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Note

This book will be expanded/updated frequently. The directory deleeuw-
pdx.net/pubfolders/stress has a pdf version, the bib file, the complete Rmd
file with the code chunks, and the R and C source code. Suggestions for
improvement of text and code are welcome. All text and code are in the
public domain and can be copied and used by anybody in any way they like.
Attribution will be appreciated, but is not required.
Just as an aside: “above” in the text refers to anything that comes earlier
in the book and “below” refers to anything that comes later. This always
confuses me, so I had to write it down. I also number all displayed equations.
Equations are displayed if and only if they are important, are referred to in
the text, or mess up the line spacing.
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Preface

In 1980 members of the Department of Data Theory at the University of
Leiden taught a post-doctoral course in Nonlinear Multivariate Analysis.
The course content was sort-of-published, in Dutch, as Gifi (1980). The
course was repeated in 1981, and this time the sort-of-published version (Gifi
(1981)) was in English.
The preface gives some details about the author.

The text is the joint product of the members of the Department
of Data Theory of the Faculty of Social Sciences, University of
Leiden. ‘Albert Gifi’ is their ‘nom de plume’. The portrait, how-
ever, of Albert Gifi shown here, is that of the real Albert Gifi to
whose memory this book is dedicated, as a far too late recom-
pense for his loyalty and devotion, during so any years, to the
Cause he served.

Roughly ten years later a revised version of these course notes came out as
an actual book in the Wiley Series in Probabilty and Mathematical Statistics
(Gifi (1990)). This despite the fact that the contents of the book had very
little to do with either probability or mathematical statistics. The book is
organized around a series of computer programs for correspondence anal-
ysis, principal component analysis, and canonical analysis. The programs,
written in FORTRAN, are called HOMALS, PRINCALS, PRIMALS, CRIM-
INALS, CANALS, OVERALS because they combine classical linear multi-
variate analysis with optimal transformation of the variables, using alter-
nating least squares (or ALS). It serves, to some extent, as a manual for
the programs, but it also discusses the properties of the techniques imple-
mented in the programs, and it presents many detailed applications of these
techniques.

9
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Reviewers generally had some difficulties separating the wheat from the chaff.

As the spirit of Albert Gifi has faded away, so has his whimsical
approach to publishing, and his latest book is an idiosyncratic
account of multivariate methods developed by the Leiden group
during the 1970s. The names of their computer programs are dis-
tinguished by the ending ~ALS, thus we have OVERALS, PRIN-
CALS, HOMALS, CANALS, MORALS, MANOVALS, CRIMI-
NALS, PARTALS and PATHALS. Perhaps if you have a warped
mind like this reviewer, you will turn rapidly to CRIMINALS.
What can it be ? Surely it must give some illicit view of the
truth about the world, a vision of the underworld of multivariate
analysis ? Alas no ! It turns out only to be a synonym of Canon-
ical Variate Analysis, sometimes known as Multiple Discriminant
Analysis. Likewise HOMALS turns out to be Reciprocal Averag-
ing, otherwise known as Correspondence Analysis. (Hill (1990))

This ambiguity and confusion are not too surprising. The Gifi book was a
summary of the work of a large number of people, over a period of almost
20 years. Nevertheless, and perhaps because of this, it is somewhat of a
camel, which we define for our purposes as a horse designed by a committee.
Different chapters had different authors, and the common ideas behind the
various techniques were not always clearly explained.

In Gifi’s MVA the criterion called “meet” loss plays a central
role. Although the adoption of this criterion is one of the most
important contributions of Gifi, the book would have been much
more readable if this criterion had been introduced right at the
outset and was followed throughout the rest of the book. (Takane
(1992))

Nevertheless there is much original material in Gifi (1990), and the book
has early applications of alternating least squares, majorization, coordinate
descent, the delta method, and the bootstrap. And it emphasizes throughout
the idea that statistics is about techniques, not about models. But, yes, the
organization leaves much to be desired. An on demand printing of the first
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and only edition is now available on Amazon for $ 492 – although of course
used versions go for much less.

