proof. The ϵ
1
2 term in (13.5) needs to vanish at a local minimum. This proves

the first part. It follows that at a local minimum

σ(C + ϵ∆) = σ(C) + ϵ tr (V − B(C))∆ + o(ϵ).

If V − B(C) is not positive semi-definite, then there is a ∆ ∈ K such that
tr (V − B(C))∆ < 0. Thus C cannot be the minimum, which proves the
second part. If we choose ∆ = C we find
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σ((1 + ϵ)C) = σ(C) + ϵ tr (V − B(C))C + o(ϵ).

and choosing ϵ small and negative shows we must have tr (V − B(C))C = 0
for C to be a minimum. This proves the third part. Finally, if σ has a
minimum at C, and C is positive definite, then from parts 2 and 3 we have
V = B(C). Comparing off-diagonal elements shows ∆ = D(C), and thus
σ(C) = 0.

If C is the solution of the FDS problem, then rank(C) defines the Gower rank
of the dissimilarities. The number of positive eigenvalues of the negative of
the doubly-centered matrix of squared dissimilarities, the matrix factored in
classical MDS, defines the Torgerson rank of the dissimilarities. The Gower
conjecture is that the Gower rank is less than or equal to the Torgerson rank.
No proof and no counter examples have been found.
We compute the FDS solution using the smacof algorithm

X(k+1) = V +B(X(k)) (13.6)

in the space of all n×n configurations, using the identity matrix as a default
starting point. Since we work in configuration space, not in crossproduct
space, this does not guarantee convergence to the unique FDS solution, but
after convergence we can easily check the necessary and sufficient conditions
of theorem 13.4.
As a small example, consider four points with all dissimilarities equal to one,
except δ14 which is equal to three. Clearly the triangle inequality is violated,
and thus there certainly is no perfect fit mapping into Euclidean space.
The FDS solution turns out to have rank two, thus the Gower rank is two.
The singular values of the FDS solution are

## [1] 0.4508464709 0.2125310645 0.0000001303

Gower rank two also follows from the eigenvalues of the matrix B(C), which
are

## [1] 1.0000000000 1.0000000000 0.9205543464
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13.6 Ekman example

The Ekman (1954) color data give similarities between 14 colors.

## 434 445 465 472 490 504 537 555 584 600 610 628 651
## 445 0.86
## 465 0.42 0.50
## 472 0.42 0.44 0.81
## 490 0.18 0.22 0.47 0.54
## 504 0.06 0.09 0.17 0.25 0.61
## 537 0.07 0.07 0.10 0.10 0.31 0.62
## 555 0.04 0.07 0.08 0.09 0.26 0.45 0.73
## 584 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33
## 600 0.07 0.04 0.01 0.01 0.02 0.08 0.14 0.19 0.58
## 610 0.09 0.07 0.02 0.00 0.02 0.02 0.05 0.04 0.37 0.74
## 628 0.12 0.11 0.01 0.01 0.01 0.02 0.02 0.03 0.27 0.50 0.76
## 651 0.13 0.13 0.05 0.02 0.02 0.02 0.02 0.02 0.20 0.41 0.62 0.85
## 674 0.16 0.14 0.03 0.04 0.00 0.01 0.00 0.02 0.23 0.28 0.55 0.68 0.76

We use three different transformations of the similarities to dissimilarities.
The first is 1 − x, the second (1 − x)3 and the third 3

√
1 − x. We need the

following iterations to find the FDS solution (up to a change in loss of 1e-15).

## power = 1.00 itel = 6936 stress = 0.0000875293
## power = 3.00 itel = 171 stress = 0.0110248119
## power = 0.33 itel = 423 stress = 0.0000000000

For the same three solutions we compute singular values of the thirteen-
dimensional FDS solution.

## [1] 0.1797609824 0.1454675297 0.0843865491 0.0777136109 0.0486123551
## [6] 0.0393576522 0.0236290817 0.0162344515 0.0072756171 0.0000031164
## [11] 0.0000000009 0.0000000000 0.0000000000
##
## [1] 0.2159661347 0.1549184093 0.0000000727 0.0000000041 0.0000000000
## [6] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
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## [11] 0.0000000000 0.0000000000 0.0000000000
##
## [1] 0.1336126813 0.1139019875 0.0880453752 0.0851609618 0.0710424935
## [6] 0.0664988952 0.0561005006 0.0535112029 0.0492295395 0.0479964575
## [11] 0.0468628701 0.0410193579 0.0388896490

Thus the Gower ranks of the transformed dissimilarities are, repectively, nine
(or ten), two, and thirteen. Note that for the second set of dissimilarities,
with Gower rank two, the first two principal components of the thirteen-
dimensional solution are the global minimizer in two dimensions. To illustrate
the Gower rank in yet another way we give the thirteen non-zero eigenvalues
of V +B(X), so that the Gower rank is the number of eigenvalues equal to
one. All three solutions satisfy the necessary and sufficient conditions for a
global FDS solution.

## [1] 1.0000000432 1.0000000222 1.0000000012 1.0000000005 1.0000000002
## [6] 1.0000000001 1.0000000000 1.0000000000 0.9999993553 0.9989115116
## [11] 0.9976821885 0.9942484083 0.9825147154
##
## [1] 1.0000000000 1.0000000000 0.9234970864 0.9079012130 0.8629365849
## [6] 0.8526920031 0.8298036209 0.8145561677 0.7932385763 0.7916517225
## [11] 0.7864426781 0.7476794757 0.7282682474
##
## [1] 1.0000000820 1.0000000241 1.0000000047 1.0000000009 1.0000000004
## [6] 1.0000000003 1.0000000001 1.0000000001 1.0000000001 1.0000000000
## [11] 0.9999999999 0.9999999689 0.9999999005

We also plot the first two principal components of the thirteen-dimensional
FDS solution. Not surprisingly, they look most circular and regular for the
solution with power three, because this actually is the global minimum over
two-dimensional solutions. The other configurations still have quite a lot of
variation in the remaining dimensions.
Figure @ref{fig:ekmantrans} illustrates that the FDS solution with power 3 is
quite different from power 1 and power one 1/3 Basically the transformations
with lower powers result in dissimilarity measures that are very similar to
Euclidean distances in a high-dimensional configuration, while power equal to
3 makes the dissimilarties less Euclidean. This follows from metric transform
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Figure 13.1: Ekman data, configurations for three powers

theory, where concave increasing transforms of finite metric spaces tend to
be Euclidean. In particular the square root transformation of a finite metric
space has the Euclidean four-point property, and there is a c > 0 such that
the metric transform f(t) = ct/(1+ct) makes a finite metric space Euclidean
(Maehara (1986)).
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Figure 13.2: Ekman data, fit plots for three powers
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Chapter 14

Unfolding

In unfolding the objects are partitioned into two sets of, say, n and m objects
and only the nm between-set dissimilarities are observed. The within-set
weights are zero. Thus we minimize

σ(X, Y ) =
n∑

i=1

m∑
j=1

wij(δij − d(xi, yj))2 (14.1)

over X ∈ Rn×p and Y ∈ Rm×p.
1
2{(n + m)(n + m − 1) − 2nm} are missing
note that we can have dij(X) = 0 at a local minimum.

14.1 Algebra

The missing data in unfolding complicate the MDS problem, in the same
way as the singular value decomposition of a rectangular matrix is more
complicated than the eigen decomposition of a symmetric matrix.
The problem we want to solve in this section is recovering X and Y (up to
a translation and rotation) from D(X, Y ).
The first matrix algebra results in metric unfolding were due to Ross and
Cliff (1964). An actual algorithm for the “ignore-errors” case was proposed
by Schönemann (1970). Schönemann’s technique was studied in more detail
by Gold (1973) and Heiser and De Leeuw (1979).

235
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This sectiom discusses a slightly modified version of Schönemann (1970).
First, we compute the Torgerson transform E(X, Y ) = −1

2JD(2)(X, Y )J It
was observed for the first time by Ross and Cliff (1964) that E(X, Y ) =
JXY ′J .
Assume that E(X, Y ) = JXY ′J is a full-rank decomposition, and that the
rank of E(X, Y ) is r. Note that there are cases in which the rank of JX
or JY is strictly smaller than the rank of X or Y . If X, for example, has
columns x and e − x, with x and e linearly independent, then its rank is two,
while JX with columns Jx and −Jx has rank one.
Suppose E(X, Y ) = GH ′ is another full-rank decomposition. Then there
exist vectors u and v with r elements and a non-singular T of order r such
that

X = GT + eu′,

Y = HT −t + ev′.
(14.2)

We can assume without loss of generality that the centroid of the X config-
uration is in the origin, so that JX = X, and u = 0 in the first equation of
(14.2).
We use the QR decomposition to compute the rank r of E(X, Y ), and the
factors G and H.
We now use (14.2) to show that F = D(2)(X, Y ) + 2GH ′ is of the form
F = γ + αe′ + eβ′, with γ = v′v and M = TT ′.

αi = g′
iMgi − 2g′

iTv,

βj = h′
jM

−1hj + 2h′
jT

−tv.
(14.3)

It follows that JF = Jαe′ and FJ = eβ′J . Thus Jα is any column of JF
and Jβ is any row of FJ .
Consider the first equation of (14.3). For the time being, we ignore the
second one. Suppose Mk is a basis for the space of real symmetric matrices
of order p with the 1

2p(p + 1) elements ese
′
t + ete

′
s for s ̸= t and ese

′
s for the

diagonal. Define qik := g′
iMkgi. Then

Jα = J
[
Q −2G

] [ µ
Tv

]
, (14.4)
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with µ the coordinates of M for the basis Mk.
Equations (14.4) are n linear equations in the 1

2p(p + 1) + p = 1
2p(p + 3)

unknowns µ and Tv. Assume they have a unique solution. Then M =∑
µkMk is PSD, and can be eigen-decomposed as M = KΛ2K ′. Set T = KΛ

set.seed(12345)
x <- matrix (rnorm(16), 8, 2)
x <- apply (x, 2, function (x) x - mean (x))
y <- matrix (rnorm(10), 5, 2)
a <- rowSums (x ˆ 2)
b <- rowSums (y ˆ 2)
d <- sqrt (outer(a, b, "+") - 2 * tcrossprod (x, y))

14.1.1 One-dimensional

The one-dimensional case is of special interest, because it allows us to con-
struct an single joint metric scale for row objects and column objects from
metric dissimilarities. We have to find a solution to δij = |xi − yj|, without
making assumptions about the order of the projections on the dimension.
Compute any solution for Jg and Jh from τ(∆(2)) = Jgh′J . For data with
errors we would probably use the SVD. Assume without loss of generality
that Jg = g. Then the general solution is x = τg and y = τ−1h + νe for
some real τ and ν.
Now

∆2 = τ 2g(2)e′ + τ−2e(h′
j)(2) + ν2E − 2gh′ − 2τνgie

′ (14.5)

are nm equations in the two unknowns (τ, ν). They can be solved by many
methods, but we go the Schönemann way. Column-centering gives

J(∆(2) + 2gjhj) = τ 2Jg(2) − 2τνg, (14.6)

while row-centering gives

(∆(2) + 2gjhj)J = τ−2e(h(2))′J. (14.7)



238 CHAPTER 14. UNFOLDING

14.2 Classical Unfolding

Multidimensional unfolding as a data analysis technique was introduced by
Coombs (1964).
bennett-hays hays-bennett bennett
SMACOF - Heiser and De Leeuw (1979)
Form of V
What happens to nonzero theorem ? within-set distances can be zero

∆ =
[
1 2 3
1 2 3

]
x1 = x2 = 0 y1 = 1, y2 = 2, y3 = 3

14.3 Nonmetric Unfolding

row-conditional busing van deun deleeuw_R_06a
Stress3 – Roskam

14.3.1 Degenerate Solutions

What are they

14.3.1.1 Which Stress

σ(X) =
n∑

i=1

n∑
j=1

wij(δij − dij(X))2

Weak order, plus normalization. Two-point solution.

14.3.1.2 l’Hôpital’s Rule

We all know that 0/0 is not defined and should be avoided at all cost. But
then again we have

lim
x→0

sin(x)
x

= cos(0) = 1,
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and in fact supx
sin(x)

x
= 1. Or, for that matter, if f is differentiable at x then

lim
ϵ→0

f(x + ϵ) − f(x)
ϵ

= f ′(x)

If f : R ⇒ R and g : R ⇒ R are two functions

• differentiable in an interval I, except possibly at c ∈ I,
• g′(x) ̸= 0 for all x ∈ I,
• limx→c f(x) = limx→c g(x) = 0 or limx→c f(x) = limx→c g(x) = ±∞,

then
lim
x→c

f(x)
g(x) = lim

x→c

f ′(x)
g′(x)

We use l’Hôpital’s rule in chapter 14, section 14.3.1 on degeneracies in non-
metric unfolding. We have not explored the multivariate versions of l’Hôpitals
rule, discussed for example by Lawlor (2020).
Illustration.
δ12 > δ13 = δ23.
d12(Xϵ) = 1
d13(Xϵ) = d23(Xϵ) = 1 + 1

2ϵ.
Then
limϵ→0 D(Xϵ) = ∆.
euclidean for ϵ ≥ −1

14.3.1.3 Penalizing

14.3.1.4 Restricting Regression

Busing
Van Deun
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Chapter 15

Constrained Multidimensional
Scaling

As we have seen in section 1.4 Constrained Multidimensional Scaling or
CMDS is defined as the generalization of basic MDS in which we want to
solve

min
X∈Ω

∑∑
1≤i<j≤n

wij(δij − dij(X))2,

where Ω is a subset of Rn×p. Of course there are also versions of CMDS in
which the dissimilarities are nonmetric and must be quantified or transformed
accordingly. But in this chapter we concentrate on the ways in which we
constrain the configuration and on the ways to incorporate this into the
smacof framework.

Constraints on X can be defined in many different ways. They can be in
parametric form, using a map F : Θ ⇒ Rn×p. Thus the constraints are X =
F (θ) and θ varies in some subset Θ of real parameter space. Alternatively
we can haveconstraints in dual form, i.e, have a maps F on Rn×p and define
Ω by F (X) = 0 (or F1(X) = 0 and F2(X) ≥ 0). If F is smooth both
parametric and dual forms define manifolds in Rn×p, and often constraints
can be equivalently expressed in both forms. Requiring the points in the
configuration to be on the unit circle, for example, has the parametric form
xi = (sin θi, cos θi) and the dual form ∥xi∥2 = 1.

Bentler-Weeks

241
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∑∑
1≤i<j≤n

wij(δij − (α dij(X) + β))2.

with xis = K or xis = wyis for some set of (i, s).
Configuration-Distances F (D(X)) ≥ 0 and G(D(X)) = 0 Borg-Lingoes

min
D∈D

∑∑
1≤i<j≤n

wij(δij − dij)2,

De Leeuw-Heiser

15.1 Primal-Dual (note: the base partition-
ing has dual aspects)

Least squares

σλ(X) := σ(X) + λ min
Y ∈Ω

η2(X − Y )

σλ(X) := σ(X) + λ min
∆∈D

∑∑
1≤i<j≤n

wij(δij − dij(X)2

15.2 Basic Partitioning

A comprehensive smacof approach to constrained MDS was developed in De
Leeuw and Heiser (1980). It is a primal method that does not involve penalty
parameters, and it defines the constraints directly on the configuration.
The starting point is the majorization partitioning

σ(X) ≤ 1 + η2(X − γ(Y )) − η2(γ(Y )), (15.1)

with equality, of course, if X = Y .
Note similarity with dual approach
The smacof algorithm for constrained MDS has consequently two steps. In
the first we compute the Guttman transform of the current configuration,
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and in the second we find the metric projection of this Guttman transform
on the constraint set (in the metric defined by V ). Thus, in shorthand,

X(k+1) ∈ Argmin
Y ∈Ω

η2(Y − Γ(X(k))). (15.2)

To emphasize we look for a fixed point of the composition of two maps, the
Guttman transform and the projection operator ΠΩ, we can write in even
shorter hand

X(k+1) ∈ ΠΩ(Γ(X(k)))

The smacof formulation of the CMDS problem is elegant, if I say so my-
self, but it is not always simple from the computational point of view. The
Guttman transform is easy enough to compute, but projecting on Ω in the V
metric may be complicated, depending on how Ω is defined. In this chapter
we will discuss a number of examples with varying degrees of difficulty in
computing the smacof projection.

15.3 Unweigthing

For some types of constraints, for example the circular and elliptical MDS
discussed in section 15.6, unweighted least squares is computationally simpler
than weighted least squares. In those cases it generally pays to use majoriza-
tion to go from a weighted to an unweighted problem (see also Groenen,
Giaquinto, and Kiers (2003)). This will tend to increase the number of
iterations of smacof, but the computation within each iteration will be con-
siderably faster.
From equation (15.2), the projection problem in constrained MDS is to min-
imize the weighted least squares loss function ϕ(X) := tr (Z − X)′V (Z − X)
over X ∈ Ω. Now suppose θ is the largest eigenvalue of V , so that V ≲ θI,
and suppose Y ∈ Ω. Then

ϕ(X) = tr ((Z − Y ) − (X − Y ))′V ((Z − Y ) − (X − Y )) ≤
ϕ(Y ) − 2 tr (Z − Y )′V (X − Y ) + θ tr (X − Y )′(X − Y ). (15.3)
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Completing the square gives the majorization

ϕ(X) ≤ ϕ(Y ) + θ tr (X − Y )′(X − Y ) − θ tr Y
′
Y , (15.4)

with Y the matrix-convex combination

Y := (I − 1
θ

V )Y + 1
θ

V Z. (15.5)

The weighted projection problem from equation (15.2) is replaced by one or
more inner iterations of an unweighted projection problem. Set X(k,1) = X(k)

and

X(k,l+1) ∈ Argmin
Y ∈Ω

tr (Y − X
k,l)′(Y − X

(k,l)). (15.6)

After stopping the inner iterations at X(k,l+s) we set X(k+1) = X(k,l+s). All
X(k,l) remain feasible, loss decreases in each inner iteration, and as long at the
metric projections are continuous the map from X(k) to X(k+1) is continuous
as well.

15.4 Constraints on the Distances

15.4.1 Rectangles

15.5 Linear Constraints

15.5.1 Uniqueness

X = (Z | D)

X = (Z | αI)

Distance smoothing
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15.5.2 Combinations

X = ∑
αrZr

15.5.3 Step Size

X = Z + αG

15.5.4 Single Design Matrix

X = ZU

15.5.5 Multiple Design Matrices

xs = Gsus

d2
ij(X) =

p∑
s=1

x′
sAijxs =

p∑
s=1

u′
sG

′
sAijGsus

15.6 Circular MDS

De Leeuw (2007c), De Leeuw (2007a), De Leeuw (2005a)

There are situations in which it is desirable to have a configuration with
points that are restricted to lie on some surface or manifold in Rp. Simple
examples are the circle in R2 or the sphere in R3. Some applications are
discussed in T. F. Cox and Cox (1991) (also see T. F. Cox and Cox (2001),
section 4.6), in Borg and Lingoes (1980), in Papazoglou and Mylonas (2017),
and in De Leeuw and Mair (2009), section 5. The most prominent actual
examples are probably the color circle and the spherical surface of the earth,
but there are many other cases in which MDS solutions show some sort of
“horseshoe” (De Leeuw (2007a)).
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Figure 15.1: John van de Geer
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15.6.1 Some History

Permit me to insert some personal history here. Around 1965 I got to work
at the Psychological Institute. At the time Experimental Psychology and
Methodology were in the same department, with John van de Geer as its
chair. John had a long-running project with Pim Levelt and Reinier Plomp
at the Institute for Perception RVO/TNO on perceptual and cognitive as-
pects of musical intervals. In Van de Geer, Levelt, and Plomp (1962), for
example, they used various cutting-edge techniques at the time, the semantic
differential for data collection, the centroid method for factor analysis, and
oblique simple structure rotation. A couple of years later the cutting edge
had moved to triadic comparisons for data collection and nonmetric multi-
dimensional scaling (Levelt, Van De Geer, and Plomp (1966)). The analysis
in Levelt, Van De Geer, and Plomp (1966) revealed a parabolic horseshoe
structure of the musical intervals.

This inspired John to find a technique to fit quadratic (and higher order, if
necessary) structures to scatterplots. If X is a two-dimensional configuration
of n points, then form the n × 6 matrix Z with columns 1, x1, x2, x2

i , x2
2, x1x2.

Now find α with α′α = 1 such that α′Z ′Zα is as small as possible. This
gives the normalized eigenvector corresponding with the smallest eigenvalue
of Z ′Z, or, equivalently, the right singular vector corresponding with the
smallest singular value of Z. It is easy to see how this approach generalizes
to more dimensions and higher order algebraic surfaces. I remember with
how much awe this technique was received by the staff of the Psychological
Institute. It probably motivated me in 1966 to develop similar techniques
and get my portion of awe.

Levelt, Van De Geer, and Plomp (1966) used the curve fitting technique to
draw the best fitting parabola in the two-dimensional scatterplot of musical
intervals. In their discussion they suggested that a similar quadratic structure
could be found if similarities between political parties were analyzed, because
for people in the middle of the left-right scale extreme-left and extreme-right
parties would tend to be similar. If the effect of extremity was strong enough,
the two extreme might even bend towards each other, leading to an ellipse
rather than a parabola. In 1966 John asked student-researcher Dato de
Gruijter to figure out if this curving back actually happened, which lead to
De Gruijter (1967). Dato collected triadic comparisons between nine Dutch
political parties, cumulated over 100 psychology students. The curve fitting
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technique indeed found best fitting ellipses.

15.6.2 Primal Methods

We follow De Leeuw and Mair (2009) in distinguishing primal and dual meth-
ods. In a primal method the surface we fit is specified in parametric form.
The points on the circle, for example, have (xi1, xi2) = (sin(ξi), cos(ξi)). Ro-
tational invariance of MDS means we can assume the center of the circle
is in the origin. This is the approach of T. F. Cox and Cox (1991). They
substitute the parametrix expression for the circle in the formula for stress
and minimize over the sperical coordinates ξi using gradient methods. They
develop a similar method for the sphere in R3. For those who want to go to
higher dimensions we illustrate a parametric representation for R4.

(xi1, xi2, xi3, xi4) = (sin(ξi) cos(θi) sin(µi), sin(ξi) cos(θi) cos(µi), sin(ξi) sin(θi), cos(ξi)).

Spherical coordinates soon get tedious, and De Leeuw and Mair (2009) simply
require the distances of all points to the origin to be the same constant. Note
that this puts the center of the fitted sphere in the origin, which means that
in general the center of the point cloud cannot be taken to be in the origin
as well. In smacof we use the

ϕ(X, λ) := tr (Z − λX)′V (Z − λX)

over the radius λ and the configuration X, which is constrained to have
diag XX ′ = I. De Leeuw and Mair (2009) project out λ and minimize
ϕ(X, ⋆) := minλ ϕ(X, λ) over X, using Dinkelbach majorization (Dinkelbach
(1967)), a block relaxation that cycles over rows of X. Solving for each p
vector of coordinates requires solving a secular equation.

Here we proceed slightly differently. Our first step is to get rid of V using
the formulas in 15.3.
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After 2 iterations the primal method converges to a stress value of 0.4654367.
The circle has radius 0.0122974.

15.6.3 Dual Methods

In a dual method we use unrestricted smacof, but we add a penalty to the
loss if the configurations do not satisfy the constraints. We use a quadratic
penalty, mainly because that fits seamlessly into the smacof approach.
We add one point, the center of the circle, with coordinates x0 to the con-
figuration, and we require that all n other points have an equal distance
from the center. The n dissimilarities δ0,i are unknown, so we use alternating
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least squares and estimate the missing dissimilarities by minimizing stress
over them, requiring them to be all equal. All weights w0,i are chosen equal
to the penalty parameter ω. The solution for the common δ0,i is obviously
the average of the n distances d0,i. In this case it is not necessary to use
majorization to transform to unweighted least squares.
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15.7 Elliptical MDS

15.7.1 Primal

The smacof projection problem for a p-axial ellipsoid minimizes

ϕ(Y, Λ) := tr (Z − Y Λ)′V (Z − Y Λ)

with diag Y Y ′ = I and with Λ diagonal and PSD.

ALS

Minimizing ϕ over Λ for fixed Y is easy. For dimension s we have

λs = y′
sV zs

y′
sV ys

.

To minimize ϕ over Y for fixed Λ we use Z − Y Λ = (ZΛ−1 − Y )Λ so that

ϕ(Y, Λ) = tr Λ2(Z̃ − Y )′V (Z̃ − Y )

with Z̃ = ZΛ−1. We now use a slight modification of the majorization
technique in section 15.3. Set Y = Yold + (Y − Yold). Then

ϕ(Y, Λ) = tr Λ2((Z̃−Yold)−(Y −Yold))′V ((Z̃−Yold)−(Y −Yold)) = ϕ(Yold, Λ)−2 tr Λ2(Z̃−Yold)′V (Y −Yold)+tr Λ2(Y −Yold)′V (Y −Yold)

tr Λ2(Y − Yold)′V (Y − Yold) ≤ θλ2
max tr (Y − Yold)′(Y − Yold)

where, as before, θ is the largest eigenvalue of V .

θλ2
max (Y − Yold) = V (Z̃ − Yold)Λ2

(abadir_magnus_05, p 283)

Normalize the rows of

Yold + 1
θλ2

max
V (ZΛ−1 − Yold)Λ2
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0.415335

15.7.2 Dual

We will only develop a dual method for ellipses in two dimensions, because
there is no easy characterization in terms of distances in higher dimensions
(that I know of). But in two dimensions the famous pin-and-string construc-
tion uses the fact that for all points on the ellipse the sum of the distances to
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two focal points is constant. Thus our dual method now adds two points to
the n points in the configuration, chooses the weights for the 2n components
of stress to be the penalty parameter w, and finds the 2n unknown dissimi-
larities between the two focal points and the n points on the ellipse to add
up to a constant.

This means we have to minimize tr (∆ − D)′(∆ − D) over ∆ satisfying
∆e = γe, where for the time being ∆ and D are n × 2 submatrices. The
Lagrangian is tr (∆ − D)′(∆ − D) − 2µ′(∆e − γe), and thus we must have
∆ = D +µe′. Taking row sums gives γe = De+pµ and thus µ = 1

2(γe−De).
This implies ∆ − D = µe′ = 1

2(γEnp − DEpp), and to minimize loss over γ
we choose γ = 1

n
e′

nDep. This gives

∆ = DJ + e′De

2n
ee′.

Thus we take D, transform its n rows to deviations from the mean, and then
add the overall mean to all elements.
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hyperbola: difference of distances constant |d((xi, x2), (f1, 0))−d((xi, x2), (g1, 0))| =
c

parabola: equal distance from the focus point and the directrix (horizontal
axis) d((xi, x2), (f1, f2)) = d((x1, x2), d(x1, 0))

15.8 Distance Bounds

De Leeuw (2017d) De Leeuw (2017c) De Leeuw (2017b)



256 CHAPTER 15. CONSTRAINED MULTIDIMENSIONAL SCALING

15.9 Localized MDS

15.10 MDS as MVA

Q methodology
http://qmethod.org
Stephenson (1953)
De Leeuw and Meulman (1986) Meulman (1986) Meulman (1992)

15.11 Horseshoes

http://qmethod.org


Chapter 16

Individual Differences

This chapter deals with the situation in which we observe more than one set
of dissimilarities. We need an extra index k = 1, · · · , m for ∆k, Wk, and for
Xk. The definition of stress becomes

σ(X1, · · · , Xm) := 1
2

m∑
k=1

∑∑
1≤i<j≤n

wijk(δijk − dij(Xk))2 (16.1)

In order make it interesting we have to constrain the Xk in some way or other,
preferable one in which the different Xk are linked, so they have something
in common and something in which they differ.

MDS with linking constraints on the configurations is known in the psycho-
metric literature as MDS with individual differences. This does not imply
that index k necessarily refers to individuals, it can refer to replications,
points in time, points of view, experimental conditions, and so on. The es-
sential component is that we have m sets of dissimilarities between the same
n objects. In order not to prejudge where the m different sets of dissimilar-
ities come from, we shall refer to them with the neutral term slices, just as
the dissimilarities are defined on pairs of neutral objects. But to honor the
tradition of differential psychology we will continue to use the chapter title
“individual differences”.

257
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16.1 Stress Majorization

The CS majorizaton in this case is the same as our treatment in chapter 15.
For all (X1, · · · , Xm) and (Y1, · · · , Ym) we ahve

σk(Xk) ≤ 1
2

m∑
k=1

η2
k(Xk − Γ(Yk)) − 1

2

m∑
k=1

η2
k(Γ(Yk)), (16.2)

and thus the smacof approach tells us to minimize, or at least decrease, the
first term on the right of (16.2) over the Xk.
As in CMDS, within an iteration we have to (approximately) solve a projec-
tion problem on some linear or nonlinear manifold, in the metric defined by
the weights. Minimize over X, project X, conforming with chapter 15.

16.2 Types of Constraints

16.2.1 Unconstrained

If there are no constraints on the configurations of stress the minimization
over X1, · · · , Xm simply means solving m separate MDS problems, one for
each k. Thus it does not bring anything new.

16.2.2 Replications

The first constraint that comes to mind is Xk = X for all k = 1, · · · , m. Thus
the configuration is the same for all slices, and there really are no individual
differences in this case. The computational aspects are discussed in sufficient
detail in section 5.4.7.

16.2.3 INDSCAL/PARAFAC

xijk =
S∑

s=1
aisbjsλks

Xk = AΛkB′
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16.2.4 IDIOSCAL/TUCKALS

xijk =
S∑

s=1

T∑
t=1

U∑
u=1

aisbjtckudstu

Xk = AVkB′

Vk =
U∑

u=1
ckuDu

16.2.5 PARAFAC2

xijk =
S∑

s=1
aisbkjsλks

Xk = KΛkL′
k

16.2.6 Factor Models

Q and R techniques

Xk =
[
X | Yk

]

Xk =
[
K | L

] Ak

−−
Yk

 ,

X ′
k =

[
K | L

] Ak

−−
Yk



16.3 Nonmetric Individual Differences

16.3.1 Conditionality
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Chapter 17

Asymmetry in MDS

17.1 Conditional Rankings

Two sets (= unfolding), one set (much tighter) solution Young_75

17.2 Confusion Matrices

Choice theory

17.3 The Slide Vector

17.4 DEDICOM

17.5 Constantine-Gower
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Chapter 18

Nominal MDS

So far we have assumed there was some direct information about dissimilar-
ities between objects. The information could be either numerical or ordinal,
but we have not talked about nominal or categorical information yet. By
nominal information we mean that the n objects are partitioned in K cate-
gories, where we usually assume that K is much smaller than n. Categories
are not necessarily ordered.