The book was published by a prestiguous publisher in a prestiguous series,
but it is fair to say it never really caught on. It is not hard to understand
why. The content, and the style, are unfamiliar to statisticians and mathe-
maticians. There is no inference, no probability, and very little rigor. The
content is in multivariate data analysis, which would be most at home these
days, if anywhere, in a computer science department. The Gifi group did
not have the resources of, say, Benzécri in France or Hayashi in Japan. The
members were mostly active in psychometrics, a small and insular field, and
they were from The Netherlands, a small country prone to overestimate its
importance (Marvell (1653)). They also did not have the evangelical zeal
necessary for creating and sustaining a large impact.

There have been some other major publication events in the Gifi saga.
Around the same time as the Wiley book there was the publication of SPSS
(1989). Starting in the late seventies the Gifi FORTRAN programs had
been embedded in the SPSS system. The SPSS Categories manual was
updated many times, in fact every time SPSS or IBM SPSS had a new
release. Over the years other programs produced by the Department of Data
Theory were added. A recent version is, for example, Meulman and Heiser
(2012), corresponding to IBM SPSS 21. It acknowledges the contributions
of some of the members of the Gifi team – but in IBM (2015), the version
for IBM SPSS 23, these acknowledgements and the names of the authors
have disappeared. Sic transit gloria mundi.

Michailidis and De Leeuw (1998) made an attempt to make the Gifi material
somewhat more accessible by publishing a review article in a widely read
mainstream statistical journal. Another such attempt is De Leeuw and Mair
(2009a), in which the homals package for R is introduced. The homals pack-
age is basically a single monolithic R function that can do everything the
Gifi programs can do, and then some. In both cases, however, the problem
remained that the techniques, and the software, were too convoluted and too
different from what both statisticians and users were accustomed to.

Van der Heijden and Van Buuren (1916) give an excellent, though somewhat
wistful, historic overview of the Gifi project. It is too early for eulogies, how-
ever, and we refuse to give up. This book is yet another reorganization of
the Gifi material, with many extensions. We take Yoshio Takane’s advice
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seriously, and we organize both the theory and the algorithms around what
is called “meet-loss” in Gifi. In our software we separate the basic com-
putational engine from its various applications that define the techniques of
Multivariate Analysis with Optimal Scaling (MVAOS). Hiding the core makes
it possible to make the programs behave in much the same way as traditional
MVA programs. The software is written in R (R Core Team (2016)), with
some parts of the computational engine written in C.
The book itself is written in Rmarkdown, using bookdown (Xie (2016)) and
knitr (Xie (2015)) to embed the computations and graphics, and to produce
html and pdf versions that are completely reproducible. The book and all
the files that go with it are in the public domain.
We would like to acknowledge those who have made substantial contributions
to the Gifi project (and its immediate ancestors and offspring) over the years.
Some of them are lost in the mists of time, some of them are no longer on this
earth. They are, in alphabetical order, Bert Bettonvil, Jason Bond, Catrien
Bijleveld, Frank Busing, Jacques Commandeur, Henny Coolen, Steef de Bie,
Jan de Leeuw, John Gower, Patrick Groenen, Chris Haveman, Willem Heiser,
Abby Israels, Judy Knip, Jan Koster, Pieter Kroonenberg, Patrick Mair,
Adriaan Meester, Jacqueline Meulman, George Michailidis, Peter Neufeglise,
Dré Nierop, Ineke Stoop, Yoshio Takane, Stef van Buuren, John van de Geer,
Gerda van den Berg, Eeke van der Burg, Peter van der Heijden, Anita van
der Kooij, Ivo van der Lans, Rien van der Leeden, Jan van Rijckevorsel,
Renée Verdegaal, Peter Verboon, Susañña Verdel, and Forrest Young.



Chapter 1

Introduction

1.1 Some Dualisms

The type of multivariate analysis (MVA) we discuss in this book is sometimes
called descriptive or exploratory, as opposed to inferential or confirmatory.
It is located somewhere on the line between computational linear algebra
and statistics, and it is probably close to data analysis, Big Data, machine
learning, knowledge discovery, data mining, business analytics, or whatever
other ill-defined label is used for the mode du jour.
In the days of Gifi (1990) there was a small-scale civil war between the math-
ematical statistical (confirmatory) approach to MVA and the data analytical
(exploratory) approach. This is not a new conflict, because it has its roots in
the Pearson-Yule debate (Mackenzie (1978)). The first shots in modern times
were probably fired by Tukey (1962), but much additional polemic heat was
generated in the 50 years since Tukey’s famous paper. In order to stand our
ground we were forced to participate, for example with De Leeuw (1984a),
De Leeuw (1988a), De Leeuw (1990).
Here is what Gifi (1990) says, clearly with some intent to provoke.

The statistical approach starts with a statistical model, usually
based on the multinormal distribution. The model is assumed to
be true, and within the model certain parametric hypotheses are
constructed. The remaining free parameters are estimated and
the hypotheses are tested. (Gifi (1990), p. 19)

13
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The data analytic approach does not start with a model, but
looks for transformations and combinations of the variables with
the explicit purpose of representing the data in a simple and com-
prehensive, and usually graphical, way. (Gifi (1990), p. 19)

Gifi’s first chapter, in particular his section 1.5, outlines an approach to
statistics that emphasizes techniques over models. A technique is a map of
data into representations of some sort. Representations can be test statis-
tics, confidence intervals, posterior distributions, tables, graphs. Statistics
studies the construction, properties, and performance of techniques. Models
are used to gauge techniques, that is to see how they perform on synthetic
data, which are data described by equations or generated by sampling. Of
course models can also be used to inspire techniques, but data analysis does
not deal with the inspirational phase. The models themselves are a part
of the client sciences, not of statistics. One of the key characteristics of a
technique is its stability, which is studied by using data perturbations of var-
ious sorts. Small and unimportant perturbations of the data should lead to
small and unimportant changes in the output. A large and important class
of perturbations is based on sampling from a population, leading to sampling
distributions, confidence intervals, hypothesis tests, and standard errors. In
Gifi’s branch of statistics the emphasis shifts from equations to algorithms,
and from explanation to prediction.
In related philosophizing Breiman (2001) contrasted the two cultures of data
modeling (98% of statisticians) and algorithmic modeling (2% of statistians),
and implored statisticians to spend less time and energy in the first culture
and more in the second.

Reading a preprint of Gifi’s book (1990) many years ago uncov-
ered a kindred spirit. (Breiman (2001), p. 205)

This was written some time after the influential paper by Breiman and Fried-
man (1985), which introduced the Gifi-like ACE technique for multiple re-
gression.
The emphasis in the data modeling culture is on explanation or information,
the emphasis in the algorithmic modeling culture on prediction. There are
various ways to present and evaluate this distinction. A good overview, from
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the philosophy of science point of view, is Shmueli (2010). From the lofty
heights of Academia we hear

The two goals in analyzing data which Leo calls prediction and
information I prefer to describe as “management” and “science.”
Management seeks profit, practical answers (predictions) useful
for decision making in the short run. Science seeks truth, fun-
damental knowledge about nature which provides understanding
and control in the long run. (Parzen, in the discussion of Breiman
(2001), p. 224)

The emphasis on techniques was also shared by Cleveland (2014), who pro-
posed a new curriculum for statistics departments with more emphasis on
computing with data and tool evaluation. Another early ally was Laurie
Davis, see the interesting papers by Davies (1995) and Davies (2008).