Where does MDS come in ? Our starting point is that objects in the same
category are more similar than objects in different categories. But this re-
quirement can be formalized in different ways.

We discuss some of the ways in which we can express the nominal information
in terms of distances and apply techniques in the smacof family to computed
optimal least squares configurations.

For historical and other reasons this topic is of great interest to me. Some of
my first rambling red reports (De Leeuw (1968a), De Leeuw (1969)) were on
the analysis of relational or categorical data. The first one discussed mainly
the quantification methods of Guttman (1941), the second one explored using
the topological notion of separation. My dissertation (De Leeuw (1973a))
systematized that early research. Making it available to a wider audience,
and as software, was the main motivation for starting the Gifi project (Gifi
(1990), (deleeuw_B_20?)).

263
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18.1 Binary Dissimilarities

Suppose we have and equivalence relation ≃ on n objects O. Let dij = 0 if
i ≃ j and dij = 1 if i ̸≃ j. Suppose the quotient set O/≃ has K equivalence
classes. Thus the objects can be ordered in such a way that ∆ has K zero
matrices with size n1 · · · , nK in the diagonal blocks and ones everywhere else.
The nk are the sizes of the equivalence classes, and they add up on n.

[x] canonical projection

18.2 Indicator matrix

Q technique

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
## 11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
## 12 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
## 13 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
## 14 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
## 15 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
## 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
## 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
## 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
## 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
## 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
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Table 18.1: Example Indicator Matrix

A B C
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0
7 1 0 0
8 1 0 0
9 1 0 0
10 1 0 0
11 0 1 0
12 0 1 0
13 0 1 0
14 0 1 0
15 0 1 0
16 0 0 1
17 0 0 1
18 0 0 1
19 0 0 1
20 0 0 1
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Figure 18.1: Example Object Scores

18.3 Unfolding Indicator Matrices

all within category distances smaller than all between category distances (for
each variable separately) as in MCA: joint persons and categories, primary
approach to ties
These order constraints are rather strict. They do not only imply that the
category clouds are separated, they also mean the clouds must be small and
rather far apart.
Think of the situation where the two categories are balls in Rp with centers x
and y and $radius r. The largest within-category distance is 2r. The smallest
between-category distance is max(0, d(x, y) − 2r). Thus all within-category
distances are all smaller than all between-category distances if and only if
d(x, y) ≥ 4r.
We can make the requirements less strict by
For all k

max
i∈Ik j∈Ik

d(xi, xj) ≤ min
i∈Ik j∈I\Ik

d(xi, xj).

max(kk) ≤ min(kk)
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Figure 18.2: Distance Based MCA
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Figure 18.3: Within and Between Distances
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Figure 18.4: Within and Between Distances
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Figure 18.5: Within and Between Distances
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max
k

max(kk) ≤ min
i ̸=j

min(ij)

the within category distances of category 1 are less than the smallest between-
category distance

18.4 Linear Separation

line perpendicular to line connecting category points separates categories

all closer to their star center than to other star centers: primary monotone
regression over all rows of g

suppose the star centers are y and z. The plane is (x − 1
2(y + z))′(y − z) = 0

If u is in the y category we must have (u − 1
2(y + z))′(y − z) ≥ 0

Just in terms of distances
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Figure 18.6: Distance Based MCA

What if the star centers are on a straight line
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Figure 18.7: Distance Based MCA
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Figure 18.8: Distance Based MCA
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18.5 Circular Separation

monotone regression on each column of g
k within balls must be disjoint => they can be separated by straight lines

18.6 Convex Hull Scaling

18.7 Voronoi Scaling

18.8 Multidimensional Scalogram Analysis

Guttman’s MSA: Inner points, outer points
Suitably mysterious
Lingoes (1968b) Lingoes (1968a) Guttman (1967)



Chapter 19

Nonmonotonic MDS

19.1 Filler

This chapter will discuss techniques in which the relation between dissimilari-
ties and distances is not necessarily monotone (in as far as these techniques fit
into the smacof framework). I have in mind the mapping of high-dimensional
manifolds into low-dimensional Euclidean ones, in the spirit of Shepard and
Carroll (1966). The prime examples are still cutting and unrolling the circle,
the sphere, or the torus.
The dissimilarities define the high-dimensional space, the distances the low-
dimensional space. The relation between distances and dissimilarities may
not be functional, i.e. we can have F (D(X), ∆) = 0 or ∆ could be a function
of D(X).
In general, small distances in low-dimensional space are small distances in
high-dimensional space, but large distances in low-dimensional space can be
small distances in high-dimensional space. This suggests an inverse Shepard
plot, with dissimilarity as a function of distance. Or

σ(X) =
∑∑

(deltaij − f(dij(X)))2

Euclidean

√
2 − 2 cos |i − j|θ
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Circular

|i − j|2π

n

Linear
|i − j|

0.6 1.0 1.4 1.8

1
2

3
4

5

delta

di
st

Quadratic
F (∆, D(X)) = 0

a1δ
2
ij + a2δijdij(X) + a3d

2
ij(X) + a4δij + a5dij(X) + a6 = 0

pd2
ij(X) + 2qdij(X) + r = p(dij(X) − q/p)2 + r − (q/p)2

f(∆) = g(D(X))



Chapter 20

Compound Objects

20.1 Filler

A compound object is a set of m > 1 objects. This chapter treats the
analysis of dissimilarities between compound objects, again as far as they
fit into the smacof framework. Thus we do not, for example, look at the
pairwise dissimilarities within a triad of objects, but at the dissimilarities of
the triads themselves.
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Chapter 21

Sstress and strain

21.1 sstress

Takane, Young, and De Leeuw (1977) gave σ2 the name sstress. Thus sstress
is defined as

σ2(X) :=
∑∑

1≤i<j≤n

wij(δ2
ij − d2

ij(X))2

On the space of configurations sstress is mathematically much better behaved
as stress. It is a non-negative multivariate polynomial of degree four, actually
a sum-of-squares or SOS polynomial (ref).

It is everywhere infinitely many times differentiable everywhere and, in prin-
ciple at least, we can compute all real-valued configurations where the deriva-
tives of sstress vanish by algebraic methods. That includes all local minima,
and thus also the global minimum. Unfortunately in almost all MDS ap-
plications the number of variables is too large to apply the usual algebraic
methods.

nonnegative polynomials of degree four – general algebra
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21.1.1 sstress and stress

Clearly configurations with small stress will tend to have small sstress, and
vice versa.
weighting residuals – fitting large dissimilarities

∑
d2

ij(δ2
ij − d2

ij) = 0

We can write sstress as

σ2(X) =
∑∑

1≤i<j≤n

wij(δij + dij(X))2(δij − dij(X))2. (21.1)

Thus if the dij(X) provide a good fit to the δij we have the approximation

σ2(X) ≈ 4
∑∑

1≤i<j≤n

wijδ
2
ij(δij − dij(X))2 (21.2)

Since Df(δ) = 2δ in this case, (21.2) also follows from (22.3).
Now

σ2(X)
σ(X) =

∑∑
1≤i<j≤n wij(δij + dij(X))2(δij − dij(X))2∑∑

1≤i<j≤n wij(δij − dij(X))2 . (21.3)

This is a weighted average of the quantities (δij + dij(X))2, and thus

4{min(δij + dij(X))}2σ(X) ≤ σ2(X) ≤ 4{max(δij + dij(X))}2σ(X). (21.4)

21.1.2 Decomposition

σ2(X) = 1 − 2ρ2(X) + η2
2(X)

σ2(αX) = 1 − 2α2ρ2(X) + α4η2
2(X)

At a minimum ρ2(X) = η2
2(X) and thus σ(X) = 1 − η2

2(X), which implies
η2(X) ≤ 1.
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Thus minimizing σ2 means maximizing ρ2 over η2(X) ≤ 1, which is the same
thing as minimizing η2 over ρ2(X) ≥ 1. Both are reverse convex problems.

η2(X) =
√∑∑

wijd4
ij(X) ≥ 1√∑∑

wijd4
ij(Y )

∑∑
wijd

2
ij(Y )d2

ij(X)

Thus maximizing ρ2 with ρ2(X) = tr X ′B0X over tr X ′B2(Y )X ≤ 1 for all
Y .
At a local minimum partitioning

21.1.3 Full-dimensional sstress

Theorem: The set of squared Euclidean distance matrices between n points
D := {D | D = D(2)(X)} is a closed convex cone.

Proof. It suffices to observe that αD(2)(X) = D(2)(
√

(α)X) and D(2)(X) +
D(2)(Y ) = D(2)(X | Y ). Alternatively, D is the intersection of two convex
cones, and thus convex. The first cone are the hollow non-negative symmet-
ric matrices and the second cone are the symmetric matrices D for which
−JDJ ≳ 0.

Corollary:
min
D∈D

∑∑
1≤i<j≤n

wij(δ2
ij − dij)2

is a convex problem with a unique minimum.
Polar cone

∑∑
1≤i<j≤n

wijeijtr AijC ≤ 0

for all C ≳ 0. Thus we must have ∑∑
1≤i<j≤n wijeijAij ≲ 0

D ∈ D, ∆ − D ∈ Dotr W × D(∆ − D) = 0

What is the polar cone Do
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Since d2
ij = cii + cjj − 2cij it follows that σ2 is a convex quadratic in C and

that minimizing σ2 over C ≳ 0 is a convex problem, just as minimizing σ1
over C ≳ 0 is.
But difference –

∑∑
1≤i<j≤n

wij(δ2
ij − tr AijC)2

Dσ2(C) = −2
∑∑

1≤i<j≤n

wij(δ2
ij − tr AijC)Aij

B2(C) :=
∑∑

1≤i<j≤n

wijd
2
ij(C)Aij

Weights !! Polar cone !

C ≳ 0,

V2 − B2(C) ≳ 0,

tr C(V2 − B2(C)) = 0.

(21.5)

gower2 rank

21.1.4 Minimizing sstress

21.1.4.1 ALSCAL

The first published paper on sstress minimization, with detailed algorithm
and computer program, was Takane, Young, and De Leeuw (1977). There are
some historical precursors, but they are mostly in internal memos, and they
usually did not come with software. The ALSCAL program (F. W. Young,
Takane, and Lewyckyj (1978b)) was widely distributed through SPSS and
SAS and is still used regularly in various areas of research.
In this section of the book we will discuss basic ALSCAL, i.e. the sstress
version of basic MDS scaling. As usual, we generalize to weighted least
squares, but for now we ignore the individual differences and the non-metric
parts.
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It is also worth noting that in the original version of ALSCAL, from Takane,
Young, and De Leeuw (1977), the configuration is fitted by an alternating
least squares algorithm that changes all p coordinates of each point simul-
taneously, and then cycles through the points. The minimization over coor-
dinates is done with a safeguarded Newton-Raphson method. At the time I
forcefully objected to this. Sstress is a p-dimensional quartic, and because p
is usually small fiding the global minimum with algebraic methods is at least
conceivable. But in terms of simplicity, it is much better to change a single
coordinate at the time, meaning that one cycle consists of finding the global
minimum of np univariate quadrics. There is some acknowledgement of this
in section 5 of Takane, Young, and De Leeuw (1977), but the paper is quite
verbose and it can easily be overlooked. My understanding, based on F. W.
Young, Takane, and Lewyckyj (1978a), is that later versions of ALSCAL did
indeed adopt one-dimensional cyclic coordinate descent (CCD). And this is
what we will discuss here.

First note that sstress can be decomposed in the same way as stress. We
have

σ2(X) = 1 − 2ρ2(X) + η2
2(X) (21.6)

with

ρ2(X) :=
∑∑

1≤i<j≤n

wijδ
2
ijd

2
ij(X),

η2
2(X) :=

∑∑
1≤i<j≤n

wijd
4
ij(X).

(21.7)

Both ρ2 and η2
2 are convex, ρ2 is quadratic and η2

2 is a quartic (in fact, a sum
of squares of quadratics).

In CCD we replace xks by x̃ks := xks + ϵ. Or, in matrices, X̃ := X + ϵ eke′
s.

Only the d2
ij(X̃) with i = k or j = k differ from the corresponding dij(X).

All these d2
ik(X̃) are now just a function of ϵ and thus we write

d2
ik(ϵ) := d2

ik(X̃) = d2
ik(X) − 2ϵui + ϵ2. (21.8)

where ui := xis − xks. Also

d4
ik(ϵ) = d4

ij(X) − 4ϵui d
2
ik(X) + 2ϵ2(d2

ik(X) + 2u2
i ) − 4ϵ3ui + ϵ4. (21.9)
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Combining (21.8) and (21.9) with (21.6) gives

ρ2(ϵ) = ρ2(0) − 2ϵ
n∑

i=1
wikδ2

ikui + ϵ2
n∑

i=1
wikδ2

ik (21.10)

and

η2
2(ϵ) = η2

2(0)−4ϵ
n∑

i=1
wikd2

ik(X)ui+2ϵ2
n∑

i=1
wik(d2

ik(X)+2u2
i )−4ϵ3

n∑
i=1

wikui +ϵ4
n∑

i=1
wik

(21.11)
and finally

σ2(ϵ) = σ2(0)−4ϵ
n∑

i=1
wik(d2

ik(X)−δ2
ik)ui+2ϵ2

n∑
i=1

wik((d2
ik(X)−δ2

ik)+2u2
i )−4ϵ3

n∑
i=1

wikui +ϵ4
n∑

i=1
wik

(21.12)

Convex, DC, derivative

Jeffrey

Code

Example

Query: is σ2 a convex quartic in ϵ ? Does Dσ2(ϵ) = 0 always have a single
root.
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0 20 40 60 80

0
20

40
60

80

delta ^ 2

di
st

 ^
 2

1.7957662 × 104 after 55 iterations

Try global minimum over points (p-dimensonal quartic)

21.1.4.2 Majorization

∑∑
wij{trAijC}2 ≤ λ tr C2.

Better maybe (check this)

∑∑
wij{tr AijC}2 ≤ λ

∑∑
wijc

2
ij.
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σ(C) = σ(C̃+(C−C̃)) = 1−2
∑∑

wijδijtr Aij(C̃+(C−C̃))+
∑∑

wij{tr Aij(C̃+(C−C̃)}2 = 1−2
∑∑

wijδijtr AijC̃−2
∑∑

wijδijtr Aij(C−C̃)++
∑∑

wij{tr AijC̃}2+
∑∑

wij{tr Aij(C−C̃)}2+2
∑∑

wijtr AijC̃ tr Aij(C−C̃) = σ(C̃)−2 tr B(C̃)(C−C̃)+
∑∑

wij{tr Aij(C−C̃)}2+
∑∑

wij{tr AijC̃}2 ≤ σ(C̃)−2 tr B(C̃)(C−C̃)+λ tr (C−C̃)2+rest = λ tr (C−{C̃+λ−1B(C̃)})2+rest

B(C) := ∇σ2(C) =
∑∑

wij(d2
ij(C) − δ2

ij)Aij

Necessary condition: C is the projection of C := C − λ−1B(C) on the cone
of psd matrices. Thus

C ≳ 0B(C) ≳ 0tr CB(C) = 0

De Leeuw (1975b)
De Leeuw, Groenen, and Pietersz (2016)
takane
brown
Augmentation
Functions of Squared Distances

f(X) = F (D2(X))
Df(X) = 2

∑∑
DijF (D2(X))AijX

f(C) = F (D2(C))
Df(C) =

∑∑
DijF (D2(C))Aij

D2f(C) =
∑∑

Dij,klF (D2(C))Aij

21.1.4.3 SOS

Normal Fourth degree tensor

∑∑
wij(δij − x′Aijx)2∑

k

∑
l

{∑∑
wijδijAij

}
xkxl

∑
k

∑
l

∑
p

∑
q

{∑∑
wijδij{Aij ⊗ Aij}

}
klpq

xkxlxpxq
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21.1.4.4 Duality

!! David Gao

21.1.4.5 ALS Unfolding

In the heady days around 1968, when the Department of Data Theory was
founded in Leiden, the focus was very much on unfolding. Coombs had
just visited and the non-metric revolution was starting up. Alternating least
squares was in the air. I was supposed to work on a program for metric
unfolding, starting from the ideas of Ross and Cliff (1964) and the machinery
provoded by Torgerson’s classical scaling.

The idea, mainly due to John van de Geer, was to complete the n×m matrix
of off-diagonal dissimilarities to a symmetric matrix of order n + m, starting
with initial estimates of the distances in the two diagonal blocks. Then apply
Torgerson, and use the results to improve the estimates of the distances in
the diagonal blocks, then use Torgerson again, and so on. Alternating least
squares with imputation of the diagonal blocks. Multidimensional scaling of
n + m objects, with zero weights for the diagonal blocks. But it only worked
to a certtain point. After decreasing stress for a while and approaching
convergence the loss started to increase. We were deflated and gave up the
approach, without really being able to understand about why it did not work
(De Leeuw (1968c)).

In hindsight, it is clear what was wrong. We imputed the diagonal blocks
minimizing stress, and then adjusted the configuration using strain. Two
different loss functions, which obviously violated the basic idea of alternat-
ing least squares and the guaranteed convergence of either of the two loss
functions.

What is worth preserving from this approach is the initial estimate for the
diagonal blocks, again due to John van de Geer. It cleverly uses the two
triangle inequalities, assuming the dissimilarities are really distances. For
1 ≤ i < j ≤ n

δij = 1
2

{
m

min
k=1

(δik + δjk) + mmax
k=1

|δik − δjk|
}

,
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and for n + 1 ≤ k < l ≤ n + m

δkl = 1
2

{
n

min
v=1

(δvk + δvl) + mmax
k=1

|δvk − δvl|
}

.

Greenacre and Browne (1986)

augmentation

21.1.5 Bounds for sstress

De Leeuw and Bettonvil (1986)

21.2 strain

Classical scaling as formulated by W. S. Torgerson (1958) computes the dom-
inant non-negative eigenvalues, with corresponding eigenvectors, of the Torg-
erson transform of the squared dissimilarities. This is usually presented as
an “ignore-errors” technique. It is clear what it does in the case of perfect fit
of distances to dissimilarities, it is not so obvious how it measures approxi-
mation errors in the case of imperfect fit. Or, to put it differently, MDS lore
has it that in classical scaling loss is defined on the scalar products, which
are a transformation of the dissimilarity data, and not on the dissimilarities
themselves. This is presented as somehow being a disadvantage (see, for
example, Takane, Young, and De Leeuw (1977), Browne (1987)).

If we agree to use weights, then strain is defined straightforwardly as

στ (X) :=
n∑

i=1

n∑
j=1

wij(τij(∆(2)) − x′
ixj)2. (21.13)

Note that this summation includes the diagonal elements, so in general we
cannot expect W to be hollow. In fact, @(eq:straindef) adds diagonal el-
ements only once, while the off-diagonal elements are added twice. This
observation is the basis of the excellent paper by Bailey and Gower (1990).
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Because of the weights, minimizing strain in this form does not lead to an
eigenvalue problem, unless there is a non-negative vector u such that wij =
uiuj. In that case

στ (X) := tr (Uτ(∆(2))U − UXX ′U)2, (21.14)

where U = diag(u), and we can find UX, and thus X, by eigen decomposition
of Uτij(∆(2))U .
We can use our general results on unweighting, as in section 5.4.10, to get
rid of the weights, but this leads to a sequence of eigenvalue problems. Nev-
ertheless, if the weights are important, this is an option.

21.2.1 Unweighted

For column-centered configurations

J(∆(2) − D(2)(X))J = −2(τ(∆(2)) − XX ′)

Thus if all weights are equal to one then

4στ (X) = tr J(∆(2) − D(2)(X))J(∆(2) − D(2)(X)),

which shows that strain is a matrix-weighted version of sstress. It also shows
(De Leeuw and Heiser (1982), theorem 21) that στ (X) ≤ 1

4σ2(X).

21.2.2 Bailey-Gower

min
C≳0

σ(C) :=
n∑

i=1

n∑
j=1

wij(sij − cij)2

If E is psd then
n∑

i=1

n∑
j=1

wij((sij−cij)−αeij)2 = σ(C)−2α
n∑

i=1

n∑
j=1

wij(sij−cij)eij+α2
n∑

i=1

n∑
j=1

wije
2
ij ≥ σ(C)

n∑
i=1

n∑
j=1

wij(cij − sij)eij ≥ 0, (21.15)

n∑
i=1

n∑
j=1

wij(cij − sij)cij = 0. (21.16)
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### Using Additivity

στ (X) = min
α

∑∑
1≤i<j≤n

wij(δ2
ij − (αi + αj) − 2x′

ixj))2

σ2(X) = min
α≥0

min
diagXX′=I

∑∑
1≤i<j≤n

wij(δ2
ij − (α2

i + α2
j − 2αiαj x′

ixj))2

projection
If there are no weights, or if we unweight the weighted loss function
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Chapter 22

fstress and rstress

22.1 fstress

Fstress is a straightforward generalization of stress. Suppose f is any non-
decreasing real-valued function, and define

σf (X) :=
∑∑

1≤i<j≤n

wij(f(δij) − f(dij(X)))2 (22.1)

We discuss various specific examples in this chapter, such as the square and
the logarithm, but let’s first mention some general results.

22.1.1 Use of Weights

Suppose the dij(X) are close to the δij, so that we have a good fit and a low
stress. Then the approximation

f(dij(X)) ≈ f(δij) + Df(δij)(dij(X) − δij) (22.2)

will be close. Thus

σf (X) ≈
∑∑

1≤i<j≤n

wij(Df(δij))2(δij − dij(X))2. (22.3)

291
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Thus we can approximately minimize fstress by minimizing stress with
weights wij(Df(δij))2. If the fit is good, we can expect to be close. If the
fit is perfect, the approximation is perfect too. Note that we do not assume
that f is increasing, i.e. that f ′ ≥ 0.

22.1.2 Convexity

f(g(λx + (1 − λ)y)) ≤ f(λg(x) + (1 − λ)g(y)) ≤ λf(g(x)) + (1 − λ)f(g(y))

Thus if g is convex (for instance distance) and f is convex and increasing
then f ◦ g is convex (and thus stress is DC). Unfortunately a concave f is
more interesting.

22.2 rStress

σr(X) :=
∑∑

1≤j<i≤n

wij(δr
ij − dr

ij(X))2. (22.4)

In definition (22.4) we approximate the r-th power of the dissimilarities by
the r-th power of the distances. Alternatively, we could have defined

σr(X) :=
∑∑

1≤j<i≤n

wij(δij − dr
ij(X))2 (22.5)

In definition (22.4) we are still approximating the dissimilarities by the dis-
tances, as in basic MDS, but we are defining errors of approximation as the
differences between the r-th powers. In definition (22.5)

I am not sure which of the two formulations is the more natural one. I am
sure, however, that for basic MDS the two formulations are effectively the
same, because we can just define dissimilarities in (22.5) as the r-th power of
the ones in (22.4). And in ordinal MDS the two formulations are the same as
well, because the rank orders of the unpowered and powered dissimilarities
are the same.
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22.2.1 Using Weights

dr
ij(X) − δr

ij = (dr
ij(X) + δr

ij)(dr
ij(X) − δr

ij)

If δij ≈ dij(X) then

If r is a power of 2 ==>

22.2.2 Minimizing rstress

rstress, qstress, power stress

Groenen and De Leeuw (2010) De Leeuw (2014b) De Leeuw, Groenen, and
Mair (2016c) De Leeuw, Groenen, and Mair (2016e) De Leeuw, Groenen,
and Mair (2016b)

22.3 mstress

The loss function used by by Ramsay (1977) in his MULTISCAL program
for MDS can be written as

σ0(X) :=
∑∑

1≤i<j≤n

wij(log δij − log(dij(X)))2. (22.6)

To justify the notation σ0 we define fr, for all x > 0 and r < 1, by fr(x) :=
r−1 xr−1

r
. fr is concave for all r, it majorizes the log because fr(x) ≥ log(x)

for all x, with equality iff x = 1, and

lim
r→0

xr − 1
r

= log x. (22.7)

We have drawn the logarithm, in red, and fr for r equal to 0.001, 0.01, 0.1,
0.5, 1 over the interval [.01, 5] in the figure that follows.
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For r = .001 and r = .01 the logarithm and fr are practically indistinguish-
able, and even for r = .1 we have an approximation which is probably good
enough (in the given range) for most practical purposes.
Using the approximation of the logarithm with small r gives

σ0(X) ≈
∑∑

1≤i<j≤n

wij(δij −
dr

ij(X) − 1
r

)2

= r−2 ∑∑
1≤i<j≤wij

((rδij + 1) − dr
ij(X))2.

(22.8)

If r is really small both rδij + 1 and dr
ij(X) will be very close to one, which

will make minimization of the approximation difficult. A simple suggestion
is to start with the SMACOF solution for r = 1, then use that solution for
r = 1 as a starting point for r = 1

2 , and so on.
Alternative ?

log dij(X) − log δij ≤
{dij(X)

δij
}r − 1

r
=

dr
ij(X) − δr

ij

rδijr
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log dij(X) − log dij(Y ) ≤
{dij(X)

dij(Y ) }r − 1
r

=
dr

ij(X) − dr
ij(Y )

rdr
ij(Y )

22.4 astress

robust MDS (zho@u_xu_li_19) LAR (Heiser (1988))

σ11(X) =
∑∑

1≤i<j≤n

wij|δij − dij(X)|

|(δij − dij(X)) + ϵ| ≤ 1
2

((δij − dij(X)) + ϵ)2 + ((δij − dij(Y )) + ϵ)2

|(δij − dij(Y )) + ϵ|

σrs(X) =
∑∑

1≤i<j≤n

wij|δr
ij − dr

ij(X)|s

22.5 pstress

The p in pstress stands for panic. We define

σ(X) :=
∑∑∑∑

(i<j)≤(k<l)
wijkl(δij − dij(X))(δkl − dkl(X)),

where (i < j) ≤ (k < l) means that index pair (i, j) is lexicographically not
larger than pair (k, l).
Covariances/variances
How many of these weights wijkl are there ?

1
2

(
n

2

)
(
(

n

2

)
+ 1) = 1

8n(n − 1)(n2 − n + 2)

No reason to panic. Again, majorization comes to the rescue (Groenen,
Giaquinto, and Kiers (2003)). Suppose there is a K > 0 and a hollow,
symmetric, non-negative Ω such that∑∑∑∑

(i<j)≤(k<l)
wijklzijzkl ≤ K

∑∑
1≤i<j≤n

ωijz
2
ij.

mailto:zho@u
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Often the form of the weights wijkl will suggest how to choose K. In the
worst case scenario we choose Ω = E − I and compute K by the power
method. If all wijkl are equal to one, then ref becomes

1
2

∑∑
1≤i<j≤n

zij


2

+
∑∑

1≤i<j≤n

z2
ij ≤ K

∑∑
1≤i<j≤n

ωijz
2
ij.

σ(X) ≤ σ(Y ) + 2
∑

θij(dij(Y ) − dij(X)) + K
∑

ωij(dij(Y ) − dij(X))2

with (modify slightly !!)

θij =
∑∑

1≤k<l≤n

wijkl(δkl − dklY )

Φ(∆, D(X))



Chapter 23

Alternative Least Squares Loss

Kruskal/Carroll in Krishnaiah

23.1 Sammon’s MDS

23.2 Kamade-Kawai Spring

23.3 McGee’s Work

23.4 Shepard’s Nonmetric MDS

23.5 Guttman’s Nonmetric MDS

23.6 Positive Orthant Nonmetric MDS

!! Richard Johnson 1973

!! Guttman Absolute Value

!! Hartmann
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23.7 Role Reversal

Kruskal, arithmetic with dissimilarities

σ(X) =
∑∑

1≤i<j≤n

wij(δij − Pr(dij(X)))2



Chapter 24

Inverse Multidimensional
Scaling

In MDS we start with dissimilarities and we find a configuration that locally
minimizes stress. We know that the equation we have to solve is B(X)X =
V X. MDS maps dissimilarities into configurations by finding one (or, ideally,
all) solutions of this equation. In Inverse MDS (IMDS) we start wth the same
equation B(X)X = V X, but now we find all dissimilarity matrices for which
a given configuration is a local optimum, or at least a stationary point. Thus
we solve for ∆ for given X, and we study the inverse of the MDS map.
Inverse MDS was first described in “Inverse Multidimensional Scaling”
(2007), R code was provided in De Leeuw (2012), and some elaborations are
in De Leeuw, Groenen, and Mair (2016d). This chapter leans heavily on De
Leeuw, Groenen, and Mair (2016d), but we have reformulated some results
and pruned some of the examples.
In studying the IMDS mapping we limit ourselves, unless explicitly stated
otherwise, to configurations X that are regular, in the sense that dij(X) > 0
for all i ̸= j. This can be done without loss of generality. If some of the
distances are zero, then the corresponding IMDS problem can be reduced to
a regular problem with a smaller number of points (De Leeuw, Groenen, and
Mair (2016f)). Also, an n × p configuration X is normalized if it is column-
centered and has rank p. For such X there exist n × (n − p − 1) centered
orthonormal matrix K such that K ′X = 0. In IMDS we will always assume
that X is both regular and normalized. We also assume, unless it is explicitly
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stated otherwise, that all off-diagonal weights wij are non-zero.

In “Inverse Multidimensional Scaling” (2007) two different basic IMDS
versions are discussed. Both versions start with the stationary equation
B(X)X = V X. The first finds all W and ∆ for which a given X is
stationary. The second finds all ∆ for a given X and W for which X is
stationary. In this chapter we only look at the second form of IMDS. As we
shall see, the first version turns out introduce too many unknowns in W and
∆ to be useful. The second form also reflects the point of view that ∆ are
the data, while the W are part of the definition of the loss function.

24.1 Basic IMDS

Suppose X is a regular and normalized configuration satisfying the stationary
equation (V −B(X))X = 0. Our first IMDS step is to describe the set D(X)
of all ∆E for which X is stationary.