The first chapter of Gifi (1990) contains an interesting discussion
of statistical practice with special reference to multivariate data.
The point of view taken there, with its emphasis on ‘techniques’,
has points of contact with the present paper where we use Tukey’s
nomenclature and refer to ‘procedure’. (Davies (2008), p. 192)

Of course currently the big discussion is if Data Science is actually statistics
under a new name. And, more importantly, who should teach it. And,
even more importantly, which department should receive the grant money.
Parzen may believe that statisticians seek the Truth, whatever that is, but the
current situation in Academia is that there is no truth if you do not consider
profit. Statistics departments are typically small, and they feel threatened
by gigantic Schools of Engineering looming over them (Association (2014),
Yu (2014)). It is partly a question of scale: there are too many data to fit
into statistics departments. Numerous new graduate Data Science programs
are popping up, in many cases geared toward management and not so much
toward science. Statistics departments are seriously considering changing
their names, before the levies break and they are flooded by the inevitable
rise of data.
We shall not pay much attention any more to these turf and culture wars,
because basically they are over. Data analysis, in its multitude of disguises
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and appearances, is the winner. Classical statistics departments are gone,
or on their way out. They may not have changed their name, but their
curricula and hiring practices are very different from what they were 20 or
even 10 years ago.

Neither do men put new wine into old bottles: else the bottles
break, and the wine runneth out, and the bottles perish: but they
put new wine into new bottles, and both are preserved. (Matthew
9:17)

Notwithstanding the monumental changes, inferential statistics remains an
important form of stability analysis for data analysis techniques. Proba-
bilistic models are becoming more and more important in many branches
of science, and perturbing a probabilistic model is most naturally done by
sampling. Thus huge parts of classical statistrucs are preserved, and not
surprisingly these are exactly the parts useful in data analysis.

1.2 Quantifying Qualitative Data

One way of looking at Multivariate Analysis with Optimal Scaling, or
MVAOS, is as an extension of classical linear multivariate analysis to
variables that are binary, ordered, or even unordered categorical. In R
terminology, classical MVA techniques can thus be applied if some or all
of the variables in the dataframe are factors. Categorical variables are
quantified and numerical variables are transformed to optimize the linear or
bilinear least squares fit.
Least squares and eigenvalue methods for quantifying multivariate qualita-
tive data were first introduced by Guttman (1941), although there were some
bivariate predecessors in the work of Pearson, Fisher, Maung, and Hirschfeld
(see De Leeuw (1983) or Gower (1990) for a historical overview). In this
earlier work the emphasis was often on optimizing quadratic forms, or ratios
of quadratic forms, and not so much on least squares, distance geometry, and
graphical representations such as biplots (Gower and Hand (1996), Gower,
Le Roux, and Gardner-Lubbe (2015), Gower, Le Roux, and Gardner-Lubbe
(2016)). They were taken up by, among others, De Leeuw (1968a), by Ben-
zécri and his students in France (see Cordier (1965)), and by Hayashi and
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his students in Japan (see Tanaka (1979)). Early applications can be found
in ecology, following an influential paper by Hill (1974). With increasing
emphasis on software the role of graphical representations has increased and
continues to increase.
In De Leeuw (1974) a first attempt was made to unify most classical de-
scriptive multivariate techniques using a single least squares loss function
and a corresponding alternating least squares (ALS) optimization method.
His work then bifurcated to the ALSOS project, with Young and Takane at
the University of North Carolina Chapell Hill, and the Gifi project, at the
Department of Data Theory of Leiden University.
The ALSOS project was started in 1973-1974, when De Leeuw was visiting
Bell Telephone Labs in Murray Hill. ALSOS stands for Alternating Least
Squares with Optimal Scaling. The ALS part of the name was provided by
De Leeuw (1968b) and the OS part by Bock (1960). At early meetings of the
Psychometric Society some members were offended by our use of “Optimal
Scaling”, because they took it to imply that their methods of scaling were
supposedly inferior to ours. But the “optimal” merely refers to optimality in
the context of a specific least squares loss function.
Young, De Leeuw, and Takane applied the basic ALS and OS methodology
to conjoint analysis, regression, principal component analysis, multidimen-
sional scaling, and factor analysis, producing computer programs (and SAS
modules) for each of the techniques. An overview of the project, basically at
the end of its lifetime, is in Young, De Leeuw, and Takane (1980) and Young
(1981).
The ALSOS project was clearly inspired by the path-breaking work of
Kruskal (1964a) and Kruskal (1964b), who designed a general way to
turn metric multivariate analysis techniques into non-metric ones. In fact,
Kruskal applied the basic methodology developed for multidimensional
scaling to linear models in Kruskal (1965), and to principal component
analysis in Kruskal and Shepard (1974) (which was actually written around
1965 as well). In parallel developments closely related nonmetric methods
were developed by Roskam (1968) and by Guttman and Lingoes (see Lingoes
(1973)).
The Gifi project took its inspiration from Kruskal, but perhaps even more
from Guttman (1941) (and to a lesser extent from the optimal scaling work
of Fisher, see Gower (1990)). Guttman’s quantification method, which later
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became known as multiple correspondence analysis, was merged with linear
and nonlinear principal component analysis in the HOMALS/PRINCALS
techniques and programs (De Leeuw and Rijckevorsel (1980)). The MVAOS
loss function that was chosen ultimately, for example in the work of Burg,
De Leeuw, and Verdegaal (1988), had been used earlier by Carroll (1968) in
multi-set canonical correlation analysis of numerical variables.

A project similar to ALSOS/Gifi was ACE, short for Alternating Conditional
Expectations. The ACE method for regression was introduced by Breiman
and Friedman (1985) and the ACE method for principal component analy-
sis by Koyak (1987). Both techniques use the same ALS block relaxation
methods, but instead of projecting on a cone or subspace of possible trans-
formation, they apply a smoother (typically Friedman’s supersmoother) to
find the optimal transformation. This implies that the method is intended
primarily for continuous variables, and that the convergence properties of the
ACE algorithm are more complicated than those of a proper ALS algorithms.

An even more closely related project, by Winsberg and Ramsay, uses the cone
of I-splines (integrated B-splines) to define the optimal transformations. The
technique for linear models is in Winsberg and Ramsay (1980) and the one
for principal component analysis in Winsberg and Ramsay (1983). Again,
the emphasis on monotonic splines indicates that continuous variables play
a larger role than in the ALSOS or Gifi system.

So generally there have been a number of projects over the last 50 years
that differ in detail, but apply basically the same methodology (alternating
least squares and optimal scaling) to generalize classical MVA techniques.
Some of them emphasize transformation of continuous variables, some em-
phasize quantification of discrete variables. Some emphasize monotonicity,
some smoothness. Usually these projects include techniques for regression
and principal component analysis, but in the case of Gifi the various forms
of correspondence analysis and canonical analysis are also included.

1.3 Beyond Gifi

The techniques discussed in Gifi (1990), and implemented in the correspond-
ing computer programs, use a particular least squares loss function and min-
imize it by alternating least squares algorithms. All techniques use what
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Gifi calls meet loss, which is basically the loss function proposed by Car-
roll (1968) for multiset canonical correlation analysis. Carroll’s work was
extended in Gifi by using optimal scaling to transform or quantify variables
coded with indicators, and to use constraints on the parameters to adapt the
basic technique, often called homogeneity analysis, to different classical MVA
techniques.

There have been various extensions of the classical Gifi repertoire by adding
techniques that do not readily fit into meet loss. Examples are path analysis
(Coolen and De Leeuw (1987)), linear dynamic systems (Bijleveld and De
Leeuw (1991)), and factor analysis (De Leeuw (2004)). But adding these
techniques does not really add up to a new framework.