Lemma 24.1. Suppose X is an n×p matrix of rank p < n. Suppose K is an
n × (n − p) orthonormal matrix with K ′X = 0. Then a symmetric matrix A
satisfies AX = 0 if and only if there is a symmetric S such that A = KSK ′.
If rank(K ′AK) = r then S can be chosento be of order r.

Proof. Suppose X = LT with L an orthonormal basis for the column space
of X and T non-singular. Write A as

A =
[
L K

] [A11 A12
A21 A22

] [
L′

K ′

]
. (24.1)

Then AX = LA11T + KA21 = 0 which is true if and only if A11 = 0 and
A21 = 0, and by symmetry A12 = 0. Thus A = KA22K

′.

Theorem 24.1. ∆ ∈ D(X) if and only if there is a symmetric S of order
n − p − 1 such that for all i ̸= j

δij = dij(X)
{

1 −
k′

iSkj

wij

}
. (24.2)
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Proof. By lemma XXX we have (V − B(X))X = 0 if and only if there is a
symmetric S such that V − B(X) = KSK ′. This can be rearranged to yield
(24.2). Since the vector e satisfies both X ′e = 0 and (V − B(X))e = 0 we
can choose S to be of order n − p − 1.

Thus D(X) is a non-empty affine space, a translation of a linear subspace,
closed under all linear combinations with coefficients that add up to one.
Since S is symmetric of order n − p − 1, equation (24.2) defines an affine
subspace of dimension 1

2(n − p)(n − p − 1). If n = 3 and p = 1, or if n = 4
and p = 2, the dimension is one. If n = 4 and p = 1 the dimension is three.

If ∆1, · · · , ∆m are in D(X), then so is the affine subspace spanned by the ∆j.
For all configurations X we have D(X) ∈ D(X). Specifically, if we compute
a solution to the stationary equations X with some MDS algorithm such as
smacof, then the whole line through the data ∆ and D(X) is in D(X).

The next result is corollary 6.3 in “Inverse Multidimensional Scaling” (2007).

Corollary 24.1. r corollary_nums("full_result", display = "f")
If p = n − 1 then ∆ ∈ D(X) if and only if ∆ = D(X) if and only if
σ(X) = 0.

Proof. If p = n − 1 then S in theorem 24.1 is of order zero.

For any two elements of D(X), one cannot be elementwise larger (or smaller)
than the other. This is corollary 3.3 in “Inverse Multidimensional Scaling”
(2007).

Corollary 24.2. If ∆1 and ∆2 are both in DS(X) and ∆1 ≤ ∆2, then
∆1 = ∆2.

Proof. With obvious notation tr X ′(B1(X) − B2(X))X = 0, which can be
written as

∑∑
1≤i<j≤n

wij (δ1ij − δ2ij) dij(X) = 0, (24.3)

and thus ∆1 ≤ ∆2 implies ∆1 = ∆2.
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24.2 Non-negative Dissimilarities

From equation (24.2) it follows δij is a decreasing function of τij, and δij ≥ 0
if and only if τij ≤ wij.
Convex cone, affine convex cone

Lemma 24.2. A non-vacuous polyhedral convex set C = {x | Ax ≤ b} is
bounded if and only if Q = {x | Ax ≤ 0} = {0}.

Proof. See Goldman (1956), corollary 1B.

If C satisfies the conditions of lemma 24.2 then it is a bounded convex poly-
hedron and is the convex hull of its finite set of extreme vectors.
There are, of course, affine combinations ∆ with negative elements. We could
decide that we are only interested in non-negative dissimilarities. In order to
deal with non-negativity we define ∆+ as the polyhedral convex cone of all
symmetric, hollow, and non-negative matrices.

Theorem 24.2. We have ∆ ∈ ∆(W, X) ∩ ∆+ if and only if there is a sym-
metric S such that @(eq:invalldelta) holds and such that

low (KSK ′) ≤ low (W ). (24.4)

Thus ∆(W, X)∩∆+ is a convex polyhedron, closed under non-negative linear
combinations with coefficients that add up to one.

Proof. Follows easily from the representation in theorem 24.1} display =
“n”)‘.

Of course the minimum of σ(X, W, ∆) over ∆ ∈ ∆(W, X) ∩ ∆+ is zero,
attained at D(X). The maximum of stress, which is a convex quadratic in
∆, is attained at one of the vertices of ∆(W, X) ∩ ∆+.

Theorem 24.3. D(X) ∩ D+ is bounded, i.e. it is a convex polygon.

Proof. This is corollary 3.2 in “Inverse Multidimensional Scaling” (2007), but
the proof given there is incorrect. A hopefully correct proof goes as follows.
A polyhedron is bounded if and only if its recession cone is the zero vector.
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If the polyhedron is defined by Ax ≤ b then the recession cone is the solution
set of Ax ≤ 0. Thus, in our case, the recession cone consists of all matrices
S for which low (KSK ′) ≤ 0. Since U := KSK ′ is doubly-centered, and K
is orthogonal to X, we have

0 = tr X ′UX = 2
∑∑

1≤i<j≤n

uijd
2
ij(X). (24.5)

\end{equation}
This implies U = 0, and the recession cone is the zero vector.

We can compute the vertices of ∆(W, X)∩∆+ using the complete description
method of Fukuda (2015), with an R implementation in the rcdd package by
Geyer and Meeden (2015). Alternatively, as a check on our computations,
we also use the lrs method of Avis (2015), with an R implementation in
the vertexenum package by Robere (2015). Both methods convert the H-
representation of the polygon, as the solution set of a number of linear in-
equalities, to the V-representation, as the convex combinations of a number
of vertices.
There is also a brute-force method of converting H to V that is some-
what wasteful, but still practical for small examples. Start with the H-
representation Ax ≤ b, where A is n × m with n ≥ m. Then look at all

(
n
m

)
choices of m rows of A. Each choice partitions A into the m × m matrix A1
and the (n−m)×m matrix A2 and b into B−1 and b2. If rank(A1) < m there
is no extreme point associated with this partitioning. If rank(A1) = m we
compute v̂ = A−1

1 b1 and if A2v̂ ≤ b2 then we add v̂ to the V representation.

24.3 Zero Weights and/or Distances

If a distance is zero then the corresponding element of B(X) must be zero
as well. If a weight is zero, then the corresponding elements of both V and
B(X) are zero. It is still true that (V − B)X = 0 if and only if there is an
S such that B = V − KSK ′, but it may no longer be possible to find the
∆ corresponding with some V + KSK ′. In other words, not all solutions B
to (V − B)X = 0 correspond with a proper B(X). Specifically, zero weights
and/or distances imply that one or more elements of B are required to be
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zero. If these zero requirements are taken into account then not all matrices
S are allowed.

If, for example, X is

## [,1]
## [1,] -0.5
## [2,] -0.5
## [3,] 0.5
## [4,] 0.5

and the weights are all one, then V − B must be a linear combination of the
three matrices, say P11, P22 and P12,

## [,1] [,2] [,3] [,4]
## [1,] 1 -1 1 -1
## [2,] -1 1 -1 1
## [3,] 1 -1 1 -1
## [4,] -1 1 -1 1

## [,1] [,2] [,3] [,4]
## [1,] 1 -1 -1 1
## [2,] -1 1 1 -1
## [3,] -1 1 1 -1
## [4,] 1 -1 -1 1

## [,1] [,2] [,3] [,4]
## [1,] -2 2 0 0
## [2,] 2 -2 0 0
## [3,] 0 0 2 -2
## [4,] 0 0 -2 2

and B is V minus the linear combination. For any B computed this way we
have BX = V X, but we have b12 = b34 = 0 if and only if B = V − αP11 +
(1 − α)P22.
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24.4 Examples

24.4.1 First Example

As our first example we take X equal to four points in the corners of a square.
This example is also used in “Inverse Multidimensional Scaling” (2007) and
De Leeuw (2012). Here X is

## [,1] [,2]
## [1,] -0.5 -0.5
## [2,] -0.5 0.5
## [3,] 0.5 0.5
## [4,] 0.5 -0.5

with distances

## 1 2 3
## 2 1.000000
## 3 1.414214 1.000000
## 4 1.000000 1.414214 1.000000

and K is the vector

## [1] -0.5 0.5 -0.5 0.5

For unit weights we have ∆ ∈ ∆(X, W ) if and only if ∆ = D(X){W − λkk′}
for some real λ. This means that ∆ ∈ ∆(X, W ) ∩ ∆+ if and only if −4 ≤
λ ≤ 4. The endpoints of this interval correspond with the two dissimilarity
matrices

∆1 := 2
√

2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

and

∆2 := 2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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Thus ∆(X, W ) ∩ ∆+ are the convex combinations

∆(α) := α∆1 + (1 − α)∆2 =


0 2(1 − α) 2α

√
2 2(1 − α)

2(1 − α) 0 2(1 − α) 2α
√

2
2α

√
2 2(1 − α) 0 2(1 − α)

2(1 − α) 2α
√

2 2(1 − α) 0

 .

This can be thought of as the distances between points on a (generally non-
Euclidean) square with sides 2(1 − α) and diagonal 2α

√
2. The triangle

inequalities are satisfied if the length of the diagonal is less than twice the
length of the sides, i.e. if α ≤ 2

2+
√

2 ≈ .585786.

The distances are certainly Euclidean if Pythagoras is satisfied, i.e. if the
square of the length of the diagonal is twice the square of the length of the
sides. This gives α = 1

2 , for which ∆ = D(X). For a more precise analysis,
observe that the two binary matrices, say E1 and E2, in the definition of ∆1
and ∆2 commute, and are both diagonalized by

L :=


1
2

1
2

√
2 0 1

2
1
2 0 1

2

√
2 −1

2
1
2 −1

2

√
2 0 1

2
1
2 0 −1

2

√
2 −1

2



The diagonal elements of L′E1L are 1, −1, −1, 1 and those of L′E2L are
2, 0, 0, −2. Because L diagonalizes E1 and E2, it also diagonalizes ∆1 and
∆2, as well as the elementwise squares ∆2

1 and ∆2
2. And consequently also

the Torgerson transform −1
2J∆2(α)J , which has eigenvalues 0, 4α2, 4α2, 4(1−

2α). All eigenvalues are non-negative for α ≤ 1
2 .

We see that ∆(α) is two-dimensional Euclidean for α = 1
2 , one-dimensional

Euclidean for α = 0, and three-dimensional Euclidean for 0 < α < 1
2 . In

particular for α = 1
1+

√
2 all dissimilarities are equal and ∆(α) is the distance

matrix of a regular simplex.

On the unit interval stress is the quadratic 32(α − 1
2)2, which attains its

maximum equal to 8 at the endpoints.
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24.4.2 Second Example

We next give another small example with four equally spaced points on the
line, normalized to sum of squares one, and unit weights. Thus X is

## [,1]
## [1,] -0.6708204
## [2,] -0.2236068
## [3,] 0.2236068
## [4,] 0.6708204

and D(X) is

## 1 2 3
## 2 3.464102
## 3 4.472136 2.828427
## 4 6.324555 4.472136 3.464102

For S we use the basis
[
1 0
0 0

]
,
[
0 0
0 1

]
, and

[
0 1
1 0

]
. Thus ∆(X, W ) are the

affine linear combinations of D(X) and the three matrices

## 1 2 3
## 2 4.330127
## 3 5.590170 2.121320
## 4 4.743416 5.590170 4.330127

## 1 2 3
## 2 3.983717
## 3 3.801316 4.101219
## 4 6.640783 3.801316 3.983717

## 1 2 3
## 2 1.914908
## 3 5.472136 2.828427
## 4 6.324555 3.472136 5.013295
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Both scdd() from rcdd and enumerate.vertices() from vertexenum find
the same seven vertices. All non-negative dissimilarity matrices for which x
is stationary are convex combinations of these seven matrices.

## 1 2 3
## 2 20.784610
## 3 0.000000 5.656854
## 4 0.000000 13.416408 0.000000
## 1 2 3
## 2 13.856406
## 3 4.472136 0.000000
## 4 0.000000 13.416408 0.000000
## 1 2 3
## 2 20.78461
## 3 0.00000 22.62742
## 4 0.00000 0.00000 20.78461
## 1 2 3
## 2 0.000000
## 3 13.416408 5.656854
## 4 0.000000 0.000000 20.784610
## 1 2 3
## 2 0.000000
## 3 13.416408 0.000000
## 4 0.000000 4.472136 13.856406
## 1 2 3
## 2 0.000000
## 3 4.472136 0.000000
## 4 8.432738 4.472136 0.000000
## 1 2 3
## 2 0.000000
## 3 0.000000 5.656854
## 4 12.649111 0.000000 0.000000

The stress values for these seven vertices are

## [1] 460.00000 248.00000 1072.00000 460.00000 248.00000 36.44444 112.00000
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and we know that 1072 is the maximum of stress over ∆ ∈ ∆(X, W ) ∩ ∆+.
In general the vanishing of the stationary equations does not imply that X
corresponds with a local minimum. It can also give a local maximum or
a saddle point. We know, however, that the only local maximum of stress
is the origin (De Leeuw, Groenen, and Mair (2016a)), and that in the one-
dimensional case all solutions of the stationary equations that do not have
tied coordinates are local minima (De Leeuw (2005b)).

24.4.3 Third Example

The number of extreme points of the polytope ∆(W, X) ∩ ∆+ grows very
quickly if the problem becomes larger. In our next example we take six
points equally spaced on the unit sphere. Due to the intricacies of floating
point comparisons (testing for zero, testing for equality) it can be difficult to
determine exactly how many extreme points there are.
“Inverse Multidimensional Scaling” (2007) analyzed this example and
found 42 extreme points. We repeat their analysis with our R function
bruteForce() from the code section. We select

(
15
6

)
= 5005 sets of six linear

equations from our 15 linear inequalities, test them for non-singularity, and
solve them to see if they satisfy the remaining nine inequalities. This gives
1394 extreme points of the polytope, but many of them are duplicates. We
use our function cleanUp() to remove duplicates, which leaves 42 vertices,
same number as found by “Inverse Multidimensional Scaling” (2007). The
42 stress values are

## [1] 24.00000 24.00000 24.00000 21.75000 12.00000 13.33333 6.66667 13.33333
## [9] 17.33333 17.33333 19.68000 13.33333 6.66667 17.33333 6.66667 21.75000
## [17] 6.66667 60.00000 24.00000 21.75000 19.68000 17.33333 21.75000 13.33333
## [25] 19.68000 17.33333 17.33333 21.75000 17.33333 17.33333 13.33333 6.66667
## [33] 21.75000 17.33333 19.68000 13.33333 17.33333 19.68000 19.68000 17.33333
## [41] 6.66667 17.33333

and their maximum is 60.
If we perform the calculations more efficiently in rcdd, using rational arith-
metic, we come up with a list of 153 extreme points. Using cleanUp() to
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remove what seem to be duplicates leaves 43. The vertexenum package,
which uses a different conversion from float to rational and back, finds 147
extreme points, and removing what seem to be duplicates leaves 51.

The fact that we get different numbers of vertices with different methods
is somewhat disconcerting. We test the vertices found by rcdd and
vertexenum that are not found with the brute force method by using
our function rankTest(). This test is based on the fact that a vector x
satisfying the n × m system Ax ≤ b is an extreme point if and only if
matrix with all rows ai for which a′

ix = bi is of rank m. It turns out all the
additional vertices found by rcdd and vertexenum do not satisfy this rank
test, because the matrix of active constraints (satisfied as equalities) is of
rank 5.

24.4.4 Fourth Example

This is an unfolding example with n = 3 + 3 points, configuration

## [,1] [,2]
## [1,] 0.0000000 0.0000000
## [2,] 0.0000000 0.0000000
## [3,] 0.0000000 -0.8164966
## [4,] 0.0000000 0.4082483
## [5,] 0.7071068 0.0000000
## [6,] -0.7071068 0.4082483

and weight matrix

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 0 0 1 1 1
## [2,] 0 0 0 1 1 1
## [3,] 0 0 0 1 1 1
## [4,] 1 1 1 0 0 0
## [5,] 1 1 1 0 0 0
## [6,] 1 1 1 0 0 0
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Note that row-points one and two in X are equal, and thus d12(X) = 0.
The example has both zero weights and zero distances. We now require that
(V − B(X))X = 0, but also that the elements of B(X) in the two 3 × 3
principal submatrices corresponding with the rows and columns are zero.
This means that for the elements of B(X) we require k′

iSkj ≤ 1 for wij = 1
and both k′

iSkj ≤ 0 and −k′
iSkj ≤ 0 for wij = 0. We can then solve for edges

of the off-diagonal block of dissimilarities. There are no constraints on the
dissimilarities in the diagonal blocks, because they are not part of the MDS
problem.
Using our brute force method, we find the two edges

## 4 5 6
## 1 0.0000000 1.414214 1.632993
## 2 0.8164966 0.000000 0.000000
## 3 1.2247449 1.080123 1.414214

## 4 5 6
## 1 0.8164966 0.000000 0.000000
## 2 0.0000000 1.414214 1.632993
## 3 1.2247449 1.080123 1.414214

and the off-diagonal blocks for which X is an unfolding solution are convex
combinations of these two.

24.5 MDS Sensitivity

Suppose X is a solution to the MDS problem with dissimilarities ∆, found by
some iterative algorithm such as smacof. We can then compute D(X) ∩D+,
which is a convex neighborhood of the data ∆, and consists of all non-negative
dissimilarity matrices that have X as a solution to the stationary equations.
The size of this convex neighborhood can be thought of as a measure of
stability or sensitivity.
For typical MDS examples there is no hope of computing all vertices of
D(X) ∩ D+. Consider the data from De Gruijter (1967), for example, with
n = 9 objects, to be scaled in p = 2 dimensions. We have 1

2n(n − 1) = 36
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dissimilarities, and because m = n − p − 1 = 6 there are 1
2m(m + 1) = 21

variables. It suffices to consider that there are 5567902560 ways in which
we can pick 21 rows from 36 rows to understand the number of potential
vertices.
What we can do, however, is to optimize linear (or quadratic functions) over
D(X) ∩ D+, because 36 linear inequalities in 21 variables define an easily
manageable LP (or QP) problem. As an example, not necessarily a very
sensible one, we solve 36 linear programs to maximize and minimize each of
the δij in D(X)∩D+ separately. We use the lpSolve package (Berkelaar, M.
and others (2015)), and collect the maximum and minimum δij in a matrix.
The range from the smallest possible δij to the largest possible δij turns out
to be quite large.
The data are

## KVP PvdA VVD ARP CHU CPN PSP BP D66
## KVP 0.00 5.63 5.27 4.60 4.80 7.54 6.73 7.18 6.17
## PvdA 5.63 0.00 6.72 5.64 6.22 5.12 4.59 7.22 5.47
## VVD 5.27 6.72 0.00 5.46 4.97 8.13 7.55 6.90 4.67
## ARP 4.60 5.64 5.46 0.00 3.20 7.84 6.73 7.28 6.13
## CHU 4.80 6.22 4.97 3.20 0.00 7.80 7.08 6.96 6.04
## CPN 7.54 5.12 8.13 7.84 7.80 0.00 4.08 6.34 7.42
## PSP 6.73 4.59 7.55 6.73 7.08 4.08 0.00 6.88 6.36
## BP 7.18 7.22 6.90 7.28 6.96 6.34 6.88 0.00 7.36
## D66 6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36 0.00

The optimal configuration found by smacof is

## [,1] [,2]
## [1,] 1.78 3.579
## [2,] -1.46 2.297
## [3,] 3.42 -2.776
## [4,] 3.30 1.837
## [5,] 3.84 0.308
## [6,] -5.09 -0.044
## [7,] -3.79 2.132
## [8,] -2.86 -4.318
## [9,] 0.86 -3.015
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Figure 24.1: De Gruijter Configuration
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The maximum and minimum dissimilarities in ∆(X, W ) ∩ ∆+ are

## KVP PvdA VVD ARP CHU CPN PSP BP D66
## KVP 0.0 32.6 9.7 9.3 24.6 24.3 11.7 18.9 15.2
## PvdA 32.6 0.0 25.7 36.9 20.7 34.1 36.1 29.7 22.2
## VVD 9.7 25.7 0.0 17.4 32.0 34.4 22.3 23.5 20.4
## ARP 9.3 36.9 17.4 0.0 28.0 33.7 25.6 28.9 23.0
## CHU 24.6 20.7 32.0 28.0 0.0 20.8 31.9 33.3 26.3
## CPN 24.3 34.1 34.4 33.7 20.8 0.0 24.9 30.7 31.8
## PSP 11.7 36.1 22.3 25.6 31.9 24.9 0.0 23.7 27.7
## BP 18.9 29.7 23.5 28.9 33.3 30.7 23.7 0.0 35.0
## D66 15.2 22.2 20.4 23.0 26.3 31.8 27.7 35.0 0.0

## KVP PvdA VVD ARP CHU CPN PSP BP D66
## KVP 0.00 3.48 0.00 0.00 2.34 0.00 0.00 0.00 0.00
## PvdA 3.48 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00
## VVD 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00
## ARP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## CHU 2.34 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00
## CPN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## PSP 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## BP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## D66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24.6 Second Order Inverse MDS

As we mentioned many times before, stationary values are not necessarily
local minima. It is necessary for a local minimum that the stationary equa-
tions are satisfied, but it is also necessary that at a solution of the stationary
equations the Hessian is positive semi-definite. Thus it becomes interesting
to find the dissimilarities in ∆(W, X) ∩ ∆+ for which the Hessian is positive
semi-definite. Define

∆H(W, X) := {∆ | D2σ(X) ≳ 0}.

We can now study ∆(W, X) ∩ ∆H(W, X) or ∆(W, X) ∩ ∆H(W, X) ∩ ∆+.
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Theorem 24.4. ∆H(W, X) is a convex non-polyhedral set.

Proof. In MDS the Hessian is 2(V − H(x, W, ∆)), where

H(x, W, ∆) :=
∑∑

1≤i<j≤n

wij
δij

dij(x)

{
Aij − Aijxx′Aij

x′Aijx

}
. (24.6)

Here we use x := vec(X), and both Aij and V are direct sums of p copies
of our previous Aij and V (De Leeuw, Groenen, and Mair (2016e)). The
Hessian is linear in ∆, which means that requiring it to be positive semi-
definite defines a convex non-polyhedral set. The convex set is defined by
the infinite system of linear inequalities y′H(x, W, ∆)y ≥ 0.

In example 3 the smallest eigenvalues of the Hessian at the 42 vertices are

## [1] 0.00000 0.00000 0.00000 -5.86238 0.00000 -2.96688 0.00000
## [8] -2.96688 -4.47894 -4.47894 -5.71312 -2.96688 0.00000 -5.00453
## [15] 0.00000 -5.86238 0.00000 -12.00000 0.00000 -5.86238 -5.71312
## [22] -5.00453 -5.86238 -2.96688 -5.71312 -4.47894 -5.00453 -5.86238
## [29] -5.00453 -5.00453 -2.96688 0.00000 -5.86238 -4.47894 -5.71312
## [36] -2.96688 -5.00453 -5.71312 -5.71312 -4.47894 0.00000 -4.47894

and thus there are at most 11 vertices corresponding with local minima.
The next step is to refine the polyhedral approximation to ∆(W, X) ∩
∆H(W, X) ∩ ∆+ by using cutting planes. We add linear inequalities to the
H-representation by using the eigenvectors corresponding to the smallest
eigenvalues of all those vertices for which this smallest eigenvalue is negative.
Thus, if the eigenvector is y, we would add the inequality∑∑

1≤i<j≤n

ζij(wij − k′
iSkj) ≥ 0, (24.7)

where
ζij := y′

(
Aij − Aijxx′Aij

x′Aijx

)
y.

It is clear, however, that adding a substantial number of linear inequalities
will inevitably lead to a very large number of potential extreme points. We
proceed conservatively by cutting off only the solution with the smallest neg-
ative eigenvalue in computing the new V representation, using our function
bruteForceOne().
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24.7 Inverse FDS

A configuration X is a full dimensional scaling or FDS solution (De Leeuw,
Groenen, and Mair (2016a)) if (V − B(X))X = 0 and V − B(X) is positive
semi-definite. In that case X actually provides the global minimum of stress.
The inverse FDS or iFDS problem is to find all ∆ such that a given X is
the FDS solution.

Theorem 24.5. ∆ ∈ ∆F (W, X) if and only if there is a positive semi-definite
S such that for all i ̸= j

δij = dij(X)(1 − 1
wij

k′
iSkj), (24.8)

Thus ∆F (W, X) is a non-polyhedral convex set, closed under linear combina-
tions with coefficients that add up to one.

Proof. Of course ∆F (W, X) ⊆ ∆(W, X). Thus V − B(X) = KSK ′ for
some S, and XX ′ and V − B(X) must both be positive semi-definite, with
complementary null spaces.

We reanalyze our second example, with the four points equally spaced on
the line, requiring a positive semi-definite S. We start with the original 7
vertices, for which the minimum eigenvalues of S are

## [1] -4.000 -2.899 -1.708 -3.333 8.000 -1.708 -2.899

If the minimum eigenvalue is negative, with eigenvector y, we add the con-
straints y′Sy ≥ 0. This leads to 11 vertices with minimum eigenvalues

## [1] 8.0000 -0.0355 0.0000 -0.7911 -0.3834 -0.3834 -0.0355 -0.0853 -0.0853
## [10] -0.7911 0.0000

We see that the negative eigenvalues are getting smaller. Repeating the
procedure of adding constraints based on negative eigenvalues three more
times gives 19, 37, and 79 vertices, with corresponding minimum eigenvalues
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## [1] 8.000000 -0.000021 0.000000 -0.209852 -0.202322 -0.085642 -0.085642
## [8] -0.000021 -0.106132 -0.018912 -0.008051 -0.023967 -0.008051 -0.023967
## [15] -0.106132 -0.018912 -0.209852 -0.202322 0.000000

## [1] 8.000000 -0.000021 0.000000 -0.056872 -0.053562 -0.045307 -0.062028
## [8] -0.020853 -0.020853 -0.000021 -0.028793 -0.004490 -0.001925 -0.006410
## [15] -0.001925 -0.006410 -0.028793 -0.004490 -0.000005 -0.002104 -0.021934
## [22] -0.024355 -0.021934 -0.024355 -0.000005 -0.002104 -0.004975 -0.005596
## [29] -0.005596 -0.004975 -0.002318 -0.002318 -0.056872 -0.053562 -0.045307
## [36] -0.062028 0.000000

## [1] 8.000000 -0.000021 0.000000 -0.015026 -0.013698 -0.010861 -0.017838
## [8] -0.013830 -0.013426 -0.012084 -0.013998 -0.018140 -0.005180 -0.005180
## [15] -0.000021 -0.007568 -0.001096 -0.000471 -0.001662 -0.000471 -0.001662
## [22] -0.007568 -0.001096 -0.000005 -0.000001 -0.000538 -0.000488 -0.005588
## [29] -0.005886 -0.005588 -0.005886 -0.000005 -0.000001 -0.000538 -0.000488
## [36] -0.001278 -0.001355 -0.001355 -0.001278 -0.000001 -0.000649 -0.000594
## [43] -0.005244 -0.005378 -0.005244 -0.005378 -0.000001 -0.000649 -0.000594
## [50] -0.006838 -0.006293 -0.001150 -0.001210 -0.000492 -0.000514 -0.000566
## [57] -0.001545 -0.001444 -0.000492 -0.000514 -0.000566 -0.001545 -0.001444
## [64] -0.006838 -0.006293 -0.001150 -0.001210 -0.000001 -0.000001 -0.015026
## [71] -0.013698 -0.010861 -0.017838 -0.013830 -0.013426 -0.012084 -0.013998
## [78] -0.018140 0.000000

It should be noted that the last step already takes an uncomfortable number
of minutes to compute. Although the number of vertices goes up quickly, the
diameter of the polygon (the maximum distance between two vertices) slowly
goes down and will eventually converge to the diameter of ∆F (W, X) ∩ ∆+.
Diameters in subsequent steps are

## [1] 5.657 5.086 5.065 5.061 5.060

24.8 Multiple Solutions

If X1, · · · , Xs are configurations with the same number of points, then the in-
tersection {⋂s

r=1 ∆(W, Xr)}∩∆+ is again a polygon, i.e. a closed and bounded
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convex polyhedron (which may be empty). If ∆ is in this intersection then
X1, · · · , Xs are all solutions of the stationary equations for this ∆ and W .
Let’s look at the case of two configurations X1 and X2. We must find vectors
t1 and t2 such that

d1 ◦ (e − w† ◦ G1t1) = d2 ◦ (e − w† ◦ G2t2).

If H1 := diag(d1 ◦w†)G1 and H2 := diag(d2 ◦w†)G2 then this can be written
as [

H1 −H2
] [t1

t2

]
= d1 − d2

This is a system of linear equations in t1 and t2. If it is solvable we can
intersect it with the convex sets G1t1 ≤ w and G2t2 ≤ w to find the non-
negative dissimilarity matrices ∆ for which both X1 and X2 are stationary.

## $delta1
## [,1]
## [1,] 1.464102
## [2,] 1.464102
## [3,] 1.464102
## [4,] 1.464102
## [5,] 1.464102
## [6,] 1.464102
##
## $delta2
## [,1]
## [1,] 1.464102
## [2,] 1.464102
## [3,] 1.464102
## [4,] 1.464102
## [5,] 1.464102
## [6,] 1.464102
##
## $res
## [1] 1.024137e-15
##
## $rank
## [1] 2
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As a real simple example, suppose X and Y are four by two. They both
have three points in the corners of an equilateral triangle, and one point in
the centroid of the other three. In X the fourth point is in the middle, in Y
the first point. The only solution to the linear equations is the matrix with
all dissimilarities equal.

For a much more complicated example we can choose the De Gruijter data.
We use smacof to find two stationary points in two dimensions. The matrices
G1 and G2 are 36 × 21, and thus H := (H1 | −H2) is 36 × 42. The solutions
of the linear system Ht = d1 −d2 are of the form t0 −Lt, with t0 an arbitrary
solution and L a 42×6 basis for the space of Ht = 0. To find the non-negative
solutions we can use the H representation Lv ≤ t0, and then compute the V
representation, realizing of course that we can choose 6 rows from 42 rows in
5245786 ways.

24.9 Minimizing iStress

The IMDS approach can also be used to construct an alternative MDS loss
function. We call it iStress, defined as

σι(X, W, ∆) := min
∆̃∈∆(W,X)∩∆+

∑∑
1≤i<j≤n

wij(δij − δ̃ij)2.

Minimizing iStress means minimizing the projection distance between the
observed dissimilarity matrix and the moving convex set of non-negative
dissimilarity matrices for which X satisfies the stationary equations. The
convex set is moving, because it depends on X. For each X we have to solve
the IMDS problem of finding ∆(X, W ) ∩ ∆+, and then solve the quadratic
programming problem that computes the projection.

Theorem 24.6. minX σι(X, W, ∆) = 0 and the minimum is attained at all
X with (V − B(X))X = 0.

Proof. If X is a stationary point of stress then ∆ ∈ D(X) ∩ D+ and thus
iStress is zero. Conversely, if iStress is zero then ∆ ∈ D(X) ∩ D+ and X is
a stationary point of stress.
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Minimizing iStress may not be a actual practical MDS method, but it has
some conceptual interest, because it provides another way of looking at the
relationship of MDS and IMDS.
We use the De Gruijter data for an example of iStress minimization. We
use optim from base R, and the quadprog package of Turlach and Weingessel
(2013). Two different solutions are presented, the first with iterations starting
at the classical MDS solution, the second starting at the smacof solution.
In both cases iStress converges to zero, i.e. the configurations converge to a
solution of the stationary equations for stress, and in the smacof case the
initial solution already has stress equal to zero.

## initial value 106.624678
## iter 10 value 0.205734
## iter 20 value 0.025163
## iter 30 value 0.018427
## iter 40 value 0.000116
## iter 50 value 0.000007
## iter 60 value 0.000000
## final value 0.000000
## converged

## initial value 0.000000
## iter 10 value 0.000000
## iter 20 value 0.000000
## final value 0.000000
## converged

24.10 Order three

We will now consider, in some detail, MDS of a dissimilarity matrix of order
three.. The plan is as follows. Our MDS problem is of order three, i.e. there
are only three objects, and three dissimilarities between them. Suppose,
for simplicity, that all weights are one. At a stationary point of we have
B(X)X = 3X. Thus the B matrix has an eigenvalue equal to 3 (in addition
to having an eigenvalue equal to zero).
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Figure 24.2: De Gruijter Minimim iStress Configuration

!! Not just eval 3, but also evecs X
If there are only three objects we can look at the set of doubly-centered
matrices of order three with an eigenvalue equal to three. If three is the
largest eigenvalue then the local minimum is global, if it is the second largest
eigenvalue then it may or may not be global. If B has two eigenvalues equal to
three, then B = 3J and the two eigenvectors give the unique global minimum
in two dimensions (an equilateriaL triangle).
A symmetric doubly-centered matrix of order three is a linear combination
B = αA12 + βA13 + γA23 of three diff matrices (@ref(#propmatrix)), with
α, β, γ all non-negative. Thus

B =

α + β −α −β
−α α + γ −γ
−β −γ β + γ

 . (24.9)

B has one eigenvalue equal to zero, and two real non-negative eigenvalues λ1
and λ2. The characteristic equation is f(λ) := λ(λ2 − 2τλ + 3η) = 0, where
τ := α + β + γ and η := αβ + αγ + βγ.

Thus we have at least one eigenvalue equal to three if f(3) = 0, i.e. 2τ −η = 3.
Both eigenvalues are equal to three if η = τ = 3, which means α = β = γ = 1
and B = 3J .
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The two eigenvalues are τ ±
√

τ 2 − 3η Note that τ 2 − 3η ≥ 0 with equality
if and only if τ = η = 3 if and only if α = β = γ = 1. This easily follows
from τ 2 − 3η = α2 + β2 + γ2 − η, while η = αβ + αγ + βγ ≤ α2 + β2 + γ2

by applying AM/GM three times. Also note that if two out of the three of
α, β, γ are zero then η = 0 and thus λ1 = 2τ and λ2 = 0.

Since λ1 ≥ λ2 we have the two possibilities λ2 ≤ λ1 = 3 and 3 ≥ λ1 ≥ λ2 = 3
Now λ1 = 3 iff

√
τ 2 − 3η = 3 − τ iff τ ≤ 3 and 2τ − η = 3. And λ2 = 3 iff√

τ 2 − 3η = τ −3 iff τ ≥ 3 and 2τ −η = 3. It also follows that it is necessary
for λ = 3 that τ ≥ 3

2 .

If we have (τ, η) we can solve for α, β and γ by

α + β + γ = τ, α2 + β2 + γ2 = ω

Thus the set of (α, β, γ) corresponding with τ, η is the intersection of a sphere
and an equilateral triangle in the non-negative orthant of R3.

γ = τ − α − βα2 + β2 − τα − τβ + αβ = −η

ellipse with center 1
3τe and radius 1

3(τ − 3)2

imdsSolver(2)
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imdsSolver(3)
points (1, 1, col = "RED")
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24.11 Order Four

B = αA12 + βA13 + γA14 + δA23 + ϵA24 + ϕA34

B =


α + β + γ −α −β −γ

−α α + δ + ϵ −δ −ϵ
−β −δ β + δ + ϕ −ϕ
−γ −ϵ −ϕ γ + ϵ + ϕ

 .

The characteristic equation is

f(λ) = λ(λ3 − 2τλ2 + (3η + (αϕ + βϵ + γδ))λ − Y ).

Z = 1
2


+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1

 .
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24.12 Sensitivity

σ(W, ∆) = min
X

σ(X, W, ∆)

X(W, ∆) = Argmin
X

σ(X, W, D)

D1σ(W, ∆) = (∆ − D(X(W, D)))(2)

D2σ(W, ∆) = W ∗ (∆ − D(X(W, D)))



Chapter 25

Stability of MDS Solutions

25.1 Null Distribution

25.2 Pseudo-confidence Ellipsoids

25.3 A Pseudo-Bootstrap

25.4 How Large is My Stress ?

Users of MDS, influenced no doubt by the tyranny of significance tests, often
ask if their stress level from a smacof analysis is low or high. The appropriate
answer, in many cases, is: “It’s as low as I could get it.”

Kruskal has muddied the waters.

Normalization. Remember

σ(X) =
∑∑

1≤i<j≤n wij(δij − dij(X))2∑∑
1≤i<j≤n wijδ2

ij

so it is the weighted average of the squared residuals, relative to the
weighted average of the squared dissimilarities. If we take the square root
then weighted averages of squares become root-mean-squares.

327
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Thurstonian
Ramsay
Monte Carlo: De Leeuw and Stoop (1984), Spence (1983)

E(χp) =
√

2
Γ(p+1

2 )
Γ(p

2)



Chapter 26

In Search of Global Minima

We have already discussed the problem of finding the global minimum, in-
stead of merely one or more local minima, in chapters 13 and 12. In the uni-
dimensional case the basic MDS problem becomes combinatorial, we have
to minimize over all n! permutations of ιn, and there usually are very many
local minima, all of them strict. The case in which all δij are the same shows
there can be n! local minima, all global. All these minima are strict and iso-
lated, and thus a small perturbation of the equal-dissimilarity case still has
n! local minima (Pliner (1996)). In the full-dimensional case there is only
one minimum, which is by definition the global minimum. For 1 < p < n − 1
we can expect to be somewhere between these two extremes, with in addition
the possibility that some of the critical points are saddle points and not local
minima. But note that if all dissimilarities are equal all permutations of the
points in the global minimum configuration also give global minima, which
means that even in higher dimensional cases we may have n! local minima.

One way to protect against non-global minima is to start with a really good
initial configuration. Generally, the Torgerson and Guttman initial configu-
rations are helpful, and so are the first p principal components of the full-
dimensional solution. Another important tool is to stop iterations using the
size of the gradient (or the difference between X and γ(X)), with a cut-off
value of at least 1e − 7, but preferably 1e − 10 or even 1e − 15. Earlier
implementations of smacof may have stopped too soon if the target local
minimum is in a flat region of the configuration space, or if the iterations
stray too close to a saddle point and must flex their muscle to get away from

329
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it.

In this chapter we will discuss some methods to find the global minimum,
or, more modestly, to move from one local minimum to another better local
minimum. The global optimization battlefield is in constant flux. New meth-
ods for general of specific global optimization problems seem to be invented
every day, all struggling with the curse of dimensionality. The field is riddled
with the remains of methods that died in infancy. So I am not saying I will
discuss the best, or even the most promising, global optimization methods
for MDS. I simply choose the ones I like best, and the ones that fit nicely
into the smacof framework.

26.1 Random Starts

The simplest way to get an idea about the local minima of stress in any
specific example is to run smacof with multiple random initial configurations.
The implementation is simple. Put the smacof runs in a loop from 1 to N ,
start each run with a random initial configuration, and collect the results in
some data structure. It is true that our analysis will take N times as long
to finish, but just start up your PC and go and do something else while it
runs. It seems to me that this ought to be standard practice for actual MDS
applications. Not only do we find the best local minimum in terms of stress,
but we get valuable information about the stability of our result. If we take,
for example, N = 1000 and we find the same local minimum in all runs, we
can be reasonably confident that we have found the global minimum. A small
change in the dissimilarities will probably find the same global minimum. If
we find multiple local minima, all with about the same frequency and with
stress values that are close, then a small change may very well switch to
another local minimum with the smallest stress value.

There is some freedom in the choice of method to generate random initial
configurations. In the examples in this chapter we sample from the standard
multivariate normal, but since we know that at local minima η(X) ≤ 1 it
may be more appropriate to sample from the unit ball in Rn×p (Harman
and Lacko (2010)). In fact, since we also know that at a local minimum
ρ(X) = η2(X), we may project our intial configurations on that surface.

metric - nonmetric
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Table 26.1: Local Minima in Ekman Example

no minimum frequency
1 0.0086066 824
2 0.0182714 136
3 0.0300985 19
4 0.0309922 7
5 0.0317395 8
6 0.0331013 4
7 0.0337281 1
8 0.0379281 1

26.1.1 Examples

26.1.1.1 Ekman

We use the Ekman data to illustrate this. We use 1000 random starts, and
we stop iterating when the decrease in stress is less than 1e-15. We find 8
local minima, listed in table 26.1.

The results are encouraging, because they indicate that, at least in the Ek-
man example, the lower the local minimum, the more attractive it is for the
smacof iterations. The lowest local minima seem to have the largest regions
of attraction. Specifically, we find what is presumably the global minimum
in more than 80% of the cases. Nevertheless, if our clients were so unwise
to start their MDS analysis with a random initial configuration then about
20% of them will get the wrong answer.

In the example we also see a number of local minima, found only in a small
number of cases, whose stress values are very close to each other. It seems
likely that others of roughly the same stress level will be found if we continue
sampling additional random initial configurations.

The configurations corresponding with the two dominant local minima are
in 26.3 and 26.4. if we compare them we see that the color circle has two
separate circular segments. In the second local minimum the order of the
colors on one of these two segments is reversed.
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Figure 26.3: Global (?) Minimum
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Figure 26.4: Largest (?) Non-global Minimum
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26.1.1.2 De Gruijter

The Ekman example is somewhat atypical, because it has an exceptionally
good fit. We perform the same computations for the De Gruijter example,
still using a cut-off at 1e-15, but now allowing for up to 10,000 iterations.

The data in this example are averages of preference rankings for nine Dutch
political parties by 100 students. Due to the heterogeneity of the popula-
tion there is a considerable regression to the mean. Typically this would
suggest splitting the students into more homogeneous groups (which is what
De Gruijter (1967) did), and/or using a form of non-metric scaling (which is
what De Gruijter did as well).

Our 1000 runs produce 21 local minima, in table @ref{tab:gruijterlocalminima},
with stress values that are close to each other. In this case it is easy to
imagine that more runs will produce many more local minima, with low fre-
quencies, mainly permuting the political parties on the horseshoe. In other
words, the situation is somewhat like the case in which all dissimilarities
between the nine objects are equal, in which case we have 9! =3.6288 × 105

local minima, all with the same stress value.

Another comparison may be useful. The Ekman example is like a matrix with
two dominant eigenvalues, the De Gruijter example is like a matrix will all
eigenvalues approximately equal to each other. Since smacof is somewhat like
the power method, we expect poor convergence in the De Gruijter example,
and histogram 26.6 shows exactly that. There is even one random start from
which there is no convergence in 10,000 iterations. In the Ekman example
the frequency of the local minima seems closely related to the stress value
at the local minimum, in the De Gruijter example the frequency of the local
minims seems more random. In the Ekman case we can be pretty sure we
have found the global minimum, in the De Gruijter case we are far from sure.

x1 <- hgruijter[[14]]$x
x3 <- hgruijter[[1]]$x
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Table 26.2: Local Minima in De Gruijter Example

no minimum frequency
1 0.0222149 155
2 0.0222262 85
3 0.0222631 156
4 0.0223017 248
5 0.0232310 130
6 0.0244955 88
7 0.0245003 35
8 0.0246216 2
9 0.0254775 26

10 0.0254982 18
11 0.0261988 18
12 0.0273897 1
13 0.0274695 7
14 0.0297550 4
15 0.0303408 4
16 0.0315674 1
17 0.0315679 1
18 0.0356327 14
19 0.0362333 3
20 0.0364538 3
21 0.0375689 1
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Figure 26.7: Largest Local Minimum
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26.2 Tunneling, Filling, Annealing, etc.

26.3 Cutting Planes

In cutting plane methods we approximate a non-polyhedral compact convex
set C by a sequence Pn of convex polyhedra. Approximation is from the
outside, i.e. C ⊂ Pn, strictly monotonic, i.e Pn+1 ⊂ Pn, and convergent,
i.e. limn→∞ P\ = C. Under suitable conditions the maximum/minimum f ⋆

n

of a function f on Pn will converge to f ⋆, the maximum/minimum of f on
C.
If we are maximizing a convex function on C then the maximum on the
approximating polyhedron Pn will be at one of the vertices x⋆. If x⋆ ̸∈ C we
cut it off by finding a hyperplane that separates x and C. We can, for example,
project x⋆ on C and use the tangent hyperplane to C in the projection x̂.
Define Pn+1 ∩ {x | a′x ≤ b}, with a′x = b the separating hyperplane that has
a′x ≤ b for each x ∈ C and a′x⋆ > b.
The basic MDS problem can be reformulated as maximization of ρ(x) on the
unit ball η2(x) = x′x ≤ 1. See sections 2.1.3 and 3.2 for the reformulation
tools. The cutting plane method in the case of a ball is particulary simple,
at least conceptually. If x⋆ ̸∈ C then its projection on the ball is x̂ = x⋆/∥x⋆∥
and the tangent hyperplane in x̂ is x̂′x ≤ 1.
Computationally, however, matters are not so simple. The polyhedron Pn is
described by an increasing number of linear inequalities. Finding all vertices
requires a non-trivial effort, and in the general case the method seems practi-
cal only for small or moderately small examples. In an actual implementation
we would have to have a scheme for dropping or not adding redundant in-
equalities (that are implied by earlier inequalities) and a scheme for dropping
inequalities generating vertices that can never be the global maximum. Such
strategfies will depend on the nature of the function f and on the convex set
S.

26.3.1 On the Circle

For the circle the cutting plane method can be made very simple. Suppose
we start with a n distinct inner points x1, · · · , xn on the unit circle S, ordered
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clockwise so that x1 is at the top of the circle (high noon). Let Qn be their
convex hull. Then Qn ⊂ S. The tangent lines at xi and xi+1 intersect outside
the circle in an outer point yi, with yn the intersection of the tangents at xn

and x1. Let Pn be the convex hull of the yi. Then Qn ⊂ S ⊂ Pn and thus
nmax

i=1
ρ(xi) = max

x∈Qn

ρ(x) ≤ max
x∈S

ρ(x) ≤ max
x∈Pn

ρ(x) = nmax
i=1

ρ(yi).

Thus we have easily computable lower and upper bounds for the global max-
imum of ρ on S. The next step is to add the n projections yi/∥yi∥ to the n
inner points to have a new set of 2n inner points. Then compute the corre-
sponding 2n outer points, and so on. After k steps we have 2kk0 inner and
outer points, where k0 is the number of inner points we started with.
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Figure 26.9: Circle Segment

As figure 26.9 shows, the outer point corresponding with two consecutive
points on the circle lies on the perpendicular bisector of the line connecting
the points. Using non-consecutive points will produce tangent lines which
intersect farther away from the circle, and which consequently leads to a
larger convex hull, and a worse approximation.
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The next three figures illustrate the first iterations of the algorithm. We
always start with n inner points equally distributed on the unit circle, in this
case n = 4. The circle is in red, the convex hulls of the outer and inner points
are in blue.
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Figure 26.10: Starting Point

We see rapid convergence of the convex hulls to the circle. The figures also
suggest an improvement of the method. Suppose ρ0 is a lower bound of the
global minimum ρ⋆ equal to the largest ρ value of the inner points. Suppose
an outer point has a ρ value less than or equal to ρ0, consider the triangle
with the outer point and the two inner points. All three vertices have a ρ
value less than or equal to ρ0, and because ρ is convex so have all points
in the triangle, including a segment of the circle. Thus we can phantom
that segment of the circle and create no new inner points there. If ρ0 get
closer to ρ⋆ more and more segments of the circle are eliminated, which will
presumably lead to faster computation. It seems advantageous to start with
a value of ρ0 that is as large as possible, for example by using the value the
smacof algorithm converges to. We can then use the inner and outer points
to check if the ρ value is a global minimum.
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Figure 26.11: After First Iteration



342 CHAPTER 26. IN SEARCH OF GLOBAL MINIMA

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Figure 26.12: After Second Iteration



26.3. CUTTING PLANES 343

26.3.2 Cauchy Step Size

The standard smacof update of X (update method upA of section 6.1) is
γ(X) = V +B(X)X. The relaxed update is X(λ) := λγ(X) + (1 − λ)X. We
usually choose λ = 2, which gives update method upB of section 6.1.
The Cauchy or steepest descent update is X(λ̂), with

λ̂ = argmin
λ≥0

σ(X(λ)). (26.1)

There are some examples of the use of λ̂ in De Leeuw and Heiser (1980),
but there the optimal step-size is computed by using constrained smacof
iterations, which may actually take us to just a local minimum along the
line. In this example we use our circle methodology to compute the global
minimum.
Now tr X ′V γ(X) = ρ(X) and thus if tr X ′V X = 1 then Y = γ(X)−ρ(X)X
satisfies tr X ′V Y = 0 and η2(Y ) = η2(γ(X)) − ρ2(X). Normalize Y such
that tr Y ′V Y = 1, and now maximize ρ over α and β, i.e. in configuration
space maximize ρ(αX + βY ), where α2 + β2 = 1.
In the example we choose X to be a 10×2 matrix filled with random standard
normals, and we start with 10 inner points on the circle. The iterations until
convergence are as follows.

## itel 1 vertices 10 innermax 0.96683250 outermax 1.01451883
## itel 2 vertices 20 innermax 0.96683250 outermax 0.97744943
## itel 3 vertices 40 innermax 0.96683250 outermax 0.97008052
## itel 4 vertices 80 innermax 0.96709009 outermax 0.96794626
## itel 5 vertices 160 innermax 0.96720000 outermax 0.96739328
## itel 6 vertices 320 innermax 0.96720681 outermax 0.96726518
## itel 7 vertices 640 innermax 0.96721856 outermax 0.96722816
## itel 8 vertices 1280 innermax 0.96721856 outermax 0.96722140
## itel 9 vertices 2560 innermax 0.96721856 outermax 0.96721949
## itel 10 vertices 5120 innermax 0.96721876 outermax 0.96721890
## itel 11 vertices 10240 innermax 0.96721876 outermax 0.96721880
## itel 12 vertices 20480 innermax 0.96721876 outermax 0.96721877
## itel 13 vertices 40960 innermax 0.96721876 outermax 0.96721877

The optimal α and β are -0.5464817, -0.837471. In configuration space this
translates to 1.7919402 X+-2.6770034 γ(X).
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26.3.3 Balls

In dimension p > 2, where ρ must be maximized on the unit ball in Rp,
matters are not so simple any more. There is no single compelling natural
ordering of the points on the sphere or hypersphere, and thus we have to
improvise more. We would like to maintain both upper and lower bounds for
the global minimum that both keep improving in every iteration.

26.3.3.1 Outer Approximation

Let’s first discuss a possible initial set of inner and outer points that are
more or less regularly spaced inside or outside the unit sphere. For the inner
points we can use the vertices of the cross-polytope (or the ℓ1-ball), which
is the set of all x in Rn with ∑n

i=1 |xi| ≤ 1. If |xi| ≤ 1 then x2
i ≤ |xi| with

equality iff xi ∈ {−1, 0, 1}. Thus x′x ≤ ∑n
i=1 |xi| and x′x = ∑n

i=1 |xi| = 1 iff
exactly one of xi is ±1, i.e. there are 2n inner points on the sphere.

For the outer points we choose the vertices of maxn
i=1 |xi| ≤ 1, or equivalently

−1 ≤ xi ≤ +1 for all i. Thus there are 2n vertices which have xi = ±1 for
all i.

26.4 Distance Smoothing

dij(X, ϵ) :=
√

d2
ij(X) + ϵ2

dϵ
ij(X) :=

√
d2

ij(X) + ϵ2

Ddϵ
ij(X) = 1

dϵ
ij(X)AijX

∇σϵ(X) = 2(V − Bϵ(X))X

D2σϵ(X) =

Theorem 26.1. If ϵ ≥ maxi,j δij then B(Xϵ) ≲ V and thus D2(Xϵ) ≳ 0 for
all X and σϵ is convex.
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D1dij(X, ϵ) = 1
dij(X, ϵ)AijX

∇σϵ(X) = 2
V −

∑∑
1≤i<j≤n

wij
δij

dij(Xϵ)
Aij

X

∇2σϵ(X) = 2V −
∑∑

1≤i<j≤n

wij
δij

dij(Xϵ)
AijX

26.5 Penalizing Dimensions

In Shepard (1962a) and Shepard (1962b) an NMDS technique is developed
that minimizes a loss function over configurations in full dimensionality n−1.
In that sense the technique is similar to FDS. Shepard’s iterative process,
however, aims to maintain monotonicity between distances and dissimilarities
and at the same time concentrate as much of the variation as possible in a
small number of dimensions (De Leeuw (2017e)).
Let us explore the idea of concentrating variation in p < n − 1 dimensions,
but use an approach which is quite different from the one used by Shepard.
We remain in the FDS framework, but we aim for solutions in p < n − 1
dimensions by penalizing n − p dimensions of the full configuration, using
the classical Courant quadratic penalty function.
Partition a full configuration Z =

[
X | Y

]
, with X of dimension n×p and

Y of dimension n × (n − p). Then

σ(Z) = 1 − tr X ′B(Z)X − tr Y ′B(Z)Y + 1
2tr X ′V X + 1

2tr Y ′V Y. (26.2)

Also define the penalty term

τ(Y ) = 1
2tr Y ′V Y, (26.3)

and penalized stress
π(Z, λ) = σ(Z) + λ τ(Y ). (26.4)

Our proposed method is to minimize penalized stress over Z for a sequence of
values 0 = λ1 < λ2 < · · · λm. For λ = 0 this is simply the FDS problem, for
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which we know we can compute the global minimum. For fixed 0 < λ < +∞
this is a Penalized FDS or PFDS problem. PFDS problems with increasing
values of λ generate a trajectory Z(λ) in configuration space.
The general theory of exterior penalty functions, which we review in section
XX of this paper, shows that increasing λ leads to an increasing sequence of
stress values σ and a decreasing sequence of penalty terms τ . If λ → +∞
we approximate the global minimum of the FDS problem with Z of the form
Z =

[
X | 0

]
, i.e. of the pMDS problem. This assumes we do actually

compute the global minimum for each value of λ, which we hope we can
do because we start at the FDS global minimum, and we slowly increase
λ. There is also a local version of the exterior penalty result, which implies
that λ → ∞ takes us to a local minimum of pMDS, so there is always the
possibility of taking the wrong trajectory to a local minimum of pMDS.

26.5.1 Local Minima

The stationary equations of the PFDS problem are solutions to the equations

(V − B(Z))X = 0, (26.5)
((1 + λ)V − B(Z))Y = 0. (26.6)

We can easily related stationary points and local minima of the FDS and
PFDS problem.
Theorem 26.2. 1: If X is a stationary point of the pMDS problem then
Z = [X | 0] is a stationary point of the PFDS problem, no matter what λ is.
2: If Z = [X | 0] is a local minimum of the PFDS problem then X is a local
minimum of pMDS and (1+λ)V −B(X) ≳ 0, or λ ≥ ∥V +B(X)∥∞ −1, with
∥ • ∥∞ the spectral radius (largest eigenvalue).

Proof. Part 1 follows by simple substitution in the stationary equations.
Part 2 follows from the expansion for Z = [X + ϵP | ϵQ].

π(Z) = π(X) + ϵ tr P ′Dσ(X) +

+ 1
2ϵ2 D2σ(X)(P, P ) + 1

2ϵ2 tr Q′((1 + λ)V − B(X))Q + o(ϵ2). (26.7)
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At a local minimum we must have Dσ(X) = 0 and D2σ(X)(P, P ) ≳ 0, which
are the necessary conditions for a local minimum of pMDS. We also must
have ((1 + λ)V − B(X)) ≳ 0.

Note that the conditions in part 2 of theorem 26.2 are also sufficient for PFDS
to have a local minimum at [X | 0], provided we eliminate translational and
rotational indeterminacy by a suitable reparametrization, as in De Leeuw
(1993).

26.5.2 Algorithm

The smacof algorithm for penalized stress is a small modification of the unpe-
nalized FDS algorithm (ref). We start our iterations for λj with the solution
for λj−1 (the starting solution for λ1 = 0 can be completely arbitrary). The
update rules for fixed λ are

X(k+1) = V +B(Z(k))X(k), (26.8)

Y (k+1) = 1
1 + λ

V +B(Z(k))Y (k). (26.9)

Thus we compute the FDS update Z(k+1) = V +B(Z(k))Z(k) and then divide
the last n − p columns by 1 + λ.
Code is in the appendix. Let us analyze a number of examples.

26.5.3 Examples

This section has a number of two-dimensional and a number of one-
dimensional examples. The one-dimensional examples are of interest,
because of the documented large number of local minima of stress in the
one-dimensional case, and the fact that for small and medium n exact
solutions are available (for example, De Leeuw (2005b)). By default we use
seq(0, 1, length = 101) for λ in most examples, but for some of them
we dig a bit deeper and use longer sequences with smaller increments.
If for some value of λ the penalty term drops below the small cutoff γ, for
example 10−10, then there is not need to try larger values of λ, because they
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will just repeat the same result. We hope that result is the global minimum
of the 2MDS problem.

The output for each example is a table in which we give, the minimum value
of stress, the value of the penalty term at the minimum, the value of λ, and
the number of iterations needed for convergence. Typically we print for the
first three, the last three, and some regularly spaced intermediate values of λ.
Remember that the stress values increase with increasing λ, and the penalty
values decrease.

For two-dimensional examples we plot all two-dimensional configurations,
after rotating to optimum match (using the function matchMe() from the
appendix). We connect corresponding points for different values of λ. Points
corresponding to the highest value of λ are labeled and have a different plot
symbol. For one-dimensional examples we put 1:n on the horizontal axes and
plot the single dimension on the vertical axis, again connecting corresponding
points. We label the points corresponding with the highest value of λ, and
draw horizontal lines through them to more clearly show their order on the
dimension.

The appendix also has code for the function checkUni(), which we have used
to check the solutions in the one dimensional case are indeed local minima.
The function checks the necessary condition for a local minimum x = V +u,
with

ui =
n∑

j=1
wijδij sign (xi − xj).

It should be emphasized that all examples are just meant to study conver-
gence of penalized FDS. There is no interpretation of the MDS results

26.5.3.1 Chi Squares

In this example, of order 10, the δij are independent draws from a chi-square
distribution with two degrees of freedom. There is no structure in this ex-
ample, everything is random.

## itel 198 lambda 0.000000 stress 0.175144 penalty 0.321138
## itel 5 lambda 0.010000 stress 0.175156 penalty 0.027580
## itel 3 lambda 0.020000 stress 0.175187 penalty 0.025895
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## itel 1 lambda 0.100000 stress 0.175914 penalty 0.015172
## itel 1 lambda 0.200000 stress 0.177666 penalty 0.004941
## itel 4 lambda 0.300000 stress 0.178912 penalty 0.000088
## itel 6 lambda 0.310000 stress 0.178933 penalty 0.000020
## itel 20 lambda 0.320000 stress 0.178939 penalty 0.000000
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Figure 26.13: 10 Chi Squares

It seems that in this example the first two dimensions of FDS are already close
to optimal for 2MDS. This is because the Gower rank of the dissimilarities
is only three (or maybe four, the fourth singular value of the FDS solution
Z is very small).

26.5.3.2 Regular Simplex

The regular simplex has all dissimilarities equal to one. We use an example
with n = 10, for which the global minimum (as far as we know) of pMDS
with p = 2 is a configuration with nine points equally spaced on a circle and
one point in the center.
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## itel 1 lambda 0.000000 stress 0.000000 penalty 0.400000
## itel 7 lambda 0.010000 stress 0.000101 penalty 0.375653
## itel 5 lambda 0.020000 stress 0.000422 penalty 0.360483
## itel 1 lambda 0.100000 stress 0.008849 penalty 0.258090
## itel 1 lambda 0.200000 stress 0.032243 penalty 0.149427
## itel 1 lambda 0.300000 stress 0.059088 penalty 0.079592
## itel 1 lambda 0.400000 stress 0.079534 penalty 0.043250
## itel 1 lambda 0.500000 stress 0.095361 penalty 0.020895
## itel 1 lambda 0.600000 stress 0.105667 penalty 0.006921
## itel 1 lambda 0.610000 stress 0.106337 penalty 0.005862
## itel 1 lambda 0.620000 stress 0.106951 penalty 0.004879
## itel 105 lambda 0.630000 stress 0.109880 penalty 0.000000
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Next, we look at the regular simplex with n = 4, for which the global min-
imum has four points equally spaced on a circle (i.e. in the corners of a
square). We use seq(0, 1, length = 101) for the λ sequence.