Somewhat more importantly, De Leeuw and Rijckevorsel (1988) discuss var-
ious ways to generalize meet loss by using fuzzy coding. Transformations are
no longer step functions, and coding can be done with fuzzy indicators, such
as B-spline bases. This makes it easier to deal with variables that have many
ordered categories. Although this is a substantial generalization the basic
framework remains the same.

One of the outgrowths of the Gifi project was the aspect approach, first
discussed systematically by De Leeuw (1988c), and implemented in the R
package aspect by Mair and De Leeuw (2010). In its original formulation it
uses majorization to optimize functions defined on the space of correlation
matrices, where the correlations are computed over transformed variables,
coded by indicators. Thus we optimize aspects of the correlation matrix over
transformations of the variables. The aspect software was recently updated
to allow for B-spline transformations (De Leeuw (2015a)). Many different
aspects were implemented, based on eigenvalues, determinants, multiple cor-
relations, and sums of powers of correlation coefficients. Unformately, aspects
defined in terms of canonical correlations, or generalized canonical correla-
tions, were not covered. Thus the range of techniques covered by the aspect
approach has multiple regression and principal component analysis in com-
mon with the range of the Gifi system, but is otherwise disjoint from it.

In De Leeuw (2004) a particular correlation aspect was singled out that could
bridge the gap between the aspect approach and the Gifi approach, provided
orthoblocks of transformations were introduced. This is combined with the
notion of copies, introduced in De Leeuw (1984b), to design a new class of
techniques that encompasses all of Gifi and that brings generalized canonical
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correlation analysis in the aspect framework. Thus correlation aspects, and
the majorization algorithms to optimize them, are now a true generalization
of the Gifi system.
*** This is the system we discuss in this book.



Chapter 2

Coding and Transformations

2.1 Variables and Multivariables

In the multivariate analysis techniques presented in this book the data are
measurements or classifications of n objects by m variables. Perhaps it is
useful to insert some definitions here. A variable is a function that maps a
domain of objects to a range of values. Domains are finite. The elements
of the domain can be individuals, animals, plants, time points, locations,
and so on. It is useful to distinguish the codomain (or range) of a variable
and its image. The codomain of a variable can be the real numbers, but
the image always is a finite set, the actual values the variable assumes on
the domain. A multivariable is a sequence of variables defined on the same
domain, with possibly different codomains. Multivariables are implemented
in R as dataframes. Variables can have a finite codomain, which can be
either ordered or unordered. This corresponds with a factor or an ordered
factor in R. MVAOS techniques quantify factors, replacing the values in
the image by real numbers. If the variables are real-valued to start with
we replace real numbers by other real numbers and we transform instead
of quantify. The distinction between quantification and transformation is
somewhat fluid, because the image of a variable is always finite and thus, in
a sense, all variables are categorical (a point also emphasized, for example,
in Holland (1979)).
Although the variables in a multivariable have the same domain, there can
be different numbers of missing data for different variables. We handle this in
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the same way as R, by adding NA to the range of all variables. In this context
it is also useful to define latent or unobserved variables. These are variables
for which all values are missing, i.e. for which the image only contains NA.
At first thought it seems somewhat perverse to have such completely missing
variables, but think of examples such as principal components, factor scores,
or error terms in linear models.

2.2 Induced Correlations and Aspects

If all categorical variables are quantified and all numerical variables are trans-
formed we can compute the induced correlation matrix of the transformed
and quantified variables. In the forms of MVAOS we consider in this book the
statistics we compute, except for the transformations themselves, are usually
functions of this induced correlation matrix. This means that they are func-
tions of the second order relations between the variables, or, in order words,
they are joint bivariate. Higher order moments and product moments are ig-
nored. Different multivariate distributions with the same bivariate marginals
will give the same MVAOS results.