## itel 1 lambda 0.000000 stress 0.000000 penalty 0.250000
## itel 2 lambda 0.010000 stress 0.000035 penalty 0.162295
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## itel 1 lambda 0.020000 stress 0.000122 penalty 0.158591
## itel 1 lambda 0.100000 stress 0.003808 penalty 0.122344
## itel 1 lambda 0.200000 stress 0.014089 penalty 0.084111
## itel 1 lambda 0.300000 stress 0.028044 penalty 0.053366
## itel 1 lambda 0.400000 stress 0.043331 penalty 0.028965
## itel 1 lambda 0.500000 stress 0.056851 penalty 0.011482
## itel 1 lambda 0.600000 stress 0.064718 penalty 0.002471
## itel 1 lambda 0.700000 stress 0.066799 penalty 0.000203
## itel 1 lambda 0.800000 stress 0.066982 penalty 0.000005
## itel 1 lambda 0.820000 stress 0.066985 penalty 0.000002
## itel 1 lambda 0.830000 stress 0.066986 penalty 0.000001
## itel 1 lambda 0.840000 stress 0.066986 penalty 0.000001
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The solution converges to an equilateral triangle with the fourth point in the
centroid. This is a local minimum. What basically happens is that the first
two dimensions of the FDS solution are too close to the local minimum. Or,
what amounts to the same thing, the Gower rank is too large (it is n−1 for a
regular simplex) , there is too much variation in the higher dimensions, and
as a consequence the first two dimensions of FDS are a bad 2MDS solution.
We try to repair this by refining the trajectory, using seq(0, 1, 10001).
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## itel 1 lambda 0.000000 stress 0.000000 penalty 0.250000
## itel 2 lambda 0.000100 stress 0.000000 penalty 0.166622
## itel 1 lambda 0.000200 stress 0.000000 penalty 0.166583
## itel 1 lambda 0.202200 stress 0.028595 penalty 0.000001
## itel 1 lambda 0.202300 stress 0.028595 penalty 0.000001
## itel 1 lambda 0.202400 stress 0.028595 penalty 0.000001
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Now the trajectories move us from what starts out similar to an equilateral
triangle to the corners of the square, and thus we do find the global minimum
in this way. It is remarkable that we manage to find the square even when
we start closer to the triangle with midpoint.

26.5.3.3 Intelligence

These are correlations between eight intelligence tests, taken from the smacof
package. We convert to dissimilarities by taking the negative logarithm of the
correlations. As in the chi-square example, the FDS and the 2MDS solution
are very similar and the PMDS trajectories are short.
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## itel 2951 lambda 0.000000 stress 0.107184 penalty 7.988384
## itel 7 lambda 0.010000 stress 0.107560 penalty 0.685654
## itel 4 lambda 0.020000 stress 0.108528 penalty 0.628538
## itel 3 lambda 0.030000 stress 0.110045 penalty 0.573208
## itel 3 lambda 0.040000 stress 0.112449 penalty 0.510730
## itel 2 lambda 0.050000 stress 0.114714 penalty 0.464650
## itel 2 lambda 0.060000 stress 0.117623 penalty 0.415037
## itel 2 lambda 0.070000 stress 0.121095 penalty 0.364536
## itel 2 lambda 0.080000 stress 0.125010 penalty 0.315023
## itel 2 lambda 0.090000 stress 0.129226 penalty 0.267831
## itel 2 lambda 0.100000 stress 0.133589 penalty 0.223898
## itel 2 lambda 0.110000 stress 0.137944 penalty 0.183868
## itel 3 lambda 0.120000 stress 0.143921 penalty 0.133739
## itel 2 lambda 0.130000 stress 0.147473 penalty 0.106166
## itel 4 lambda 0.140000 stress 0.153215 penalty 0.064499
## itel 4 lambda 0.150000 stress 0.157159 penalty 0.037735
## itel 9 lambda 0.160000 stress 0.161434 penalty 0.010337
## itel 72 lambda 0.170000 stress 0.163122 penalty 0.000000
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The singular values of the FDS solution are 1.78e+00, 1.36e+00, 5.94e-01,
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1.47e-01, 3.29e-03, 2.39e-16, 1.15e-16, 9.35e-18, which shows that the Gower
rank is probably five, but approximately two.

26.5.3.4 Countries

This is the wish dataset from the smacof package, with similarities between
12 countries. They are converted to dissimilarties by subtracting each of
them from seven.

## itel 1381 lambda 0.000000 stress 4.290534 penalty 98.617909
## itel 4 lambda 0.010000 stress 4.301341 penalty 36.137074
## itel 3 lambda 0.020000 stress 4.336243 penalty 34.389851
## itel 1 lambda 0.100000 stress 5.187917 penalty 23.300775
## itel 1 lambda 0.200000 stress 7.539228 penalty 11.543635
## itel 1 lambda 0.300000 stress 9.901995 penalty 4.963372
## itel 1 lambda 0.400000 stress 11.523357 penalty 1.859569
## itel 1 lambda 0.500000 stress 12.391692 penalty 0.556411
## itel 1 lambda 0.590000 stress 12.696493 penalty 0.080144
## itel 1 lambda 0.600000 stress 12.708627 penalty 0.060113
## itel 100 lambda 0.610000 stress 12.738355 penalty 0.000000
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The singular values of the FDS solution are 4.20e+00, 3.71e+00, 2.67e+00,
1.80e+00, 1.33e+00, 6.64e-01, 5.97e-04, 6.75e-16, 4.70e-16, 2.38e-16, 1.14e-
16, 1.98e-17, and the Gower rank is six or seven.

26.5.3.5 Dutch Political Parties

In 1967 one hundred psychology students at Leiden University judged the
similarity of nine Dutch political parties, using the complete method of triads
(De Gruijter (1967)). Data were aggregated and converted to dissimilarities.
We first print the matrix of dissimilarities.

## KVP PvdA VVD ARP CHU CPN PSP BP D66
## KVP +0.000 +0.209 +0.196 +0.171 +0.179 +0.281 +0.250 +0.267 +0.230
## PvdA +0.209 +0.000 +0.250 +0.210 +0.231 +0.190 +0.171 +0.269 +0.204
## VVD +0.196 +0.250 +0.000 +0.203 +0.185 +0.302 +0.281 +0.257 +0.174
## ARP +0.171 +0.210 +0.203 +0.000 +0.119 +0.292 +0.250 +0.271 +0.228
## CHU +0.179 +0.231 +0.185 +0.119 +0.000 +0.290 +0.263 +0.259 +0.225
## CPN +0.281 +0.190 +0.302 +0.292 +0.290 +0.000 +0.152 +0.236 +0.276
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## PSP +0.250 +0.171 +0.281 +0.250 +0.263 +0.152 +0.000 +0.256 +0.237
## BP +0.267 +0.269 +0.257 +0.271 +0.259 +0.236 +0.256 +0.000 +0.274
## D66 +0.230 +0.204 +0.174 +0.228 +0.225 +0.276 +0.237 +0.274 +0.000

The trajectories from FDS to 2MDS show some clear movement, especially
of the D’66 party, which was new at the time.

## itel 223 lambda 0.000000 stress 0.000000 penalty 0.414526
## itel 5 lambda 0.010000 stress 0.000061 penalty 0.196788
## itel 2 lambda 0.020000 stress 0.000199 penalty 0.190472
## itel 1 lambda 0.100000 stress 0.004399 penalty 0.136576
## itel 1 lambda 0.200000 stress 0.015811 penalty 0.075466
## itel 1 lambda 0.300000 stress 0.028235 penalty 0.036636
## itel 1 lambda 0.400000 stress 0.038275 penalty 0.012608
## itel 1 lambda 0.500000 stress 0.043644 penalty 0.002156
## itel 1 lambda 0.520000 stress 0.044091 penalty 0.001324
## itel 1 lambda 0.530000 stress 0.044253 penalty 0.001019
## itel 277 lambda 0.540000 stress 0.044603 penalty 0.000000
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There seems to be some bifurcation going on at the end, so we repeat the
analysis using seq(0, 1, length = 1001) for λ. The results turn out to be
basically the same.

## itel 223 lambda 0.000000 stress 0.000000 penalty 0.414526
## itel 4 lambda 0.001000 stress 0.000001 penalty 0.204225
## itel 2 lambda 0.002000 stress 0.000002 penalty 0.203535
## itel 1 lambda 0.468000 stress 0.044604 penalty 0.000001
## itel 1 lambda 0.469000 stress 0.044604 penalty 0.000000
## itel 166 lambda 0.470000 stress 0.044603 penalty 0.000000
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The singular values of the FDS solution are 2.95e-01, 2.10e-01, 1.89e-01,
1.34e-01, 1.16e-01, 1.06e-01, 8.61e-02, 7.06e-02, 3.98e-18, and the Gower rank
is probably eight. This is mainly because these data, being averages, regress
to the mean and thus have a substantial additive constant. If we repeat the
analysis after subtracting .1 from all dissimilarities we get basically the same
solution, but with somewhat smoother trajectories.

## itel 511 lambda 0.000000 stress 0.000176 penalty 0.150789
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## itel 2 lambda 0.001000 stress 0.000176 penalty 0.037759
## itel 2 lambda 0.002000 stress 0.000176 penalty 0.037619
## itel 1 lambda 0.370000 stress 0.007642 penalty 0.000000
## itel 1 lambda 0.371000 stress 0.007642 penalty 0.000000
## itel 1 lambda 0.372000 stress 0.007642 penalty 0.000000
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Now the singular values of the FDS solution are 2.05e-01, 1.34e-01, 1.11e-01,
6.03e-02, 3.11e-02, 3.97e-04, 1.18e-07, 4.55e-12, 8.75e-18, and the approxi-
mate Gower rank is more like five or six.

26.5.3.6 Ekman

The next example analyzes dissimilarities between 14 colors, taken from Ek-
man (1954). The original similarities sij, averaged over 31 subjects, were
transformed to dissimilarities by δij = 1 − sij.

## itel 1482 lambda 0.000000 stress 0.000088 penalty 0.426110
## itel 5 lambda 0.010000 stress 0.000132 penalty 0.118988
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## itel 3 lambda 0.020000 stress 0.000253 penalty 0.112777
## itel 1 lambda 0.100000 stress 0.003195 penalty 0.070791
## itel 1 lambda 0.200000 stress 0.010778 penalty 0.024407
## itel 1 lambda 0.300000 stress 0.016125 penalty 0.003230
## itel 1 lambda 0.400000 stress 0.017142 penalty 0.000165
## itel 4 lambda 0.500000 stress 0.017213 penalty 0.000000
## itel 1 lambda 0.600000 stress 0.017213 penalty 0.000000
## itel 1 lambda 0.610000 stress 0.017213 penalty 0.000000
## itel 1 lambda 0.620000 stress 0.017213 penalty 0.000000
## itel 1 lambda 0.630000 stress 0.017213 penalty 0.000000
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If we transform the Ekman similarities by δij = (1 − sij)3 then its is known
(De Leeuw (2016b)) that the Gower rank is equal to two. Thus the FDS
solution has rank 2, and the 2MDS solution is the global minimum.

## itel 99 lambda 0.000000 stress 0.011025 penalty 0.433456
## itel 1 lambda 0.010000 stress 0.011025 penalty 0.000000
## itel 1 lambda 0.020000 stress 0.011025 penalty 0.000000
## itel 1 lambda 0.100000 stress 0.011025 penalty 0.000000
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## itel 1 lambda 0.110000 stress 0.011025 penalty 0.000000
## itel 1 lambda 0.120000 stress 0.011025 penalty 0.000000
## itel 1 lambda 0.130000 stress 0.011025 penalty 0.000000
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26.5.3.7 Morse in Two

Next, we use dissimilarities between 36 Morse code signals (Rothkopf (1957)).
We used the symmetrized version morse from the smacof package (De Leeuw
and Mair (2009)).

## itel 1461 lambda 0.000000 stress 0.000763 penalty 0.472254
## itel 6 lambda 0.010000 stress 0.000858 penalty 0.322181
## itel 4 lambda 0.020000 stress 0.001147 penalty 0.308335
## itel 1 lambda 0.100000 stress 0.008576 penalty 0.216089
## itel 1 lambda 0.200000 stress 0.028903 penalty 0.119364
## itel 1 lambda 0.300000 stress 0.051285 penalty 0.060060
## itel 1 lambda 0.400000 stress 0.068653 penalty 0.028190
## itel 1 lambda 0.500000 stress 0.080258 penalty 0.011356
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## itel 1 lambda 0.600000 stress 0.086572 penalty 0.003578
## itel 1 lambda 0.700000 stress 0.089140 penalty 0.000854
## itel 1 lambda 0.800000 stress 0.089898 penalty 0.000116
## itel 1 lambda 0.830000 stress 0.089958 penalty 0.000053
## itel 1 lambda 0.840000 stress 0.089970 penalty 0.000040
## itel 197 lambda 0.850000 stress 0.089949 penalty 0.000000
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26.5.3.8 Vegetables

Our first one-dimensional example uses paired comparisons of 9 vegetables,
originating with Guilford (1954). The proportions are transformed to dis-
similarities by using the absolute values of the normal quantile function,
i.e. δij = |Φ−1(pij)|. We use a short sequence for λ.

## itel 1412 lambda 0.000000 stress 0.013675 penalty 0.269308
## itel 5 lambda 0.010000 stress 0.013716 penalty 0.114786
## itel 5 lambda 0.100000 stress 0.016719 penalty 0.069309
## itel 23 lambda 1.000000 stress 0.035301 penalty 0.000000
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This example was previously analyzed by me in De Leeuw (2005b) using
enumeration of all permutations. I found 14354 isolated local minima, and a
global minimum equal to the one we computed here.

26.5.3.9 Plato

Mair, Groenen, and De Leeuw (2019) use seriation of the works of Plato,
from the data collected by D. R. Cox and Brandwood (1959), as an example
of unidimensional scaling. We first run this example with our usual sequence
of five λ values.

## itel 169 lambda 0.000000 stress 0.000000 penalty 0.410927
## itel 3 lambda 0.010000 stress 0.000062 penalty 0.255246
## itel 3 lambda 0.100000 stress 0.005117 penalty 0.194993
## itel 4 lambda 1.000000 stress 0.106058 penalty 0.019675
## itel 9 lambda 10.000000 stress 0.139462 penalty 0.000000
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This gives the order

## [,1]
## [1,] "Timaeus"
## [2,] "Republic"
## [3,] "Critias"
## [4,] "Sophist"
## [5,] "Politicus"
## [6,] "Philebus"
## [7,] "Laws"

which is different from the order at the global minimum that has Republic
before Timaeus. Thus we have recovered a local minimum, and it seems our
sequence of λ values was not fine enough to do the job properly. So we try
a longer and finer sequence.

## itel 169 lambda 0.000000 stress 0.000000 penalty 0.410927
## itel 3 lambda 0.000100 stress 0.000000 penalty 0.263015
## itel 3 lambda 0.001000 stress 0.000001 penalty 0.262280
## itel 3 lambda 0.010000 stress 0.000064 penalty 0.255078
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## itel 3 lambda 0.100000 stress 0.005123 penalty 0.194945
## itel 2 lambda 0.200000 stress 0.016184 penalty 0.147493
## itel 1 lambda 0.300000 stress 0.026997 penalty 0.119323
## itel 1 lambda 0.400000 stress 0.040023 penalty 0.093615
## itel 1 lambda 0.500000 stress 0.053688 penalty 0.072330
## itel 1 lambda 0.600000 stress 0.066833 penalty 0.055452
## itel 1 lambda 0.700000 stress 0.078832 penalty 0.042269
## itel 1 lambda 0.800000 stress 0.089439 penalty 0.032019
## itel 1 lambda 0.900000 stress 0.098557 penalty 0.024079
## itel 1 lambda 1.000000 stress 0.106135 penalty 0.017940
## itel 6 lambda 2.000000 stress 0.130789 penalty 0.000148
## itel 13 lambda 3.000000 stress 0.131135 penalty 0.000000
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Now the order is

## [,1]
## [1,] "Republic"
## [2,] "Timaeus"
## [3,] "Critias"
## [4,] "Sophist"
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## [5,] "Politicus"
## [6,] "Philebus"
## [7,] "Laws"

which does indeed correspond to the global minimum.
With a different λ sequence we find the same solution.

## itel 169 lambda 0.000000 stress 0.000000 penalty 0.410927
## itel 3 lambda 0.001000 stress 0.000001 penalty 0.262296
## itel 2 lambda 0.002000 stress 0.000003 penalty 0.261483
## itel 2 lambda 0.004000 stress 0.000010 penalty 0.259872
## itel 2 lambda 0.008000 stress 0.000041 penalty 0.256690
## itel 2 lambda 0.016000 stress 0.000159 penalty 0.250470
## itel 2 lambda 0.032000 stress 0.000613 penalty 0.238574
## itel 2 lambda 0.064000 stress 0.002266 penalty 0.216785
## itel 2 lambda 0.128000 stress 0.007791 penalty 0.180067
## itel 2 lambda 0.256000 stress 0.023483 penalty 0.127006
## itel 2 lambda 0.512000 stress 0.056940 penalty 0.067948
## itel 3 lambda 1.024000 stress 0.107743 penalty 0.017937
## itel 8 lambda 2.048000 stress 0.131059 penalty 0.000032
## itel 9 lambda 4.096000 stress 0.131135 penalty 0.000000
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The order is

## [,1]
## [1,] "Republic"
## [2,] "Timaeus"
## [3,] "Critias"
## [4,] "Sophist"
## [5,] "Politicus"
## [6,] "Philebus"
## [7,] "Laws"

26.5.3.10 Morse in One

Now for a more challenging example. The Morse code data have been used
to try out exact unidimensional MDS techniques, for example by Palubeckis
(2013). We will enter the global minimum contest by using 10,000 values
of λ, in an equally spaced sequence from 0 to 10. This is not as bad as it
sounds. For the 10,000 FDS solutions system.time() tells us

## user system elapsed
## 14.092 0.457 14.610

The one-dimensional plot show quite a bit of movement, but much of it seems
to be contained in the very first change of λ.
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We can also plot stress and the penalty term as functions of λ. Again, note
the big change in the penalty term when λ goes from zero to 0.001.
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After the first 2593 values of λ the penalty term is zero and we stop, i.e. we
estimate λ+ is 2.593. At that point we have run a total of 5013 FDS iterations,
and thus on average about two iterations per λ value. Stress has increased
from 0.0007634501 to 0.2303106976 and the penalty value has decreased from
0.4815136419 to 0.0000000001. We find the following order of the points on
the dimension.

## [,1]
## [1,] "."
## [2,] "-"
## [3,] ".."
## [4,] ".-"
## [5,] "-."
## [6,] "--"
## [7,] "..."
## [8,] "..-"
## [9,] ".-."
## [10,] ".--"
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## [11,] "...."
## [12,] "-.."
## [13,] "-.-"
## [14,] "...-"
## [15,] "....."
## [16,] "....-"
## [17,] "..-."
## [18,] ".-.."
## [19,] "-..."
## [20,] "-..-"
## [21,] "-...."
## [22,] "...--"
## [23,] "-.-."
## [24,] "-.--"
## [25,] "--..."
## [26,] "--.."
## [27,] "--.-"
## [28,] ".--."
## [29,] ".---"
## [30,] "--."
## [31,] "---"
## [32,] "..---"
## [33,] "---.."
## [34,] ".----"
## [35,] "----."
## [36,] "-----"

Our order, and consequently our solution, is the same as the exact global
solution given by Palubeckis (2013). See his table 4, reproduced below. The
difference is that computing our solution takes 10 seconds, while his takes
494 seconds. But of course we would not have known we actually found the
global mimimum if the exact exhaustive methods had not analyzed the same
data as well.
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Software

In actual computer output using the scaling in formula (1.3) and (1.3) has
some disadvantages. There are, say, M non-zero weights. The summation in
#ref(eq:stressall) is really over M terms only. If n is at all large the scaled
dissimilarities, and consequently the distances and the configuration, will
become very small. Thus, in actual computation, or at least in the computer
output, we scale our dissimilarities as 1

2
∑∑

1≤j<i≤n wijδ
2
ij = M . So, we scale

our dissimilarities to one in formulas and to M in computations. Thus the
computed stress will b
rcode
ccode
lib

369

https://github.com/deleeuw/stress/tree/main/rcode/
https://github.com/deleeuw/stress/tree/main/ccode/
https://github.com/deleeuw/stress/tree/main/lib/
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Appendix A

Code

A.1 R Code

The MDS functions in R throughout work with square matrices of weights,
dissimilarities, and distances. More efficient versions, that have their com-
putations done in C, will be added along the way.

A.1.1 utilities.R

source ("common/indexing.R")
source ("common/io.R")
source ("common/linear.R")
source ("common/nextPC.R")
source ("common/decode.R")
source ("common/smacof.R")

A.1.2 common/indexing.r

kron <- function (i, j) {
return (ifelse (i == j, 1, 0))

371
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}

ein <- function (i, n) {
return (ifelse (i == 1:n, 1, 0))

}

aijn <- function (i, j, n) {
dif <- ein (i, n) - ein (j, n)
return (outer (dif, dif))

}

jmat <- function (n) {
return (diag(n) - 1 / n)

}

ccen <- function (x) {
return (apply (x, 2, function (y)

y - mean (y)))
}

repList <- function(x, n) {
z <- list()
for (i in 1:n)

z <- c(z, list(x))
return(z)

}

rcen <- function (x) {
return (t (apply (x, 1, function (y)

y - mean (y))))
}

dcen <- function (x) {
return (ccen (rcen (x)))

}

wdef <- function (n) {
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return (1 - diag (n))
}

lower_triangle <- function (x) {
n <- nrow (x)
return (x[outer(1:n, 1:n, ">")])

}

fill_symmetric <- function (x) {
m <- length (x)
n <- (1 + sqrt (1 + 8 * m)) / 2
d <- matrix (0, n, n)
d[outer(1:n, 1:n, ">")] <- x
return (d + t(d))

}

A.1.3 common/io.r

matrixPrint <- function (x,
digits = 6,
width = 8,
format = "f",
flag = "+") {

print (noquote (formatC (
x,
digits = digits,
width = width,
format = format,
flag = flag

)))
}

iterationWrite <- function (labels, values, digits, width, format) {
for (i in 1:length(labels)) {
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cat (labels[i],
formatC(

values[i],
di = digits[i],
wi = width[i],
fo = format[i]

),
" ")

}
cat("\n")

}

rotateEllipse <- function (x) {
z <- (x[1,] + x[2,]) / 2
x <- x - matrix (z, nrow(x), 2, byrow = TRUE)
s <- sqrt (sum (x[1,] ˆ 2))
r <- matrix(c(x[1, 1], x[1, 2],-x[1, 2], x[1, 1]), 2, 2) / s
x <- x %*% r
e <- as.matrix (dist (x))
d <- mean (rowSums(e[-(1:2), 1:2]))
a <- d / 2
c <- abs (x[1, 1])
b <- sqrt (a ˆ 2 - c ˆ 2)
return (list(

x = x,
a = a,
b = b,
c = c

))
}

plotEllipse <- function (x) {
r <- rotateEllipse (x)
f <- seq (0, 2 * pi, length = 100)
z <- cbind(sin (f), cos (f))
z[, 1] <- z[, 1] * r$a
z[, 2] <- z[, 2] * r$b
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plot(z,
type = "l",
col = "RED",
lwd = 2)

text (r$x, as.character (1:nrow(r$x)))
abline(h = 0)
abline(v = 0)

}

draw_ellipse <- function (center,
radius,
a = diag (2),
np = 100,
...) {

par (pty = "s")
e <- eigen(a)
k <- e$vectors
lbd <- e$values
seq <- seq(0, 2 * pi, length = np)
scos <- (radius * sin (seq)) / lbd[1]
ccos <- (radius * cos (seq)) / lbd[2]
sico <- k %*% rbind(scos, ccos) + center
plot (sico[1,], sico[2,], type = "l", ...)

}

A.1.4 common/linear.r

## invert with pivot
## invert with bordering
## solve wth bordering
## solve with pivoting
## jacobi
## QR

gramy <- function (y, v) {
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r <- length (y)
s <- sum (y[[1]] * (v %*% y[[1]]))
y[[1]] <- y[[1]] / sqrt (s)
for (j in 2:r) {

for (i in 1:(j - 1)) {
s <- sum (y[[i]] * (v %*% y[[j]]))
y[[j]] <- y[[j]] - s * y[[i]]

}
s <- sum (y[[j]] * v %*% y[[j]])
y[[j]] <- y[[j]] / sqrt (s)

}
return (y)

}

hinv <- function(x) {
return (apply (x, c(1, 2), function (a)

ifelse (a == 0, 0, 1 / a)))
}

circular <- function (n) {
x <- seq (0, 2 * pi, length = n + 1)
z <- matrix (0, n + 1, 2)
z[, 1] <- sin (x)
z[, 2] <- cos (x)
return (z[-1, ])

}

direct_sum <- function (x) {
n <- length (x)
nr <- sapply (x, nrow)
nc <- sapply (x, ncol)
s <- matrix (0, sum (nr), sum (nc))
k <- 0
l <- 0
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for (j in 1:n) {
s[k + (1:nr[j]), l + (1:nc [j])] <- x[[j]]
k <- k + nr[j]
l <- l + nc[j]

}
return (s)

}

A.1.5 common/nextPC.r

nextPermutation <- function (x) {
if (all (x == (length(x):1)))

return (NULL)
z <- .C("nextPermutation", as.integer(x), as.integer(length(x)))
return (z[[1]])

}

nextCombination <- function (x, n) {
m <- length (x)
if (all (x == ((n - m) + 1:m)))

return (NULL)
z <-

.C("nextCombination",
as.integer(n),
as.integer (m),
as.integer(x))

return (z[[3]])
}

A.1.6 common/smacof.r

smacofNormW <- function(w) {
return (w / sum(w))
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}

smacofNormDelta <- function(w, delta) {
return (delta / sqrt(sum (w * delta ˆ 2)))

}

smacofNormXD <- function(w, delta, xold) {
x <- apply (xold, 2, function(x)

x - mean(x))
d <- as.matrix(dist(x))
s <- sum (w * delta * d) / sum (w * d ˆ 2)
return (list(x = x * s, d = d * s))

}

smacofLossR <- function (d, w, delta) {
return (sum (w * (delta - d) ˆ 2) / 2)

}

smacofBmatR <- function (d, w, delta) {
dd <- ifelse (d == 0, 0, 1 / d)
b <- -dd * w * delta
diag (b) <- -rowSums (b)
return(b)

}

smacofVmatR <- function (w) {
v <- -w
diag(v) <- -rowSums(v)
return (v)

}

smacofGuttmanR <- function (x, b, vinv) {
return (vinv %*% b %*% x)

}

smacofGradientR <- function (x, b, v) {
return (2 * ((v - b) %*% x))
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}

smacofHmatR <- function (x, b, v, d, w, delta) {
n <- nrow (x)
p <- ncol (x)
r <- n * p
h <- matrix (0, r, r)
dd <- ifelse (d == 0, 0, 1 / d)
cc <- w * delta * (dd ˆ 3)
for (s in 1:p) {

ns <- (s - 1) * n + 1:n
for (t in 1:s) {

nt <- (t - 1) * n + 1:n
cst <- matrix (0, n, n)
for (i in 1:n) {

for (j in 1:n) {
cst[i, j] <- cc[i, j] * (x[i, s] - x[j, s]) * (x[i, t] - x[j, t])

}
}
cst <- -cst
diag(cst) <- -rowSums(cst)
if (s == t) {

h[ns, ns] <- b - cst
} else {

h[ns, nt] <- -cst
h[nt, ns] <- -cst

}
}

}
return (h)

}

smacofHessianR <- function (x, b, v, d, w, delta) {
n <- nrow (x)
p <- ncol (x)
h <- -smacofHmatR (x, b, v, d, w, delta)
for (s in 1:p) {
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nn <- (s - 1) * n + 1:n
h[nn, nn] <- h[nn, nn] + v

}
return(h)

}

smacofDerGuttmanR <- function(x, b, vinv, d, w, delta) {
n <- nrow (x)
p <- ncol (x)
h <- smacofHmatR (x, b, v, d, w, delta)
for (s in 1:p) {

ns <- (s - 1) * n + 1:n
for (t in 1:s) {

nt <- (t - 1) * n + 1:n
h[ns, nt] <- vinv %*% h[ns, nt]

}
}
return(h)

}

smacofInitialR <- function (delta, p) {
n <- nrow(delta)
delta <- delta ˆ 2
rw <- rowSums (delta) / n
sw <- sum (delta) / (n ˆ 2)
h <- -(delta - outer (rw, rw, "+") + sw) / 2
e <- eigen (h)
ea <- e$values
ev <- e$vector
ea <- ifelse (ea > 0, sqrt (abs(ea)), 0)[1:p]
return (ev[, 1:p] %*% diag (ea))

}

smacofRandomStart <- function (w, delta, n, p) {
x <- matrix(rnorm(n * p), n, p)
x <- apply (x, 2, function(x)

x - mean(x))
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d <- as.matrix(dist (x))
a <- sum (w * delta * d) / sum (w * d ˆ 2)
return (a * x)

}

smacofVinvR <- function (v) {
e <- 1 / nrow(v)
return (solve (v + e) - e)

}

smacofR <-
function (w,

delta,
p,
xold = smacofInitialR(delta, p),
xstop = FALSE,
itmax = 1000,
eps = 1e-10,
verbose = TRUE) {

labels = c("itel", "eiff", "sold", "snew")
digits = c(4, 10, 10, 10)
widths = c(6, 15, 15, 15)
format = c("d", "f", "f", "f")
n <- dim(delta)[1]
itel <- 1
w <- smacofNormW(w)
delta <- smacofNormDelta(w, delta)
xdold <- smacofNormXD(w, delta, xold)
xold <- xdold$x
dold <- xdold$d
sold <- smacofLossR (dold, w, delta)
bold <- smacofBmatR (dold, w, delta)
vmat <- smacofVmatR (w)
vinv <- smacofVinvR (vmat)
repeat {

xnew <- smacofGuttmanR (xold, bold, vinv)
dnew <- as.matrix (dist (xnew))
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bnew <- smacofBmatR (dnew, w, delta)
snew <- smacofLossR (dnew, w, delta)
if (xstop) {

eiff <- max (abs (xold - xnew))
} else {

eiff <- sold - snew
}
if (verbose) {

values = c(itel, eiff, sold, snew)
iterationWrite (labels, values, digits, widths, format)

}
if ((eiff < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
xold <- xnew
bold <- bnew
dold <- dnew
sold <- snew

}
return (

list (
x = xnew,
d = dnew,
b = bnew,
g = smacofGradientR(xnew, bnew, vmat),
h = smacofHessianR(xnew, bnew, vmat, dnew, w, delta),
s = snew,
itel = itel

)
)

}
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A.1.7 properties.R

csupper <- function (lbd, mbd) {
n <- length (lbd)
m <- length (mbd)
mad <- nad <- matrix (0, m, n)
sad <- rep(0, n)
plot(lbd,

lbd,
type = "n",
ylab = "",
ylim = c(0, 2))

for (k in 1:m) {
ly <- mbd[k]
yy <- ly * z1 + (1 - ly) * z2
dy <- dist (yy)
by <- as.matrix(-delta / dy)
diag (by) <- -rowSums(by)
for (l in 1:n) {

xx <- lbd[l] * z1 + (1 - lbd[l]) * z2
dx <- dist (xx)
rx <- sum (xx * (by %*% yy))
nx <- sum (dx ˆ 2)
mad[k, l] <- 1 - 2 * rx + nx

}
lines (lbd, mad [k,])
abline (v = ly)

}
lines(lbd,

apply(mad, 2, min),
type = "l",
col = "BLUE",
lwd = 3)

for (l in 1:n) {
xx <- lbd[l] * z1 + (1 - lbd[l]) * z2
dx <- dist (xx)
sad[l] <- 1 - 2 * sum (dx * delta) + sum (dx ˆ 2)
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}
lines (lbd,

sad,
type = "l",
col = "RED",
lwd = 3)

}

aglower <- function (lbd, mbd) {
n <- length (lbd)
m <- length (mbd)
mad <- matrix (0, m, n)
sad <- rep(0, n)
plot(lbd,

lbd,
type = "n",
ylab = "",
ylim = c(0, 2))

for (k in 1:m) {
ly <- mbd[k]
yy <- ly * z1 + (1 - ly) * z2
dy <- dist (yy)
ry <- sum (delta * dy)
by <- as.matrix(-delta / dy)
diag (by) <- -rowSums(by)
for (l in 1:n) {

xx <- lbd[l] * z1 + (1 - lbd[l]) * z2
dx <- dist (xx)
sx <- sum (xx * (by %*% xx))
nx <- sum (dx ˆ 2)
mad[k, l] <- 1 - ry + nx - sx

}
lines (lbd, mad [k,])
abline (v = ly)

}
lines(lbd,

apply(mad, 2, max),
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type = "l",
col = "BLUE",
lwd = 3)

for (l in 1:n) {
xx <- lbd[l] * z1 + (1 - lbd[l]) * z2
dx <- dist (xx)
sad[l] <- 1 - 2 * sum (dx * delta) + sum (dx ˆ 2)

}
lines (lbd,

sad,
type = "l",
col = "RED",
lwd = 3)

}

A.1.8 expandOneDim.R

expandRho <- function (delta, w = wdef(nrow(delta)), x, y) {
n <- nrow(delta)
s0 <- s1 <- s2 <- s3 <- 0
for (i in 1:n) {

for (j in 1:n) {
if (i == j)

next
del <- delta[i, j]
www <- w[i, j]
dxx <- sum((x[i, ] - x[j, ]) ˆ 2)
dxr <- ifelse (dxx < 1e-15, 1, dxx)
dsx <- sqrt(dxr)
dyy <- sum((y[i, ] - y[j, ]) ˆ 2)
dxy <- sum((x[i, ] - x[j, ]) * (y[i, ] - y[j, ]))
vxy <- dyy - ((dxy) ˆ 2) / dxr
s0 <- s0 + www * del * dsx
s1 <- s1 + www * (del / dsx) * dxy
s2 <- s2 + www * (del / dsx) * vxy
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s3 <- s3 + www * dxy * (del / (dsx ˆ 3)) * vxy
}

}
return(c(s0, s1, s2 / 2, -s3 / 2))

}

expandEta2 <- function (delta, w = wdef(nrow(delta)), x, y) {
n <- nrow(delta)
s0 <- s1 <- s2 <- s3 <- 0
for (i in 1:n) {

for (j in 1:n) {
dxx <- sum((x[i, ] - x[j, ]) ˆ 2)
dsx <- sqrt(dxx)
dyy <- sum((y[i, ] - y[j, ]) ˆ 2)
dxy <- sum((x[i, ] - x[j, ]) * (y[i, ] - y[j, ]))
s0 <- s0 + w[i, j] * dxx
s1 <- s1 + w[i, j] * dxy
s2 <- s2 + w[i, j] * dyy

}
}
return(c(s0, 2 * s1, s2, s3))

}

expandStress <- function (delta, w = wdef(nrow(delta)), x, y) {
return (c(1, 0, 0, 0) + expandEta2(delta, w, x, y) - 2 * expandRho(delta, w, x, y))

}

expandTester <- function (delta,
w = wdef(nrow(delta)),
x,
y,
left = -1,
right = 1,
length = 1001,
order = 3) {

w <- w / sum (w)
delta <- delta / sqrt(sum(w * delta ˆ 2))
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x <- apply(x, 2, function (x)
x - mean(x))

y <- apply(y, 2, function (x)
x - mean(x))

d <- as.matrix(dist(x))
s <- sum(w * d * delta) / sum(w * d * d)
d <- s * d
x <- s * x
h <- expandStress (delta, w, x, y)
SEQ <- seq(left, right, length = length)
sig <- rep(0, length)
sag <- rep(h[1], length)
for (i in 1:length) {

z <- x + SEQ[i] * y
d <- as.matrix (dist(z))
eta2 <- sum(w * d ˆ 2)
rho <- sum(w * delta * d)
sig[i] <- 1 - 2 * rho + eta2
if (order > 0) {

sag[i] <- sag[i] + SEQ[i] * h[2]
}
if (order > 1) {

sag[i] <- sag[i] + (SEQ[i] ˆ 2) * h[3]
}
if (order > 2) {

sag[i] <- sag[i] + (SEQ[i] ˆ 3) * h[4]
}

}
return(cbind(sig, sag))

}

A.1.9 pictures.R

dommy <- function () {
ya <- matrix(c(1, -1, 1, -1, 0, 1, 1, -1, -1, 0), 5, 2)
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yy <- seq (0, 2 * pi, length = 6)[1:5]
yb <- cbind (sin (yy), cos (yy))
ya <- apply(ya, 2, function (x)

x - mean(x))
yb <- apply(yb, 2, function (x)

x - mean(x))
y1 <- ya / sqrt (5 * sum (ya ˆ 2))
y2 <- yb / sqrt (5 * sum (yb ˆ 2))
deq <- as.dist (1 - diag(5))
deq <- deq / sqrt (sum (deq ˆ 2))
y1 <- sum (dist (y1) * deq) * y1
y2 <- sum (dist (y2) * deq) * y2

}

twostress <- function (deq, y1, y2, a, b) {
d <- dist (a * y1 + b * y2)
eta2 <- sum (d ˆ 2)
rho <- sum (d * deq)
stress <- 1 - 2 * rho + eta2
return(list(

eta2 = eta2,
rho = rho,
stress = stress

))
}

zeroes <- function (y1, y2) {
n <- nrow (y1)
for (i in 2:n) {

for (j in 1:(i - 1)) {
yy <- rbind (y1[i, ] - y1[j, ], y2[i, ] - y2[j, ])
ee <- eigen(tcrossprod(yy))$values
print (c(i, j, ee))

}
}

}
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pairme <- function (x, y) {
n <- nrow(x)
m <- ncol(x)
z <- matrix (0, 2, m)
for (i in 2:n) {

for (j in 1:(i - 1)) {
z[1,] <- x[i,] - x[j,]
z[2,] <- y[i,] - y[j,]
s <- svd (z)
a <- s$d[2]
b <- s$u[, 2]
if (a < 1e-10) {

cat (
formatC(

i,
format = "d",
digits = 2,
width = 4

),
formatC(

j,
format = "d",
digits = 2,
width = 4

),
formatC(

c(a, b),
format = "f",
digits = 6,
width = 10

),
"\n"

)
}

}
}

}
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dummy <- function () {
set.seed(12345)
x <- matrix(rnorm(10), 5, 2)
x <- apply (x, 2, function(x)

x - mean(x))
delta <- dist(x)
d <- dist (x)
eps <- (-500:500) / 100
sy <- rep (0, 1001)
plot (

0,
0,
xlim = c(-5, 5),
ylim = c(0, 20),
xlab = "epsilon",
ylab = "stress",
type = "n"

)
for (i in 1:5) {

for (j in 1:2) {
for (k in 1:1001) {

y <- x
y[i, j] <- x[i, j] + eps[k]
dy <- dist (y)
sy[k] <- sum ((delta - dy) ˆ 2)

}
lines (eps, sy, lwd = 2, col = "RED")

}
}

}

bmat2 <- function (a, b, x, y, delta) {
bm <- matrix (0, 2, 2)
hm <- matrix (0, 2, 2)
z <- c(a, b)
for (i in 1:4) {
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for (j in 1:4) {
if (i == j)

next
uij <- uu (i, j, x, y)
uz <- drop (uij %*% z)
dij <- sqrt (sum (uij * outer (z, z)))
bm <- bm + (delta[i, j] / dij) * uij
hm <-

hm + (delta[i, j] / dij) * (uij - outer (uz, uz) / sum (z * uz))
}

}
return (list (b = bm, h = hm))

}

stress2 <- function (a, b, x, y, delta) {
z <- c (a, b)
bm <- bmat2 (a, b, x, y, delta)$b
return (1 + sum(z ˆ 2) / 2 - sum (z * bm %*% z))

}

rho2 <- function (a, b, x, y, delta) {
z <- c (a, b)
bm <- bmat2 (a, b, x, y, delta)$b
return (sum (z * bm %*% z))

}

vv <- function (i, j, x, y) {
a <- matrix (0, 2, 2)
a[1, 1] <- sum ((x[i,] - x[j, ]) ˆ 2)
a[2, 2] <- sum ((y[i,] - y[j, ]) ˆ 2)
a[1, 2] <- a[2, 1] <- sum ((x[i,] - x[j, ]) * (y[i,] - y[j,]))
return (a)

}

uu <- function (i, j, x, y) {
n <- nrow (x)
asum <-
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2 * n * matrix (c (sum(x ˆ 2), sum (x * y), sum (x * y), sum (y ˆ 2)), 2, 2)
csum <- solve (chol (asum))
return (t(csum) %*% vv (i, j, x, y) %*% csum)

}

smacof2 <-
function (a,

b,
x,
y,
delta,
eps = 1e-10,
itmax = 1000,
verbose = TRUE) {

zold <- c(a, b)
bold <- bmat2 (a, b, x, y, delta)$b
fold <- 1 + sum(zold ˆ 2) / 2 - sum (zold * bold %*% zold)
itel <- 1
repeat {

znew <- drop (bold %*% zold)
bhmt <- bmat2 (znew[1], znew[2], x, y, delta)
bnew <- bhmt$b
fnew <- 1 + sum(znew ˆ 2) / 2 - sum (znew * bnew %*% znew)
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

fold,
digits = 10,
width = 13,
format = "f"

),
formatC (

fnew,
digits = 10,
width = 13,
format = "f"
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),
"\n"

)
}
if ((itel == itmax) || (fold - fnew) < eps)

break ()
itel <- itel + 1
fold <- fnew
zold <- znew
bold <- bnew

}
return (

list (
stress = fnew,
theta = znew,
itel = itel,
b = bnew,
g = znew - bnew %*% znew,
h = diag(2) - bhmt$h

)
)

}

newton2 <-
function (a,

b,
x,
y,
delta,
eps = 1e-10,
itmax = 1000,
verbose = TRUE) {

zold <- c(a, b)
bhmt <- bmat2 (a, b, x, y, delta)
bold <- bhmt$b
hold <- diag(2) - bhmt$h
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fold <- 1 + sum(zold ˆ 2) / 2 - sum (zold * bold %*% zold)
itel <- 1
repeat {

znew <- drop (solve (hold, bold %*% zold))
bhmt <- bmat2 (znew[1], znew[2], x, y, delta)
bnew <- bhmt$b
hnew <- diag(nrow(bnew)) - bhmt$h
fnew <- 1 + sum(znew ˆ 2) / 2 - sum (znew * bnew %*% znew)
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

fold,
digits = 10,
width = 13,
format = "f"

),
formatC (

fnew,
digits = 10,
width = 13,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || abs (fold - fnew) < eps)

break ()
itel <- itel + 1
fold <- fnew
zold <- znew
bold <- bnew
hold <- hnew

}
return (list (

stress = fnew,
theta = znew,
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itel = itel,
b = bnew,
g = znew - bnew %*% znew,
h = hnew

))
}

A.1.10 classical.R

tau <- function (x) {
return (- 0.5 * dcen (x))

}

kappa <- function (x) {
return (outer (diag (x), diag (x), "+") - 2 * x)

}

fcmds <-
function (delta,

xold,
ninner = 1,
itmax = 100,
eps = 1e-6,
verbose = TRUE) {

itel <- 0
p <- ncol (xold)
xold <- apply (xold, 2, function (x)

x - mean(x))
xold <- qr.Q (qr (xold))
repeat {

xinn <- xold
for (i in 1:ninner) {

xnew <- delta %*% xinn
xnew <- -apply (xnew, 2, function (x)

x - mean (x)) / 2
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xinn <- xnew
itel <- itel + 1

}
qnew <- qr (xnew)
xnew <- qr.Q (qnew)
rnew <- qr.R (qnew)
epsi <- 2 * p - 2 * sum (svd (crossprod (xold, xnew))$d)
if (verbose) {

cat(
"itel ",
formatC (

itel,
digits = 4,
width = 6,
format = "d"

),
"epsi ",
formatC (

epsi,
digits = 10,
width = 15,
format = "f"

),
"\n"

)
}
if ((epsi < eps) || (itel == itmax))

break
xold <- xnew

}
return (list (x = xnew, r = rnew, itel = itel))

}

treq <- function (x) {
n <- nrow (d)
m <- -Inf
for (i in 2:n) {
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for (j in 1:(i - 1)) {
for (k in 1:n) {

if ((k == i) || (k == j))
next

m <- max (m, x[i, j] - (x[i, k] + x[k, j]))
}

}
}
return (m)

}

acbound <- function (d) {
n <- nrow (d)
s <- qr.Q (qr (cbind (1, matrix (rnorm (

n * (n - 1)
), n, n - 1))))
k <- tau (d * d)
l <- 2 * tau (d)
m <- jmat (n) / 2
ma <- -Inf
for (i in 2:n)

for (j in 1:(i - 1)) {
v <- solve(polynomial(c(k[i, j], l[i, j], m[i, j])))
ma <- max(ma, max(v))

}
return (list(ma = ma, mw = k + ma * l + m * ma ˆ 2))

}

aceval <- function (d, bnd = c(-10, 10)) {
n <- nrow (d)
k <- tau (d * d)
l <- 2 * tau (d)
m <- jmat (n) / 2
s <- qr.Q (qr (cbind (1, matrix (rnorm (

n * (n - 1)
), n, n - 1))))
kc <- (crossprod (s, k) %*% s)[-1,-1]
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lc <- (crossprod (s, l) %*% s)[-1,-1]
mc <- (crossprod (s, m) %*% s)[-1,-1]
a <- seq(bnd[1], bnd[2], length = 1000)
b <- rep(0, 1000)
for (i in 1:1000) {

ww <- kc + lc * a[i] + mc * (a[i] ˆ 2)
b[i] <- min (eigen(ww)$values)

}
return (list(a = a, b = b))

}

acqep <- function(d) {
n <- nrow (d)
k <- tau (d * d)
l <- 2 * tau (d)
m <- jmat (n) / 2
s <- qr.Q (qr (cbind (1, matrix (rnorm (

n * (n - 1)
), n, n - 1))))
nn <- n - 1
ns <- 1:nn
kc <- (crossprod (s, k) %*% s)[-1,-1]
lc <- (crossprod (s, l) %*% s)[-1,-1]
mc <- (crossprod (s, m) %*% s)[-1,-1]
ma <- matrix(0, 2 * nn, 2 * nn)
ma[ns, nn + ns] <- diag (n - 1)
ma[nn + ns, ns] <- -2 * kc
ma[nn + ns, nn + ns] <- -2 * lc
return (list (ma = ma, me = eigen(ma)$values))

}
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A.1.11 minimization.R

A.1.12 full.R

library(MASS)

torgerson <- function(delta, p = 2) {
doubleCenter <- function(x) {

n <- dim(x)[1]
m <- dim(x)[2]
s <- sum(x) / (n * m)
xr <- rowSums(x) / m
xc <- colSums(x) / n
return((x - outer(xr, xc, "+")) + s)

}
z <-

eigen(-doubleCenter((as.matrix (delta) ˆ 2) / 2), symmetric = TRUE)
v <- pmax(z$values, 0)
return(z$vectors[, 1:p] %*% diag(sqrt(v[1:p])))

}

makeA <- function (n) {
m <- n * (n - 1) / 2
a <- list()
for (j in 1:(n - 1))

for (i in (j + 1):n) {
d <- ein (i, n) -ein (j, n)
e <- outer (d, d)
a <- c(a, list (e))

}
return (a)

}

makeD <- function (a, x) {
return (sapply (a, function (z)

sqrt (sum (x * (
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z %*% x
)))))

}

makeB <- function (w, delta, d, a) {
n <- length (a)
m <- nrow (a[[1]])
b <- matrix (0, m , m)
for (i in 1:n)

b <- b + w[i] * (delta[i] / d[i]) * a[[i]]
return (b)

}

makeV <- function (w, a) {
n <- length (a)
m <- nrow (a[[1]])
v <- matrix (0, m, m)
for (i in 1:n)

v <- v + w[i] * a[[i]]
return (v)

}

inBetween <- function (alpha, beta, x, y, w, delta, a) {
z <- alpha * x + beta * y
d <- makeD (a, z)
return (sum (w * (delta - d) ˆ 2))

}

biBase <- function (x, y, a) {
biBi <- function (x, y, v) {

a11 <- sum (x * (v %*% x))
a12 <- sum (x * (v %*% y))
a22 <- sum (y * (v %*% y))
return (matrix (c(a11, a12, a12, a22), 2, 2))

}
return (lapply (a, function (u)

biBi (x, y, u)))
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}

fullMDS <-
function (delta,

w = rep (1, length (delta)),
xini,
a,
itmax = 100,
eps = 1e-6,
verbose = TRUE) {

m <- length (a)
v <- makeV (w, a)
vv <- ginv (v)
xold <- xini
dold <- makeD (a, xini)
sold <- sum ((delta - dold) ˆ 2)
bold <- makeB (w, delta, dold, a)
itel <- 1
repeat {

xnew <- vv %*% bold %*% xold
dnew <- makeD (a, xnew)
bnew <- makeB (w, delta, dnew, a)
snew <- sum ((delta - dnew) ˆ 2)
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

sold,
digits = 10,
width = 13,
format = "f"

),
formatC (

snew,
digits = 10,
width = 13,
format = "f"



402 APPENDIX A. CODE

),
"\n"

)
}
if ((itel == itmax) || (abs(sold - snew) < eps))

break
itel <- itel + 1
xold <- xnew
dold <- dnew
sold <- snew
bold <- bnew

}
return (list (

x = xnew,
d = dnew,
delta = delta,
s = snew,
b = bnew,
v = v,
itel = itel

))
}

A.1.13 unfolding.R

dummy <- function () {
set.seed(12345)

x <- matrix (rnorm(16), 8, 2)
x <- apply (x, 2, function (x)

x - mean (x))
y <- matrix (rnorm(10), 5, 2)
a <- rowSums (x ˆ 2)
b <- rowSums (y ˆ 2)
d <- sqrt (outer(a, b, "+") - 2 * tcrossprod (x, y))
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set.seed (12345)
x <- matrix(rnorm(10), 5, 2)
x <- apply (x, 2, function (x)

x - mean (x))
x <- qr.Q(qr(x))
y <- matrix(rnorm(12), 6, 2)
v <- apply (y, 2, mean)
print (v)
dx <- diag(tcrossprod(x))
dy <- diag(tcrossprod(y))
xy <- tcrossprod(x, y)
dd <- outer(dx, dy, "+") - 2 * xy
j5 <- diag(5) - 1 / 5
j6 <- diag(6) - 1 / 6
dc <- -(j5 %*% dd %*% j6) / 2
sv <- svd (dc, nu = 2, nv = 2)
xs <- sv$u
ys <- sv$v %*% diag (sv$d[1:2])
tt <- crossprod (x, xs)
dk <- diag (tcrossprod(xs))
dl <- diag (tcrossprod(ys))
dr <- dd - outer (dk, dl, "+") + 2 * tcrossprod (xs, ys)
print (dr)

}

schoenemann <- function (delta, p) {
n <- nrow (delta)
m <- ncol (delta)
l <- p * (p + 1) / 2
d <- delta ˆ 2
e <- torgerson (d)
q <- svd (e, nu = p, nv = p)
g <- q$u
h <- q$v %*% diag (q$d[1:p])
f <- d + 2 * tcrossprod(g, h)
a <- apply (ccen (f), 1, mean)
r <- matrix (0, n, l)
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k <- 1
for (i in 1:p) {

for (j in 1:i) {
if (i == j) {

r[, k] <- g[, i] ˆ 2
} else {

r[, k] <- 2 * g[, i] * g[, j]
}
k <- k + 1

}
}
lhs <- cbind (ccen(r), ccen (-2 * g))
b <- lm.fit (lhs, a)$coefficients
k <- 1
s <- matrix (0, p, p)
for (i in 1:p) {

for (j in 1:i) {
if (i == j) {

s[i, i] = b[k]
} else {

s[i, j] <- s[j, i] <- b[k]
}
k <- k + 1

}
}
e <- eigen (s)
f <- e$values
if (min(f) < 0) {

stop ("Negative eigenvalue, cannot proceed")
}
t <- e$vectors %*% diag (sqrt (f))
v <- solve (t, b[-(1:l)])
x <- g %*% t
y <-

h %*% (e$vectors %*% diag (1 / sqrt (f))) + matrix (v, m, p, byrow = TRUE)
return (list (x = x, y = y))

}
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unfoldals <- function (offdiag) {
n <- nrow (offdiag)
m <- ncol (offdiag)
dd <- offdiag ˆ 2
delta <- matrix (0, n + m, n + m)
delta[1:n, n + (1:m)] <- dd
delta <- pmax(delta, t(delta))
cc <-

dd - outer (rowSums(dd) / m, colSums (dd) / n, "+") + sum(dd) / (n * m)
sc <- svd (-cc / 2)
lb <- diag (sqrt(sc$d))
xold <- sc$u %*% lb
yold <- sc$v %*% lb
zold <- rbind (xold, yold)
lold <- rowSums (zold ˆ 2)
dold <- outer (lold, lold, "+") - 2 * tcrossprod (zold)

}

teqbounds <- function (offdiag) {
n <- nrow (offdiag)
m <- ncol (offdiag)
a <- matrix (0, n, n)
b <- matrix (0, m, m)
for (i in 2:n) {

for (j in 1:(i - 1)) {
smin = Inf
smax = -Inf
for (k in 1:m) {

smin = min (smin, offdiag[i, k] + offdiag[j, k])
smax = max (smax, abs (offdiag[i, k] - offdiag[j, k]))

}
a[i, j] <- a[j, i] <- (smin + smax) / 2

}
}
for (i in 2:m) {

for (j in 1:(i - 1)) {
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smin = Inf
smax = -Inf
for (k in 1:n) {

smin = min (smin, offdiag[k, i] + offdiag[k, j])
smax = max (smax, abs (offdiag[k, i] - offdiag[k, j]))

}
b[i, j] <- b[j, i] <- (smin + smax) / 2

}
}
return (list (a = a, b = b))

}

A.1.14 constrained.R

pcircsmacof <-
function (delta,

w = wdef (nrow (delta)),
p = 2,
x = smacofInitialR (delta, p),
itmax = 1000,
eps = 1e-6,
verbose = TRUE) {

labels = c("itel", "sold", "snew")
digits = c(4, 10, 10)
widths = c(6, 15, 15)
format = c("d", "f", "f")
n <- nrow (x)
p <- ncol (x)
xold <- x / sqrt (rowSums (x ˆ 2))
dold <- as.matrix (dist (xold))
v <- smacofVmatR (w)
e <- max (eigen (v, only.values = TRUE)$values)
vinv <- ginv(v)
itel <- 1
sold <- smacofLossR (dold, w, delta)
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repeat {
b <- smacofBmatR (dold, w, delta)
xgut <- smacofGuttmanR(xold, b, vinv)
xtar <- xold + v %*% (xgut - xold) / e
xlen <- sqrt (rowSums (xtar ˆ 2))
xrad <- mean (xlen)
xnew <- (xtar / xlen) * xrad
dnew <- as.matrix (dist(xnew))
snew <- smacofLossR (dnew, w, delta)

if (verbose) {
values = c(itel, sold, snew)
iterationWrite (labels, values, digits, width, format)

}
if (((sold - snew) < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
xold <- xnew
sold <- snew

}
return (list (

x = xnew,
d = dnew,
stress = snew,
radius = xrad,
itel = itel

))
}

pellipsmacof <-
function (delta,

w = wdef (nrow (delta)),
p = 2,
x = smacofInitialR (delta, p),
itmax = 1000,
eps = 1e-6,
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verbose = TRUE) {
labels = c("itel", "sold", "smid", "snew")
digits = c(4, 10, 10, 10)
widths = c(6, 15, 15, 15)
format = c("d", "f", "f", "f")
n <- nrow (x)
p <- ncol (x)
yold <- x / sqrt (rowSums (x ˆ 2))
xlbd <- rep (1, p)
xold <- yold %*% diag (xlbd)
dold <- as.matrix (dist (xold))
v <- smacofVmatR (w)
e <- max (eigen (v, only.values = TRUE)$values)
vinv <- ginv(v)
itel <- 1
sold <- smacofLoss(dold, w, delta)
repeat {

b <- smacofBmatR (dold, w, delta)
xgut <- smacofGuttmanR(xold, b, vinv)
for (s in 1:p) {

xlbd[s] <-
sum (xgut[, s] * (v %*% yold[, s])) / sum (yold[, s] * (v %*% yold[, s]))

}
xmid <- yold %*% diag (xlbd)
dmid <- as.matrix (dist (xmid))
smid <- sum (w * (delta - dmid) ˆ 2) / 2
mlbd <- max (xlbd ˆ 2)
ytar <-

yold + v %*% ((xgut %*% diag (1 / xlbd)) - yold) %*% diag (xlbd ˆ 2) / (e * mlbd)
ylen <- sqrt (rowSums (ytar ˆ 2))
ynew <- ytar / ylen
xnew <- ynew %*% diag (xlbd)
dnew <- as.matrix (dist(xnew))
snew <- sum (w * (delta - dnew) ˆ 2) / 2
if (verbose) {

values = c(itel, sold, smid, snew)
iterationWrite (labels, values, digits, width, format)
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}
if (((sold - snew) < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
xold <- xnew
yold <- ynew
sold <- snew

}
return (list (

x = xnew,
d = dnew,
stress = snew,
axes = xlbd,
itel = itel

))
}

dcircsmacof <-
function (delta,

w = wdef (nrow (delta)),
p = 2,
x = smacofInitialR (delta, p),
pen = 1,
itmax = 1000,
eps = 1e-6,
verbose = TRUE) {

labels = c("itel", "sold", "smid", "snew")
digits = c(4, 10, 10, 10)
widths = c(6, 15, 15, 15)
format = c("d", "f", "f", "f")
n <- nrow (x)
xold <-

rbind (0, x / sqrt (rowSums(x ˆ 2)))
dold <- as.matrix (dist (xold))
w <- rbind (pen, cbind (pen, w))
delta <- rbind (1, cbind (1, delta))
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w[1, 1] <- delta [1, 1] <- 0
v <- smacofVmatR (w)
vinv <- ginv(v)
itel <- 1
sold <- smacofLossR(dold, w, delta)
repeat {

b <- smacofBmatR(dold, w, delta)
xnew <- smacofGuttmanR(xold, b, vinv)
dnew <- as.matrix (dist (xnew))
smid <- smacofLossR(dnew, w, delta)
a <- sum (dnew[1,]) / n
delta[1,] <- delta[, 1] <- a
delta[1, 1] <- 0
snew <- smacofLossR(dnew, w, delta)
if (verbose) {

values = c(itel, sold, smid, snew)
iterationWrite (labels, values, digits, width, format)

}
if (((sold - snew) < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
xold <- xnew
sold <- snew

}
return (list (

x = xnew,
d = dnew,
a = a,
stress = snew,
itel = itel

))
}

dellipsmacof <-
function (delta,

w = wdef (nrow (delta)),
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p = 2,
x = smacofInitialR (delta, p),
pen = 1,
itmax = 1000,
eps = 1e-6,
verbose = TRUE) {

labels = c("itel", "sold", "smid", "snew")
digits = c(4, 10, 10, 10)
widths = c(6, 15, 15, 15)
format = c("d", "f", "f", "f")
n <- nrow (x)
set.seed(12345)
focal <- rnorm(2)
xold <-

rbind (focal, -focal, x / sqrt (rowSums(x ˆ 2)))
dold <- as.matrix (dist (xold))
w <- rbind (pen, pen, cbind (pen, pen, w))
delta <- rbind (1, 1, cbind (1, 1, delta))
w[1:2, 1:2] <- delta [1:2, 1:2] <- 0
v <- smacofVmatR (w)
vinv <- ginv(v)
itel <- 1
sold <- smacofLossR(dold, w, delta)
repeat {

b <- smacofBmatR (dold, w, delta)
xnew <- smacofGuttmanR (xold, b, vinv)
dnew <- as.matrix (dist (xnew))
smid <- smacofLossR(dnew, w, delta)
dsub <- dnew[1:2, 2 + (1:n)]
asub <- sum (dsub) / (2 * n)
dsub <- ccen (dsub) + asub
delta[1:2, 2 + (1:n)] <- dsub
delta[2 + (1:n), 1:2] <- t(dsub)
snew <- smacofLossR(dnew, w, delta)
if (verbose) {

values = c(itel, sold, smid, snew)
iterationWrite (labels, values, digits, width, format)
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}
if (((sold - snew) < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
xold <- xnew
sold <- snew

}
return (list (

pen = pen,
x = xnew,
d = dnew,
stress = snew,
itel = itel

))
}

A.1.15 nominal.R

baseplot <- function (x,
y,
z,
wx = TRUE,
wy = TRUE,
wz = TRUE) {

par(pty="s")
plot(

x,
xlim = c(-3, 3),
ylim = c(-3, 3),
xlab = "",
ylab = "",
type = "n"

)
if (wx)
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points(x, col = "RED", cex = 1)
if (wy)

points(y, col = "BLUE", cex = 1)
if (wz)

points(z, col = "GREEN", cex = 1)
mx <- apply(x, 2, mean)
my <- apply(y, 2, mean)
mz <- apply(z, 2, mean)
if (wx)

points(
matrix(mx, 1, 2),
col = "RED",
pch = 5,
cex = 2,
lwd = 2

)
if (wy)

points(
matrix(my, 1, 2),
col = "BLUE",
pch = 5,
cex = 2,
lwd = 2

)
if (wz)

points(
matrix(mz, 1, 2),
col = "GREEN",
pch = 5,
cex = 2,
lwd = 2

)
if (wx)

for (i in 1:10) {
lines(rbind(x[i,], mx))

}
if (wy)
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for (i in 1:5) {
lines(rbind(y[i,], my))

}
if (wz)

for (i in 1:5) {
lines(rbind(z[i,], mz))

}
}

A.1.16 sstress.R

strainAdd <-
function (delta,

w = rep (1, length (delta)),
p = 2,
itmax = 100,
eps = 1e-6,
verbose = TRUE) {

delta <- as.matrix (delta ˆ 2)
n <- nrow(delta)

}

strainWeight <-
function (delta,

w = rep (1, length (delta)),
p = 2,
itmax = 100,
eps = 1e-6,
verbose = TRUE) {

}

alscal <-
function (delta,
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p,
x = torgerson (delta, p),
w = wdef (nrow (x)),
itmax = 1000,
eps = 1e-6,
verbose = TRUE,
check = TRUE) {

n <- nrow (x)
delta <- delta ˆ 2
d <- as.matrix (dist (x)) ˆ 2
sold <- sum (w * (delta - d) ˆ 2)
wsum <- rowSums (w)
itel <- 1
snew <- sold
repeat {

for (k in 1:n) {
t4 <- wsum[k]
for (s in 1:p) {

u <- x[, s] - x[k, s]
t0 <- snew
t1 <- t2 <- t3 <- 0
for (i in 1:n) {

t1 <- t1 + 4 * w[i, k] * (d[i, k] - delta[i, k]) * u[i]
t2 <-

t2 + 2 * w[i, k] * ((d[i, k] - delta[i, k]) + 2 * u[i] ˆ 2)
t3 <- t3 + 4 * w[i, k] * u[i]

}
pp <- polynomial(c(t0,-t1, t2,-t3, t4))
qq <- deriv (pp)
ss <- solve (qq)
ss <- Re (ss[which (abs (Im (ss)) < 1e-10)])
tt <- predict (pp, ss)
snew <- min (tt)
root <- ss[which.min (tt)]
x[k, s] <- x[k, s] + root
for (i in (1:n)[-k]) {

d[i, k] <- d[i, k] - 2 * root * u[i] + root ˆ 2



416 APPENDIX A. CODE

d[k, i] <- d[i, k]
}

}
}
if (verbose) {

cat(
"itel ",
formatC(itel, width = 6, format = "d"),
"sold ",
formatC(

sold,
digits = 6,
width = 15,
format = "f"

),
"snew ",
formatC(

snew,
digits = 6,
width = 15,
format = "f"

),
"\n"

)
}
if (((sold - snew) < eps) || (itel == itmax)) {

break
}
sold <- snew
itel <- itel + 1

}
return (list (

x = x,
sstress = snew,
itel = itel

))
}
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jeffrey <- function(a) {
h <-

.C("jeffreyC",
a = as.double (a),
minwhere = as.double (0),
minvalue = as.double (0))

return (list.remove (h, 1))
}

A.1.17 inverse.R

imdsSolver <- function (tau) {
radius <- sqrt (((tau - 3) ˆ 2) / 3)
center <- c(tau, tau) / 3
a <- matrix (c(1, .5, .5, 1), 2, 2)
draw_ellipse (

center,
radius,
a,
col = "RED",
lwd = 2,
xlim = c(0, tau),
ylim = c(0, tau),
xlab = "alpha",
ylab = "beta"

)
lines (matrix(c(0, tau, tau, 0), 2, 2), col = "BLUE", lwd = 2)
abline(h = 0)
abline(v = 0)

}

bs <- function () {
z <- matrix(c(1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1), 4 , 4) / 2
a <- as.list (1:6)
k <- 1
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for (i in 1:3) {
for (j in (i + 1):4) {

a[[k]] <- crossprod (z, aijn(i, j, 4) %*% z)
k <- k + 1

}
}
return(a)

}

imdsChecker <- function (a) {
aa <- bs()
bb <- matrix(0, 4, 4)
for (i in 1:6) {

bb <- bb + a[i] * aa[[i]]
}
return (bb)

}

inverseMDS <- function (x) {
n <- nrow (x)
m <- ncol (x)
x <- apply (x, 2, function (y)

y - mean (y))
nm <- n - (m + 1)
kk <- cbind (1, x, matrix (rnorm (n * nm), n , nm))
kperp <- as.matrix (qr.Q (qr (kk))[,-(1:(m + 1))])
dd <- as.matrix (dist (x))
k <- 1
base <- matrix (0, n * (n - 1) / 2, nm * (nm + 1) / 2)
for (i in 1:nm) {

for (j in 1:i) {
oo <- outer (kperp[, i], kperp[, j])
if (j != i) {

oo <- oo + t(oo)
}
base[, k] <- lower_triangle (dd + (1 - oo))
k <- k + 1
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print (c(i, j, k))
}

}
return (base = cbind (lower_triangle (dd), base))

}

inversePlus <- function (base, affine = TRUE) {
if (affine) {

hrep <- makeH (
a1 = d2q (-base),
b1 = d2q (rep (0, nrow (base))),
a2 = d2q (rep (1, ncol (base))),
b2 = d2q (1)

)
} else {

hrep <- makeH (a1 = d2q (-base), b1 = d2q (rep (0, nrow (base))))
}
vrep <- scdd (hrep)
hrep <- q2d (hrep)
vrep <- q2d (vrep$output)
pr <- tcrossprod (hrep[, -c(1, 2)], vrep[, -c(1, 2)])[-1, ]
return (list (

base = base,
hrep = hrep,
vrep = vrep,
pr = pr

))
}

twoPoints <- function (x, y, w = 1 - diag (nrow (x))) {
dx <- lower_triangle (as.matrix (dist (x)))
dy <- lower_triangle (as.matrix (dist (y)))
w <- lower_triangle (w)
gx <- makeG (x)
gy <- makeG (y)
hx <- (dx / w) * gx
hy <- (dy / w) * gy
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lxy <- lm.fit (cbind (hx,-hy), dx - dy)
lxx <- lxy$coefficients[1:ncol(hx)]
lyy <- lxy$coefficients[-(1:ncol(hx))]
return (list(

delta1 = dx - hx %*% lxx,
delta2 = dy - hy %*% lyy,
res = sum (abs(lxy$residuals)),
rank = lxy$rank

))
}

second_partials_stress <-
function (x, delta, w = wdef (nrow (x))) {

n <- nrow (x)
p <- ncol (x)
d <- as.matrix (dist (x))
fac <- (w * delta) / (d + diag (n))
dd <- d * d
v <- smacofVmatR (w)
deri <- direct_sum (repList (v, p))
xx <- as.vector (x)
for (i in 1:(n - 1)) {

for (j in (i + 1):n) {
aa <- direct_sum (repList (aijn (i, j, n), p))
ax <- drop (aa %*% xx)
deri <- deri - fac[i, j] * (aa - outer (ax, ax) / dd[i, j])

}
}
return (deri)

}

second_partials_numerical <-
function (x, delta, w = wdef (nrow (x))) {

stress <- function (x, delta, w) {
n <- nrow (delta)
p <- length (x) / n
d <- as.matrix(dist(matrix (x, n, p)))
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res <- delta - d
return (sum (w * res * res) / 2)

}
return (hessian (stress, x, delta = delta, w = w))

}

cleanUp <- function (a, eps = 1e-3) {
nv <- nrow (a)
ind <- rep (TRUE, nv)
for (i in 1:(nv - 1)) {

xx <- a[i, ]
for (j in (i + 1):nv) {

if (!ind[j])
next

yy <- a[j, ]
mm <- max (abs (xx - yy))
if (mm < eps)

ind[j] <- FALSE
}

}
return (ind)

}

bruteForce <- function (a, b, eps = 1e-3) {
n <- nrow (a)
m <- ncol (a)
cb <- combn (n, m)
n1 <- ncol (cb)
ind <- rep(TRUE, n1)
ht <- numeric()
for (i in 1:n1) {

gg <- a[cb[, i],]
bg <- b[cb[, i]]
qg <- qr(gg)
if (qg$rank < m) {

ind[i] <- FALSE
next
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}
hh <- solve (qg, bg)
hg <- drop (a %*% hh)
if (min (b - hg) < -eps) {

ind[i] <- FALSE
next

}
ht <- c(ht, hh)

}
n2 <- sum (ind)
ht <- matrix (ht, m, n2)
ind <-

.C (
"cleanup",
as.double(ht),
as.integer(n2),
as.integer(m),
as.integer(rep(1, n2)),
as.double (eps)

)[[4]]
n3 <- sum (ind)
return (list (

x = t(ht)[which(ind == 1),],
n1 = n1,
n2 = n2,
n3 = n3

))
}

bruteForceOne <- function (a, b, p, q, v, eps = 1e-3) {
n <- nrow (a)
m <- ncol (a)
ind <- which ((q - v %*% p) > -eps)
v <- v[ind,]
cb <- combn (n, m - 1)
n1 <- ncol (cb)
ind <- rep(TRUE, n1)
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ht <- numeric()
for (i in 1:n1) {

gg <- rbind (a[cb[, i],], p)
bg <- c (b[cb[, i]], q)
qg <- qr(gg)
if (qg$rank < m) {

ind[i] <- FALSE
next

}
hh <- solve (qg, bg)
hg <- drop (a %*% hh)
if (min (b - hg) < -eps) {

ind[i] <- FALSE
next

}
ht <- c(ht, hh)

}
n2 <- sum (ind)
ht <- t (matrix (ht, m, n2))
ht <- rbind (v, ht)
ind <- cleanUp (ht, eps)
print (ind)
n3 <- sum (ind)
return (list (

x = ht[ind,],
n1 = n1,
n2 = n2,
n3 = n3

))
}

rankTest <- function (x, a, b, eps = 1e-3) {
h <- drop (a %*% x)
ind <- which (abs (h - b) < eps)
r <- qr (a[ind, ])$rank
f <- min (b - h) > -eps
return (list (rank = r, feasibility = f))
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}

makeDC <- function (x) {
y <- -x
diag(y) <- -rowSums (y)
return (y)

}

bmat <- function (delta, w, d) {
n <- nrow (w)
dd <- ifelse (d == 0, 0, 1 / d)
return (makeDC (w * delta * dd))

}

smacof <-
function (delta,

w,
xini,
eps = 1e-6,
itmax = 100,
verbose = TRUE) {

n <- nrow (xini)
xold <- xini
dold <- as.matrix (dist (xold))
sold <- sum (w * (delta - dold) ˆ 2) / 2
itel <- 1
v <- ginv (makeDC (w))
repeat {

b <- bmat (delta, w, dold)
xnew <- v %*% b %*% xold
dnew <- as.matrix (dist (xnew))
snew <- sum (w * (delta - dnew) ˆ 2) / 2
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

sold,
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digits = 10,
width = 13,
format = "f"

),
formatC (

snew,
digits = 10,
width = 13,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || (sold - snew) < eps)

break ()
itel <- itel + 1
sold <- snew
dold <- dnew
xold <- xnew

}
return (list (

x = xnew,
d = dnew,
s = snew,
itel = itel

))
}

oneMore <- function (g, u) {
v <- bruteForce (g, u)$x
nv <- nrow (v)
s <- matrix (0, 2, 2)
ev <- rep (0, nv)
for (i in 1:nv) {

s[1, 1] <- v[i, 1]
s[2, 2] <- v[i, 2]
s[1, 2] <- s[2, 1] <- v[i, 3]
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ee <- eigen (s)
ev[i] <- min (ee$values)
if (ev[i] < 0) {

yy <- ee$vectors[, 2]
hh <- c (yy[1] ˆ 2, yy[2] ˆ 2, 2 * yy[1] * yy [2])
g <- rbind (g,-hh)
u <- c (u, 0)

}
}
return (list (

v = v,
g = g,
u = u,
e = ev

))
}

makeG <- function (x) {
n <- nrow (x)
p <- ncol (x)
m <- n - p - 1
k <- qr.Q(qr(cbind(1, x, diag (n))))[,-c(1:(p + 1))]
g <- matrix (0, n * (n - 1) / 2, m * (m + 1) / 2)
l <- 1
if (m == 1) {

g[, 1] <- lower_triangle (outer (k, k))
}
else {

for (i in 1:m) {
g[, l] <- lower_triangle (outer(k[, i], k[, i]))
l <- l + 1

}
for (i in 1:(m - 1))

for (j in (i + 1):m) {
g[, l] <-

lower_triangle (outer(k[, i], k[, j]) + outer(k[, j], k[, i]))
l <- l + 1
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}
}
return (g)

}

iStress <-
function (x,

delta,
w = rep (1, length (delta)),
only = TRUE) {

m <- length (delta)
n <- (1 + sqrt (1 + 8 * m)) / 2
x <- matrix (x, n, length (x) / n)
d <- lower_triangle (as.matrix (dist (x)))
g <- makeG (x)
h <- (d / w) * makeG (x)
u <- -colSums(w * (delta - d) * h)
v <- crossprod (h, w * h)
s <- solve.QP (

Dmat = v,
dvec = u,
Amat = -t(h),
bvec = -d

)
ds <- d - h %*% s$solution
is <- sum (w * (delta - ds) ˆ 2)
if (only)

return (is)
else

return (list (istress = is, delta = fill_symmetric (ds)))
}

A.1.18 global.R
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checkUni <- function (w, delta, x) {
x <- drop (x)
n <- length (x)
vinv <- solve (smacofVmat (w) + (1 / n)) - (1 / n)
return (drop (vinv %*% rowSums (w * delta * sign (outer (

x, x, "-"
)))))

}

matchMe <- function (x,
itmax = 100,
eps = 1e-10,
verbose = FALSE) {

m <- length (x)
y <- sumList (x) / m
itel <- 1
fold <- sum (sapply (x, function (z)

(z - y) ˆ 2))
repeat {

for (j in 1:m) {
u <- crossprod (x[[j]], y)
s <- svd (u)
r <- tcrossprod (s$u, s$v)
x[[j]] <- x[[j]] %*% r

}
y <- sumList (x) / m
fnew <- sum (sapply (x, function (z)

(z - y) ˆ 2))
if (verbose) {

}
if (((fold - fnew) < eps) || (itel == itmax))

break
itel <- itel + 1
fold <- fnew

}
return (x)
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}

sumList <- function (x) {
m <- length (x)
y <- x[[1]]
for (j in 2:m) {

y <- y + x[[j]]
}
return (y)

}

smacofLoss <- function (d, w, delta) {
return (sum (w * (delta - d) ˆ 2) / 4)

}

smacofBmat <- function (d, w, delta) {
dd <- ifelse (d == 0, 0, 1 / d)
b <- -dd * w * delta
diag (b) <- -rowSums (b)
return(b)

}

smacofVmat <- function (w) {
v <- -w
diag(v) <- -rowSums(v)
return (v)

}

smacofGuttman <- function (x, b, vinv) {
return (vinv %*% b %*% x)

}

columnCenter <- function (x) {
return (apply (x, 2, function (z)

z - mean (z)))
}
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smacofComplement <- function (y, v) {
return (sum (v * tcrossprod (y)) / 4)

}

smacofPenalty <-
function (w,

delta,
p = 2,
lbd = 0,
zold = columnCenter (diag (nrow (delta))),
itmax = 10000,
eps = 1e-10,
verbose = FALSE) {

itel <- 1
n <- nrow (zold)
vmat <- smacofVmat (w)
vinv <- solve (vmat + (1 / n)) - (1 / n)
dold <- as.matrix (dist (zold))
mold <- sum (w * delta * dold) / sum (w * dold * dold)
zold <- zold * mold
dold <- dold * mold
yold <- zold [, (p + 1):n]
sold <- smacofLoss (dold, w, delta)
bold <- smacofBmat (dold, w, delta)
told <- smacofComplement (yold, vmat)
uold <- sold + lbd * told
repeat {

znew <- smacofGuttman (zold, bold, vinv)
ynew <- znew [, (p + 1):n] / (1 + lbd)
znew [, (p + 1):n] <- ynew
xnew <- znew [, 1:p]
dnew <- as.matrix (dist (znew))
bnew <- smacofBmat (dnew, w, delta)
tnew <- smacofComplement (ynew, vmat)
snew <- smacofLoss (dnew, w, delta)
unew <- snew + lbd * tnew
if (verbose) {
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cat(
"itel ",
formatC(itel, width = 4, format = "d"),
"sold ",
formatC(

sold,
width = 10,
digits = 6,
format = "f"

),
"snew ",
formatC(

snew,
width = 10,
digits = 6,
format = "f"

),
"told ",
formatC(

told,
width = 10,
digits = 6,
format = "f"

),
"tnew ",
formatC(

tnew,
width = 10,
digits = 6,
format = "f"

),
"uold ",
formatC(

uold,
width = 10,
digits = 6,
format = "f"
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),
"unew ",
formatC(

unew,
width = 10,
digits = 6,
format = "f"

),
"\n"

)
}
if (((uold - unew) < eps) || (itel == itmax)) {

break
}
itel <- itel + 1
zold <- znew
bold <- bnew
sold <- snew
told <- tnew
uold <- unew

}
zpri <- znew %*% svd(znew)$v
xpri <- zpri[, 1:p]
return (list (

x = xpri,
z = zpri,
b = bnew,
l = lbd,
s = snew,
t = tnew,
itel = itel

))
}

plotMe2 <- function(hList, labels, s = 1, t = 2) {
n <- nrow(hList[[1]]$x)
m <- length (hList)
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par(pty = "s")
hMatch <- matchMe (lapply (hList, function(r)

r$x))
hMat <- matrix (0, 0, 2)
for (j in 1:m) {

hMat <- rbind(hMat, hMatch[[j]][, c(s, t)])
}
plot(

hMat,
xlab = "dim 1",
ylab = "dim 2",
col = c(rep("RED", n * (m - 1)), rep("BLUE", n)),
cex = c(rep(1, n * (m - 1)), rep(2, n))

)
for (i in 1:n) {

hLine <- matrix (0, 0, 2)
for (j in 1:m) {

hLine <- rbind (hLine, hMatch[[j]][i, c(s, t)])
}
lines(hLine)

}
text(hMatch[[m]], labels, cex = .75)

}

plotMe1 <- function(hList, labels) {
n <- length (hList[[1]]$x)
m <- length (hList)
blow <- function (x) {

n <- length (x)
return (matrix (c(1:n, x), n, 2))

}
hMat <- matrix (0, 0, 2)
for (j in 1:m) {

hMat <- rbind(hMat, blow(hList[[j]]$x))
}
plot(

hMat,
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xlab = "index",
ylab = "x",
col = c(rep("RED", n * (m - 1)), rep("BLUE", n)),
cex = c(rep(1, n * (m - 1)), rep(2, n))

)
for (i in 1:n) {

hLine <- matrix (0, 0, 2)
for (j in 1:m) {

hLine <- rbind (hLine, blow(hList[[j]]$x)[i,])
lines(hLine)

}
}
text(blow(hList[[m]]$x), labels, cex = 1.00)
for (i in 1:n) {

abline(h = hList[[m]]$x[i])
}

}

runPenalty <-
function (w,

delta,
lbd,
p = 2,
itmax = 10000,
eps = 1e-10,
cut = 1e-6,
write = TRUE,
verbose = FALSE) {

m <- length (lbd)
hList <- as.list (1:m)
hList[[1]] <-

smacofPenalty(
w,
delta,
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p,
lbd = lbd[1],
itmax = itmax,
eps = eps,
verbose = verbose

)
for (j in 2:m) {

hList[[j]] <-
smacofPenalty(

w,
delta,
p,
zold = hList[[j - 1]]$z,
lbd = lbd[j],
itmax = itmax,
eps = eps,
verbose = verbose

)
}
mm <- m
for (i in 1:m) {

if (write) {
cat(

"itel",
formatC(hList[[i]]$itel, width = 4, format = "d"),
"lambda",
formatC(

hList[[i]]$l,
width = 10,
digits = 6,
format = "f"

),
"stress",
formatC(

hList[[i]]$s,
width = 8,
digits = 6,
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format = "f"
),
"penalty",
formatC(

hList[[i]]$t,
width = 8,
digits = 6,
format = "f"

),
"\n"

)
}
if (hList[[i]]$t < cut) {

mm <- i
break

}
}
return(hList[1:mm])

}

writeSelected <- function (hList, ind) {
m <- length (hList)
n <- length (ind)
mn <- sort (union (union (1:3, ind), m - (2:0)))
for (i in mn) {

if (i > m) {
next

}
cat(

"itel",
formatC(hList[[i]]$itel, width = 4, format = "d"),
"lambda",
formatC(

hList[[i]]$l,
width = 10,
digits = 6,
format = "f"
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),
"stress",
formatC(

hList[[i]]$s,
width = 8,
digits = 6,
format = "f"

),
"penalty",
formatC(

hList[[i]]$t,
width = 8,
digits = 6,
format = "f"

),
"\n"

)
}

}

rhofun <- function (a) {
rhomax <- 0
rhoval <- c(0, 0)
n <- nrow (a)
for (i in 1:n) {

z <- a[i, 1] * xbase + a[i, 2] * ybase
rho <- sum (delta * dist (z))
if (rho > rhomax) {

rhomax <- rho
rhoval <- a[i,]

}
}
return(list(rhomax = rhomax, rhoval = rhoval))

}

rhomax2Plot <- function (inpoints) {
par(pty = "s")



438 APPENDIX A. CODE

s <- (0:500) / 500 * 2 * pi
x <- sin(s)
y <- cos(s)
plot(

x,
y,
type = "l",
col = "RED",
xlim = c(-1.25, 1.25),
ylim = c(-1.25, 1.25),
lwd = 3

)
points(0, 0, cex = 1.2)
n <- nrow(inpoints)
outpoints <- matrix(0, n, 2)
for (i in 1:n) {

a <- inpoints[i, ]
if (i == n) {

b <- inpoints[1, ]
} else {

b <- inpoints[i + 1, ]
}
d <- a[1] * b[2] - a[2] * b[1]
outpoints[i, 1] <- (b[2] - a[2]) / d
outpoints[i, 2] <- (a[1] - b[1]) / d

}
lines (

x = inpoints[, 1],
y = inpoints[, 2],
col = "BLUE",
lwd = 2

)
lines (

x = inpoints[c(1, n), 1],
y = inpoints[c(1, n), 2],
col = "BLUE",
lwd = 2
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)
lines (

x = outpoints[, 1],
y = outpoints[, 2],
col = "BLUE",
lwd = 2

)
lines (

x = outpoints[c(1, n), 1],
y = outpoints[c(1, n), 2],
col = "BLUE",
lwd = 2

)
}

rhomax2Comp <-
function (inpoints,

itmax = 100,
eps = 1e-8,
verbose = TRUE) {

itel = 1
repeat {

n <- nrow(inpoints)
outpoints <- matrix(0, n, 2)
for (i in 1:n) {

a <- inpoints[i, ]
if (i == n) {

b <- inpoints[1, ]
} else {

b <- inpoints[i + 1, ]
}
d <- a[1] * b[2] - a[2] * b[1]
outpoints[i, 1] <- (b[2] - a[2]) / d
outpoints[i, 2] <- (a[1] - b[1]) / d

}
infun <- rhofun (inpoints)
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oufun <- rhofun (outpoints)
inmax <- infun$rhomax
oumax <- oufun$rhomax
inval <- infun$rhoval
ouval <- oufun$rhoval
for (i in 1:n) {

outpoints[i, ] <- outpoints[i, ] / sqrt (sum (outpoints[i, ] ˆ 2))
}
impoints <- matrix (0, 2 * n, 2)
impoints[seq.int(1, (2 * n) - 1, by = 2),] <- inpoints
impoints[seq.int(2, 2 * n, by = 2),] <- outpoints
if (verbose) {

cat(
"itel ",
formatC(itel, width = 6, format = "d"),
"vertices ",
formatC(n, width = 6, format = "d"),
"innermax ",
formatC(

inmax,
digits = 8,
width = 15,
format = "f"

),
"outermax ",
formatC(

oumax,
digits = 8,
width = 15,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || ((oumax - inmax) < eps)) {

break
}
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itel <- itel + 1
inpoints <- impoints

}
return (list (

itel = itel,
vertices = n,
inmax = inmax,
oumax = oumax,
inval = inval,
ouval = ouval

))
}

A.1.19 mathadd.R

lsuw <- function (y,
w,
proj,
xold = rep (1, length (y)),
v = max (eigen (w)$values) * diag (length (y)),
itmax = 100,
eps = 1e-6,
verbose = FALSE,
add = 1e-6) {

f <- function (x, y, w) {
return (sum ((x - y) * w %*% (x - y)))

}
n <- length (y)
labels <- c("itel", "fold", "fnew")
digits <- c(0, 6, 6)
widths <- c(3, 10, 10)
formats <- c("d", "f", "f")
fold <- f (xold, y, w)
itel <- 1
repeat {
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u <- drop (solve (v, w %*% (xold - y)))
xnew <- proj (xold - u, v)
fnew <- f (xnew, y, w)
if (verbose) {

values <- c(itel, fold, fnew)
iterWrite (labels, values, digits, widths, formats)

}
if ((itel == itmax) || ((fold - fnew) < eps)) {

break
}
fold <- fnew
xold <- xnew
itel <- itel + 1

}
return (list (x = xnew, f = fnew, itel = itel))

}

projeq <- function (x, v) {
s <- sum (v)
h <- sum (x * rowSums (v))
return (rep (h / s, length (x)))

}

projplus <- function (x, v) {
if (!all(v == diag(diag(v)))) {

stop ("V must be diagonal")
}
if (min (diag (v)) < 0) {

stop ("V must be positive semidefinite")
}
return (pmax(x, 0))

}

qpmaj <-
function (z,

v = diag (length (z)),
a = diff (diag (length(z))),
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b = ifelse (!is.null(a), rep(0, nrow(a)), NULL),
c = NULL,
d = ifelse (!is.null(c), rep(0, nrow(c)), NULL),
h = NULL,
itmax = 1000,
eps = 1e-15,
verbose = FALSE) {

labs <- c("itel", "fold", "fnew")
digs <- c(0, 6, 6)
wids <- c(3, 10, 10)
fors <- c("d", "f", "f")
if (is.null(h)) {

w <- v
y <- z
rsum <- 0

} else {
w <- crossprod(h, v %*% h)
y <- drop (solve (w, crossprod (h, v %*% z)))
rsum <- sum (z * (v %*% (z - h %*% y))) / 2

}
winv <- solve (w)
if (!is.null(a)) {

nin <- nrow(a)
dualaa <- a %*% winv %*% t(a)
feasa <- drop ((a %*% y) - b)

}
if (!is.null(c)) {

neq <- nrow (c)
dualcc <- c %*% winv %*% t(c)
feasc <- drop((c %*% y) - d)

}
if ((!is.null(a)) && (!is.null(c))) {

dualac <- a %*% winv %*% t(c)
feas <- c(feasa, feasc)
dual <- rbind(cbind(dualaa, dualac), cbind(t(dualac), dualcc))

}
if ((!is.null(a)) && (is.null(c))) {
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feas <- feasa
dual <- dualaa

}
if ((is.null(a)) && (!is.null(c))) {

feas <- feasc
dual <- dualcc

}
vmax <- max(eigen(dual)$values)
itel <- 1
lold <- rep (0, nrow (dual))
fold <-

-(sum (lold * drop (dual %*% lold)) / 2 +
sum (lold * feas))

repeat {
lnew <- lold - (drop(dual %*% lold) + feas) / vmax
if (!is.null(a)) {

lnew[1:nin] <- pmax(lnew[1:nin], 0)
}
fnew <-

-(sum (lnew * drop (dual %*% lnew)) / 2 + sum (lnew * feas))
if (verbose) {

vals <- c(itel, fold, fnew)
iterWrite (labs, vals, digs, wids, fors)

}
if ((itel == itmax) || ((fnew - fold) < eps)) {

break
}
fold <- fnew
lold <- lnew
itel <- itel + 1

}
fdua <- fnew
if ((!is.null(c) && (!is.null(a)))) {

x <- y + drop (winv %*% drop(cbind(t(a), t(c)) %*% lnew))
lb <- lnew[1:nin]
mu <- lnew[-(1:nin)]

}
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if ((is.null(c) && (!is.null(a)))) {
x <- y + drop (winv %*% drop (t(a) %*% lnew))
lb <- lnew

}
if ((!is.null(c) && (is.null(a)))) {

x <- y + drop (winv %*% drop (t(c) %*% lnew))
mu <- lnew

}
fprs <- sum ((x - y) * drop (w %*% (x - y))) / 2
out <- list(x = x,

fprimal = fprs,
fdual = fdua)

if (!is.null(h)) {
out <-

list.append(out, ftotal = fprs + rsum, predict = drop (h %*% x))
}
if (!is.null(a)) {

out <-
list.append(out, lambda = lb, inequalities = drop (a %*% x - b))

}
if (!is.null(c)) {

out <- list.append(out, mu = mu, equations = drop (c %*% x - d))
}
return (list.append(out, itel = itel))

}

checkIncreasing <- function (innerknots, lowend, highend) {
h <- .C(

"checkIncreasing",
as.double (innerknots),
as.double (lowend),
as.double (highend),
as.integer (length (innerknots)),
fail = as.integer (0)

)
return (h$fail)
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}

extendPartition <-
function (innerknots,

multiplicities,
order,
lowend,
highend) {

ninner <- length (innerknots)
kk <- sum(multiplicities)
nextended <- kk + 2 * order
if (max (multiplicities) > order)

stop ("multiplicities too high")
if (min (multiplicities) < 1)

stop ("multiplicities too low")
if (checkIncreasing (innerknots, lowend, highend))

stop ("knot sequence not increasing")
h <-

.C(
"extendPartition",
as.double (innerknots),
as.integer (multiplicities),
as.integer (order),
as.integer (ninner),
as.double (lowend),
as.double (highend),
knots = as.double (rep (0, nextended))

)
return (h)

}

bisect <-
function (x,

knots,
lowindex = 1,
highindex = length (knots)) {

h <- .C(
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"bisect",
as.double (x),
as.double (knots),
as.integer (lowindex),
as.integer (highindex),
index = as.integer (0)

)
return (h$index)

}

bsplines <- function (x, knots, order) {
if ((x > knots[length(knots)]) || (x < knots[1]))

stop ("argument out of range")
h <- .C(

"bsplines",
as.double (x),
as.double (knots),
as.integer (order),
as.integer (length (knots)),
index = as.integer (0),
q = as.double (rep(0, order))

)
return (list (q = h$q, index = h$ind))

}

bsplineBasis <- function (x, knots, order) {
n <- length (x)
k <- length (knots)
m <- k - order
result <- rep (0, n * m)
h <- .C(

"bsplineBasis",
as.double (x),
as.double (knots),
as.integer (order),
as.integer (k),
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as.integer (n),
result = as.double (result)

)
return (matrix (h$result, n, m))

}

isplineBasis <- function (x, knots, order) {
n <- length (x)
k <- length (knots)
m <- k - order
result <- rep (0, n * m)
h <- .C(

"isplineBasis",
as.double (x),
as.double (knots),
as.integer (order),
as.integer (k),
as.integer (n),
result = as.double (result)

)
return (matrix (h$result, n, m))

}

A.2 C code

A.2.1 deboor.c

#include <math.h>
#include <stdbool.h>
#include <stdlib.h>

inline int VINDEX(const int);
inline int MINDEX(const int, const int, const int);
inline int IMIN(const int, const int);
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inline int IMIN(const int, const int);

void checkIncreasing(const double *, const double *, const double *,
const int *, bool *);

void extendPartition(const double *, const int *, const int *, const int *,
const double *, const double *, double *);

void bisect(const double *, const double *, const int *, const int *, int *);
void bsplines(const double *, const double *, const int *, const int *, int *,

double *);
void bsplineBasis(const double *, const double *, const int *, const int *,

const int *, double *);
void isplineBasis(const double *, const double *, const int *, const int *,

const int *, double *);
void bsplineSparse(const double *, const double *, const int *, const int *,

const int *, int *, double *);
void isplineSparse(const double *, const double *, const int *, const int *,

const int *, int *, double *);

inline int VINDEX(const int i) { return i - 1; }

inline int MINDEX(const int i, const int j, const int n) {
return (i - 1) + (j - 1) * n;

}

inline int IMIN(const int a, const int b) {
if (a > b) return b;
return a;

}

inline int IMAX(const int a, const int b) {
if (a < b) return b;
return a;

}

void checkIncreasing(const double *innerknots, const double *lowend,
const double *highend, const int *ninner, bool *fail) {

*fail = false;
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if (*lowend >= innerknots[VINDEX(1)]) {
*fail = true;
return;

}
if (*highend <= innerknots[VINDEX(*ninner)]) {

*fail = true;
return;

}
for (int i = 1; i < *ninner; i++) {

if (innerknots[i] <= innerknots[i - 1]) {
*fail = true;
return;

}
}

}

void extendPartition(const double *innerknots, const int *multiplicities,
const int *order, const int *ninner, const double *lowend,
const double *highend, double *extended) {

int k = 1;
for (int i = 1; i <= *order; i++) {

extended[VINDEX(k)] = *lowend;
k++;

}
for (int j = 1; j <= *ninner; j++)

for (int i = 1; i <= multiplicities[VINDEX(j)]; i++) {
extended[VINDEX(k)] = innerknots[VINDEX(j)];
k++;

}
for (int i = 1; i <= *order; i++) {

extended[VINDEX(k)] = *highend;
k++;

}
}

void bisect(const double *x, const double *knots, const int *lowindex,
const int *highindex, int *index) {
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int l = *lowindex, u = *highindex, mid = 0;
while ((u - l) > 1) {

mid = (int)floor((u + l) / 2);
if (*x < knots[VINDEX(mid)])

u = mid;
else

l = mid;
}
*index = l;
return;

}

void bsplines(const double *x, const double *knots, const int *order,
const int *nknots, int *index, double *q) {

int lowindex = 1, highindex = *nknots, m = *order, j, jp1;
double drr, dll, saved, term;
double *dr = (double *)calloc((size_t)m, sizeof(double));
double *dl = (double *)calloc((size_t)m, sizeof(double));
(void)bisect(x, knots, &lowindex, &highindex, index);
int l = *index;
for (j = 1; j <= m; j++) {

q[VINDEX(j)] = 0.0;
}
if (*x == knots[VINDEX(*nknots)]) {

q[VINDEX(m)] = 1.0;
return;

}
q[VINDEX(1)] = 1.0;
j = 1;
if (j >= m) return;
while (j < m) {

dr[VINDEX(j)] = knots[VINDEX(l + j)] - *x;
dl[VINDEX(j)] = *x - knots[VINDEX(l + 1 - j)];
jp1 = j + 1;
saved = 0.0;
for (int r = 1; r <= j; r++) {

drr = dr[VINDEX(r)];
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dll = dl[VINDEX(jp1 - r)];
term = q[VINDEX(r)] / (drr + dll);
q[VINDEX(r)] = saved + drr * term;
saved = dll * term;

}
q[VINDEX(jp1)] = saved;
j = jp1;

}
free(dr);
free(dl);
return;

}

void bsplineBasis(const double *x, const double *knots, const int *order,
const int *nknots, const int *nvalues, double *result) {

int m = *order, l = 0;
double *q = (double *)calloc((size_t)m + 1, sizeof(double));
for (int i = 1; i <= *nvalues; i++) {

(void)bsplines(x + VINDEX(i), knots, order, nknots, &l, q);
for (int j = 1; j <= m; j++) {

int r = IMIN(l - m + j, *nknots - m);
result[MINDEX(i, r, *nvalues)] = q[VINDEX(j)];

}
}
free(q);
return;

}

void isplineBasis(const double *x, const double *knots, const int *order,
const int *nknots, const int *nvalues, double *result) {

int m = *nknots - *order, n = *nvalues;
(void)bsplineBasis(x, knots, order, nknots, nvalues, result);
for (int i = 1; i <= n; i++) {

for (int j = m - 1; j >= 1; j--) {
result[MINDEX(i, j, n)] += result[MINDEX(i, j + 1, n)];

}
}
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return;
}

void bsplineSparse(const double *x, const double *knots, const int *order,
const int *nknots, const int *nvalues, int *columns,
double *result) {

int m = *order, l = 0;
double *q = (double *)calloc((size_t)m + 1, sizeof(double));
for (int i = 1; i <= *nvalues; i++) {

(void)bsplines(x + VINDEX(i), knots, order, nknots, &l, q);
columns[VINDEX(i)] = l;
for (int j = 1; j <= m; j++) {

result[MINDEX(i, j, *nvalues)] = q[VINDEX(j)];
}

}
free(q);
return;

}

void isplineSparse(const double *x, const double *knots, const int *order,
const int *nknots, const int *nvalues, int *columns,
double *result) {

int m = *nknots - *order, n = *nvalues;
for (int i = 1; i <= *nvalues; i++) {

(void)bsplineSparse(x + VINDEX(i), knots, order, nknots, nvalues,
columns, result);

for (int j = m - 1; j >= 1; j--) {
result[MINDEX(i, j, n)] += result[MINDEX(i, j + 1, n)];

}
}
return;

}
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A.2.2 cleanup.c

#include <math.h>

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

void cleanup(double *a, int *n, int *m, int *ind, double *eps) {
int i, j, l, ii, jj, nn = *n, mm = *m;
double s;
for (i = 0; i < (nn - 1); i++) {

ii = i * mm;
for (j = (i + 1); j < nn; j++) {

s = 0.0;
jj = j * mm;
if (ind[j] == 0) continue;
for (l = 0; l < mm; l++) {

s = MAX(s, fabs(*(a + ii + l) - *(a + jj + l)));
}
if (s < *eps) {

ind[j] = 0;
}

}
}

}

A.2.3 jacobi.c

#include "jacobi.h"

void jacobiC(const int *nn, double *a, double *evec, double *oldi, double *oldj,
int *itmax, double *eps) {

int n = *nn, itel = 1;
double d = 0.0, s = 0.0, t = 0.0, u = 0.0, v = 0.0, p = 0.0, q = 0.0,

r = 0.0;
double fold = 0.0, fnew = 0.0;
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for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

evec[MINDEX(i, j, n)] = (i == j) ? 1.0 : 0.0;
}

}
for (int i = 1; i <= n; i++) {

fold += SQUARE(a[TINDEX(i, i, n)]);
}
while (true) {

for (int j = 1; j <= n - 1; j++) {
for (int i = j + 1; i <= n; i++) {

p = a[TINDEX(i, j, n)];
q = a[TINDEX(i, i, n)];
r = a[TINDEX(j, j, n)];
if (fabs(p) < 1e-10) continue;
d = (q - r) / 2.0;
s = (p < 0) ? -1.0 : 1.0;
t = -d / sqrt(SQUARE(d) + SQUARE(p));
u = sqrt((1 + t) / 2);
v = s * sqrt((1 - t) / 2);
for (int k = 1; k <= n; k++) {

int ik = IMIN(i, k);
int ki = IMAX(i, k);
int jk = IMIN(j, k);
int kj = IMAX(j, k);
oldi[VINDEX(k)] = a[TINDEX(ki, ik, n)];
oldj[VINDEX(k)] = a[TINDEX(kj, jk, n)];

}
for (int k = 1; k <= n; k++) {

int ik = IMIN(i, k);
int ki = IMAX(i, k);
int jk = IMIN(j, k);
int kj = IMAX(j, k);
a[TINDEX(ki, ik, n)] =

u * oldi[VINDEX(k)] - v * oldj[VINDEX(k)];
a[TINDEX(kj, jk, n)] =

v * oldi[VINDEX(k)] + u * oldj[VINDEX(k)];
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}
for (int k = 1; k <= n; k++) {

oldi[VINDEX(k)] = evec[MINDEX(k, i, n)];
oldj[VINDEX(k)] = evec[MINDEX(k, j, n)];
evec[MINDEX(k, i, n)] =

u * oldi[VINDEX(k)] - v * oldj[VINDEX(k)];
evec[MINDEX(k, j, n)] =

v * oldi[VINDEX(k)] + u * oldj[VINDEX(k)];
}
a[TINDEX(i, i, n)] =

SQUARE(u) * q + SQUARE(v) * r - 2 * u * v * p;
a[TINDEX(j, j, n)] =

SQUARE(v) * q + SQUARE(u) * r + 2 * u * v * p;
a[TINDEX(i, j, n)] =

u * v * (q - r) + (SQUARE(u) - SQUARE(v)) * p;
}

}
fnew = 0.0;
for (int i = 1; i <= n; i++) {

fnew += SQUARE(a[TINDEX(i, i, n)]);
}
if (((fnew - fold) < *eps) || (itel == *itmax)) break;
fold = fnew;
itel++;

}
return;

}

void primat(const int *n, const int *m, const int *w, const int *p,
const double *x) {

for (int i = 1; i <= *n; i++) {
for (int j = 1; j <= *m; j++) {

printf(" %*.*f ", *w, *p, x[MINDEX(i, j, *n)]);
}
printf("\n");

}
printf("\n\n");
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return;
}

void pritru(const int *n, const int *w, const int *p, const double *x) {
for (int i = 1; i <= *n; i++) {

for (int j = 1; j <= i; j++) {
printf(" %*.*f ", *w, *p, x[TINDEX(i, j, *n)]);

}
printf("\n");

}
printf("\n\n");
return;

}

void trimat(const int *n, const double *x, double *y) {
int nn = *n;
for (int i = 1; i <= nn; i++) {

for (int j = 1; j <= nn; j++) {
y[MINDEX(i, j, nn)] =

(i >= j) ? x[TINDEX(i, j, nn)] : x[TINDEX(j, i, nn)];
}

}
return;

}

void mattri(const int *n, const double *x, double *y) {
int nn = *n;
for (int j = 1; j <= nn; j++) {

for (int i = j; i <= nn; i++) {
y[TINDEX(i, j, nn)] = x[MINDEX(i, j, nn)];

}
}
return;

}
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A.2.4 jbkTies.c

#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

#define DEBUG false

struct block {
double value;
double weight;
int size;
int previous;
int next;

};

struct quadruple {
double value;
double result;
double weight;
int index;

};

struct triple {
double value;
double weight;
int index;

};

struct pair {
int value;
int index;

};

int myCompDouble(const void *, const void *);
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int myCompInteger(const void *, const void *);
void mySortDouble(double *, double *, double *, int *, const int *);
void mySortInteger(int *, int *, const int *);
void mySortInBlock(double *, double *, int *, int *);
void tieBlock(double *, int *, const int *, int *);
void makeBlocks(double *, double *, double *, double *, int *, const int *,

const int *);
void sortBlocks(double *, double *, int *, const int *, const int *,

const int *);
void jbkPava(double *, double *, const int *);
void primary(double *, double *, int *, int *, const int *, const int *);
void secondary(double *, double *, int *, const int *, const int *);
void tertiary(double *, double *, int *, const int *, const int *);
void monreg(double *, double *, double *, const int *, const int *);

int myCompDouble(const void *px, const void *py) {
double x = ((struct quadruple *)px)->value;
double y = ((struct quadruple *)py)->value;
return (int)copysign(1.0, x - y);

}

int myCompInteger(const void *px, const void *py) {
int x = ((struct pair *)px)->value;
int y = ((struct pair *)py)->value;
return (int)copysign(1.0, x - y);

}

void mySortInBlock(double *x, double *w, int *xind, int *n) {
int nn = *n;
struct triple *xi =

(struct triple *)calloc((size_t)nn, (size_t)sizeof(struct triple));
for (int i = 0; i < nn; i++) {

xi[i].value = x[i];
xi[i].weight = w[i];
xi[i].index = xind[i];

}
(void)qsort(xi, (size_t)nn, (size_t)sizeof(struct triple), myCompDouble);
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for (int i = 0; i < nn; i++) {
x[i] = xi[i].value;
w[i] = xi[i].weight;
xind[i] = xi[i].index;

}
free(xi);
return;

}

void mySortDouble(double *x, double *y, double *w, int *xind, const int *n) {
int nn = *n;
struct quadruple *xi = (struct quadruple *)calloc(

(size_t)nn, (size_t)sizeof(struct quadruple));
for (int i = 0; i < nn; i++) {

xi[i].value = x[i];
xi[i].result = y[i];
xi[i].weight = w[i];
xi[i].index = i + 1;

}
(void)qsort(xi, (size_t)nn, (size_t)sizeof(struct quadruple), myCompDouble);
for (int i = 0; i < nn; i++) {

x[i] = xi[i].value;
y[i] = xi[i].result;
w[i] = xi[i].weight;
xind[i] = xi[i].index;

}
free(xi);
return;

}

void mySortInteger(int *x, int *k, const int *n) {
int nn = *n;
struct pair *xi =

(struct pair *)calloc((size_t)nn, (size_t)sizeof(struct pair));
for (int i = 0; i < nn; i++) {

xi[i].value = x[i];
xi[i].index = i + 1;
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}
(void)qsort(xi, (size_t)nn, (size_t)sizeof(struct pair), myCompInteger);
for (int i = 0; i < nn; i++) {

x[i] = xi[i].value;
k[i] = xi[i].index;

}
free(xi);
return;

}

void tieBlock(double *x, int *iblks, const int *n, int *nblk) {
iblks[0] = 1;
for (int i = 1; i < *n; i++) {

if (x[i - 1] == x[i]) {
iblks[i] = iblks[i - 1];

} else {
iblks[i] = iblks[i - 1] + 1;

}
}
*nblk = iblks[*n - 1];
return;

}

void makeBlocks(double *x, double *w, double *xblks, double *wblks, int *iblks,
const int *n, const int *nblk) {

for (int i = 0; i < *nblk; i++) {
xblks[i] = 0.0;
wblks[i] = 0.0;

}
for (int i = 0; i < *n; i++) {

xblks[iblks[i] - 1] += w[i] * x[i];
wblks[iblks[i] - 1] += w[i];

}
for (int i = 0; i < *nblk; i++) {

xblks[i] = xblks[i] / wblks[i];
}
return;
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}

void sortBlocks(double *y, double *w, int *xind, const int *iblks, const int *n,
const int *nblk) {

int *nblks = (int *)calloc((size_t)*nblk, sizeof(int));
for (int i = 0; i < *n; i++) {

nblks[iblks[i] - 1]++;
}
int k = 0;
for (int i = 0; i < *nblk; i++) {

int nn = nblks[i];
(void)mySortInBlock(y + k, w + k, xind + k, &nn);
k += nn;

}
free(nblks);
return;

}

void jbkPava(double *x, double *w, const int *n) {
struct block *blocks = calloc((size_t)*n, sizeof(struct block));
for (int i = 0; i < *n; i++) {

blocks[i].value = x[i];
blocks[i].weight = w[i];
blocks[i].size = 1;
blocks[i].previous = i - 1; // index first element previous block
blocks[i].next = i + 1; // index first element next block

}
int active = 0;
do {

bool upsatisfied = false;
int next = blocks[active].next;
if (next == *n)

upsatisfied = true;
else if (blocks[next].value > blocks[active].value)

upsatisfied = true;
if (!upsatisfied) {

double ww = blocks[active].weight + blocks[next].weight;
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int nextnext = blocks[next].next;
blocks[active].value =

(blocks[active].weight * blocks[active].value +
blocks[next].weight * blocks[next].value) /

ww;
blocks[active].weight = ww;
blocks[active].size += blocks[next].size;
blocks[active].next = nextnext;
if (nextnext < *n) blocks[nextnext].previous = active;
blocks[next].size = 0;

}
bool downsatisfied = false;
int previous = blocks[active].previous;
if (previous == -1)

downsatisfied = true;
else if (blocks[previous].value < blocks[active].value)

downsatisfied = true;
if (!downsatisfied) {

double ww = blocks[active].weight + blocks[previous].weight;
int previousprevious = blocks[previous].previous;
blocks[active].value =

(blocks[active].weight * blocks[active].value +
blocks[previous].weight * blocks[previous].value) /

ww;
blocks[active].weight = ww;
blocks[active].size += blocks[previous].size;
blocks[active].previous = previousprevious;
if (previousprevious > -1) blocks[previousprevious].next = active;
blocks[previous].size = 0;

}
if ((blocks[active].next == *n) && downsatisfied) break;
if (upsatisfied && downsatisfied) active = next;

} while (true);
int k = 0;
for (int i = 0; i < *n; i++) {

int blksize = blocks[i].size;
if (blksize > 0.0) {



464 APPENDIX A. CODE

for (int j = 0; j < blksize; j++) {
x[k] = blocks[i].value;
k++;

}
}

}
free(blocks);

}

A.2.5 matrix.c

#include "smacof.h"

void gsC(double *x, double *r, int *n, int *m, int *rank, int *pivot,
double *eps) {

int i, j, ip, nn = *n, mm = *m, rk = *m, jwork = 1;
double s = 0.0, p;
for (j = 1; j <= mm; j++) {

pivot[j - 1] = j;
}
while (jwork <= rk) {

for (j = 1; j < jwork; j++) {
s = 0.0;
for (i = 1; i <= nn; i++) {

s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, j, nn)];
}
r[MINDEX(j, jwork, mm)] = s;
for (i = 1; i <= nn; i++) {

x[MINDEX(i, jwork, nn)] -= s * x[MINDEX(i, j, nn)];
}

}
s = 0.0;
for (i = 1; i <= nn; i++) {

s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, jwork, nn)];
}
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if (s > *eps) {
s = sqrt(s);
r[MINDEX(jwork, jwork, mm)] = s;
for (i = 1; i <= nn; i++) {

x[MINDEX(i, jwork, nn)] /= s;
}
jwork += 1;

}
if (s <= *eps) {

ip = pivot[rk - 1];
pivot[rk - 1] = pivot[jwork - 1];
pivot[jwork - 1] = ip;
for (i = 1; i <= nn; i++) {

p = x[MINDEX(i, rk, nn)];
x[MINDEX(i, rk, nn)] = x[MINDEX(i, jwork, nn)];
x[MINDEX(i, jwork, nn)] = p;

}
for (j = 1; j <= mm; j++) {

p = r[MINDEX(j, rk, mm)];
r[MINDEX(j, rk, mm)] = r[MINDEX(j, jwork, mm)];
r[MINDEX(j, jwork, mm)] = p;

}
rk -= 1;

}
}
*rank = rk;

}

A.2.6 jeffrey.c

// This implements the formulas in
//
// D.J. Jeffrey
// Formulae, Algorithms, and Quartic Extrema
// Mathematics Magazine, 1997, 70(5), 341-348
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//
// to find the minimum of a quartic polynomial.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define SQ(x) ((x) * (x))
#define CU(x) ((x) * (x) * (x))
#define QU(x) ((x) * (x) * (x) * (x))

void smacofJeffrey(double *a, double *minwhere, double *minvalue) {
if (a[4] <= 0.0) {

printf("Quartic term must be positive. Exiting...\n");
exit (EXIT_FAILURE);

}
double b0 = 0.0, b1 = 0.0, b2 = 0.0;
b2 += a[2] / (3.0 * a[4]);
b2 -= (SQ(a[3])) / (8.0 * SQ(a[4]));
b1 += a[1] / (2.0 * a[4]);
b1 += CU(a[3]) / (16.0 * CU(a[4]));
b1 -= (a[2] * a[3]) / (4.0 * SQ(a[4]));
b0 += (a[2] * SQ(a[3])) / (16.0 * SQ(a[4]));
b0 -= (a[1] * a[3]) / (4.0 * a[4]);
b0 -= (3.0 * QU(a[3])) / (256.0 * CU(a[4]));
if (fabs(b1) > 1e-15) {

double s = SQ(b1) + CU(b2) + sqrt(QU(b1) + 2 * SQ(b1) * CU(b2));
double t = pow(s, (double) 1 / 3);
double k = t + (SQ(b2) / t) + b2;
double infp = -0.75 * (k - b2) * (k - 3.0 * b2);
*minwhere = -b1 / k - 0.25 * a[3] / a[4];
*minvalue = infp * a[4] + a[0] + b0;

} else {
double infp = -2.25 * SQ(fmin(0.0, b2));;
*minwhere = sqrt(-fmin(0.0, 1.5 * b2));
*minvalue = infp * a[4] + a[0] + b0;

}
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return;
}

A.2.7 smacofBlockSort.c

/*

smacofBlockSort() is a routine to transform a matrix of dissimilarities (in
lower-triangular column-major storage) into a ordinal multidimensional scaling
structure (OMDS structure). An OMDS structure is an array of tie-blocks, where
each tie-block corresponds with a unique dissimilarity value. Tie-blocks have a
value, a size, a vector of weights, and a vector of indices. They are strictly
ordered by increasing value. The routine is written for the smacof project,
but it can be used as a preprocessor for any monotone regression problem.

*/

#include "../include/smacof.h"

int sortComp(const void *px, const void *py) {
double x = ((struct triple *)px)->value;
double y = ((struct triple *)py)->value;
return (int)copysign(1.0, x - y);

}

void smacofBlockSort(const double *x, const double *w, const int n, int nblock,
block *yi) {

triple *xi = (triple *)calloc((size_t)n, sizeof(triple));
yi = (struct block *)calloc((size_t)n, (size_t)sizeof(block));
for (int i = 0; i < n; i++) {

xi[i].value = x[i];
xi[i].weight = w[i];
xi[i].index = i;

}
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(void)qsort(xi, (size_t)n, (size_t)sizeof(triple), sortComp);
int counter = 0;
while (counter < n) {

double value = xi[counter].value;
int size = 0;
for (int j = counter; j < n; j++) {

if (xi[j].value == value) {
size += 1;

} else {
break;

}
}
yi[nblock].size = size;
yi[nblock].value = value;
yi[nblock].indices = (int *)calloc((size_t)size, sizeof(int));
yi[nblock].weights = (double *)calloc((size_t)size, sizeof(double));
for (int i = 0; i < size; i++) {

yi[nblock].indices[i] = xi[counter + i].index;
yi[nblock].weights[i] = xi[counter + i].weight;

}
counter += size;
printf("nblock %4d value %4.1f size %4d counter %4d", nblock,

yi[nblock].value, yi[nblock].size, counter);
printf("\nindices");
for (int i = 0; i < size; i++) {

printf("%4d", yi[nblock].indices[i] + 1);
}
printf("\nweights");
for (int i = 0; i < size; i++) {

printf("%4.1f", yi[nblock].weights[i]);
}
printf("\n");
if (counter == n) {

break;
} else {

nblock++;
}
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}
yi = (block *)realloc(yi, (size_t)nblock * sizeof(block));
free(xi);
return;

}

/*
double x1[10] = {3.0, 1.0, 1.0, 5.0, 1.0, 5.0, 1.0, 2.0, 5.0, 2.0};
double x2[10] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
double x3[10] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
double ww[10] = {1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0};
int n = 10;

int main() {
block *yi = NULL;
int nblock = 1;
(void)smacofBlockSort(x1, ww, n, nblock, yi);
printf("**********************************\n");
(void)smacofBlockSort(x2, ww, n, nblock, yi);
printf("**********************************\n");
(void)smacofBlockSort(x3, ww, n, nblock, yi);
free(yi);

}
*/

A.2.8 smacofConvert.c

#include "../include/smacof.h"

void smacofEncode(const int *ip, const int *jp, const int *np, int *kp) {
int i = *ip, j = *jp, n = *np;
*kp = i + (j - 1) * n - j * (j + 1) / 2;
return;

}



470 APPENDIX A. CODE

void smacofDecode(const int *kp, const int *np, int *ip, int *jp) {
int j = 1, m = 1, k = *kp, n = *np;
while (k >= ((j * n) - m + 1)) {

j += 1;
m += j;

}
*ip = k - (j - 1) * n + m;
*jp = j;
return;

}

/*
int main(void) {

int i = 0, j = 0, k = 0, n = 6;
printf("ENCODE\n\n");
for (j = 1; j < n; j++) {

for (i = (j + 1); i <= n; i++) {
(void)dencode(&i, &j, &n, &k);
printf(" %4d ", k);

}
}
printf("\n\n");
printf("DECODE\n\n");
for (int k = 1; k <= n * (n - 1) / 2; k++) {

(void)ddecode(&k, &n, &i, &j);
printf("%4d %4d\n", i, j);

}
return EXIT_SUCCESS;

}
*/
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A.2.9 nextPC.c

void swap(int* x, int i, int j) {
int temp;
temp = x[i];
x[i] = x[j];
x[j] = temp;

}

void nextPermutation(int* x, int* nn) {
int i, j, n = *nn;
i = n - 1;
while (x[i - 1] >= x[i]) i--;
if (i == 0) return;
j = n;
while (x[j - 1] <= x[i - 1]) j--;
swap(x, i - 1, j - 1);
j = n;
i++;
while (i < j) {

swap(x, i - 1, j - 1);
j--;
i++;

}
}

void nextCombination(int* n, int* m, int* next) {
int i, j, mm = *m - 1, nn = *n;
for (i = mm; i >= 0; i--) {

if (next[i] != nn - mm + i) {
next[i]++;
if (i < mm) {

for (j = i + 1; j <= mm; j++) next[j] = next[j - 1] + 1;
}
return;

}
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}
}
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Data

B.1 Small

## 1 2 3
## 2 1
## 3 2 4
## 4 5 2 1

B.2 De Gruijter

## KVP PvdA VVD ARP CHU CPN
## KVP 0.00000000 0.10473553 0.09803841 0.08557432 0.08929495 0.14026748
## PvdA 0.10473553 0.00000000 0.12501293 0.10492156 0.11571137 0.09524794
## VVD 0.09803841 0.12501293 0.00000000 0.10157300 0.09245748 0.15124332
## ARP 0.08557432 0.10492156 0.10157300 0.00000000 0.05952996 0.14584841
## CHU 0.08929495 0.11571137 0.09245748 0.05952996 0.00000000 0.14510429
## CPN 0.14026748 0.09524794 0.15124332 0.14584841 0.14510429 0.00000000
## PSP 0.12519896 0.08538829 0.14045351 0.12519896 0.13171005 0.07590070
## BP 0.13357036 0.13431448 0.12836149 0.13543067 0.12947767 0.11794374
## D66 0.11478121 0.10175903 0.08687654 0.11403709 0.11236281 0.13803510
## PSP BP D66
## KVP 0.12519896 0.1335704 0.11478121
## PvdA 0.08538829 0.1343145 0.10175903
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## VVD 0.14045351 0.1283615 0.08687654
## ARP 0.12519896 0.1354307 0.11403709
## CHU 0.13171005 0.1294777 0.11236281
## CPN 0.07590070 0.1179437 0.13803510
## PSP 0.00000000 0.1279894 0.11831580
## BP 0.12798942 0.0000000 0.13691892
## D66 0.11831580 0.1369189 0.00000000

B.3 Ekman

B.4 Vegetables

veg <- abs (qnorm (matrix (c(.500,.818,.770,.811,.878,.892,.899,.892,.926,
.182,.500,.601,.723,.743,.736,.811,.845,.858,
.230,.399,.500,.561,.736,.676,.845,.797,.818,
.189,.277,.439,.500,.561,.588,.676,.601,.730,
.122,.257,.264,.439,.500,.493,.574,.709,.764,
.108,.264,.324,.412,.507,.500,.628,.682,.628,
.101,.189,.155,.324,.426,.372,.500,.527,.642,
.108,.155,.203,.399,.291,.318,.473,.500,.628,
.074,.142,.182,.270,.236,.372,.358,.372,.500), 9, 9)))
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Unlicense

This book is free and unencumbered text and software released into the public
domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
book, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author of this book dedi-
cates any and all copyright interest in the software to the public domain. I
make this dedication for the benefit of the public at large and to the detri-
ment of my heirs and successors. I intend this dedication to be an overt act
of relinquishment in perpetuity of all present and future rights to this book
under copyright law.
THE BOOK IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
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