2.3 Transformed Variables

The data are collected in the n×m matrix H, which codes the observations
on the m variables. MVAOS does not operate on the data directly, but on
transformations or quantifications of the variables. Choosing a transforma-
tion to minimize a loss function is known as optimal scaling. Clearly this
so-called optimality is only defined in terms of a specific loss function, with
specific constraints. Different constraints and different loss functions will
lead to different optimal transformations.
Let us define the types of transformations we are interested in. The n ×m
matrix of transformed variables H has columns hj, which are constrained by
hj = Gjzj, where Gj is a given matrix defining the basis for variable j. In
addition we require hj ∈ Cj and hj ∈ S, where Cj is a cone of transformations
and S is the unit sphere in Rn. This will be discussed in more detail in
later sections, but for the time being think of the example in which hj is
required to be a (centered and normalized) monotone polynomial function
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of the image values of variable j. The whole of Rn and a single point in Rn

are both special cases of these normalized cones. It is important, especially
for algorithm construction, that the restrictions are defined for each variable
separately. An exception to this rule is the orthoblock, using terminology
from De Leeuw (2004), which requires that all or some of the columns of
H are not only normalized but also orthogonal to each other. Clearly a
normalized variable is an orthoblock of size one.

2.4 Bases

In earlier MVAOS work, summarized for example in Gifi (1990) or Michailidis
and De Leeuw (1998), the basis matrices Gj were binary zero-one matrices,
indicating category membership. These matrices are also known as indica-
tor matrices. The same is true for the software in IBM SPSS Categories
(Meulman and Heiser 2012) or in the R package homals (De Leeuw and
Mair 2009a). In this paper we extend the current MVAOS software using
B-spline bases, which provide a form of fuzzy non-binary coding suitable for
both categorical and numerical variables (Rijckevorsel and De Leeuw 1988).
B-spline basis were already discussed for some special cases in De Leeuw,
Rijckevorsel, and Wouden (1981) and Gifi (1990), but corresponding easily
accessible software was never released.
In this book we continue to use the term indicators for bases. Thus bases
Gj must be non-negative, with rows that add up to one. If there is only one
non-zero entry in each row, which of course is then equal to one, the indicator
is crisp, otherwise it is fuzzy. B-spline bases are the prime example of fuzzy
indicators, but other examples are discussed in Rijckevorsel and De Leeuw
(1988). Only B-spline bases are implemented in our software, however.
Note that the identity matrix is a crisp indicator. This is of importance in
connection with missing data and orthoblocks.

2.5 Copies and Rank

Within a block there can be more than one version of the same variable.
These multiple versions are called copies. They were first introduced into the
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Gifi framework by De Leeuw (1984b). Since MVAOS transforms variables,
having more than one copy is not necessarily redundant, because different
copies can and will be transformed differently. As a simple example of copies,
think of using different monomials or orthogonal polynomials of a single
variable x in a polynomial regression. The difference between copies and
simply including a variable more than once is that copies have the same
basis Gj.
In the Gifi algorithms copies of a variable are treated in exactly the same
way as other variables. The notion of copies replaces the notion of the rank
of a quantification used in traditional Gifi, which in turn generalizes the
distinction between single and multiple quantifications. A single variable has
only one copy in its block, a multiple variable has the maximum number of
copies.
In our software the copies of a variable by definition have the same basis. It
is possible, of course, to include the same variable multiple times, but with
different bases. This must be done, however, at the input level. In terms of
the structures defined in the software, a gifiVariable can have multiple copies
but it only has one basis. If there is more than one basis for a variable,
then we need to define an additional gifiVariable. Also note that copies of a
variable are all in the same block. If you want different versions of a variable
in different blocks, then that requires you to create different gifiVariables.
Defining copies is thus basically a coding problem. It can be handled simply
by adding a variable multiple times to a data set, and giving each variable
the same bases. In our algorithm we use the fact that copies belong to the
same variable to create some special shortcuts and handling routines.
Ordinality restrictions on variables with copies require some special attention.
In our current implementation we merely require the first copy to be ordinal
with the data, the other copies are not restricted. Once again, if you want
ordinal restrictions on all copies you need to create separate gifiVariables for
each copy.

2.6 Orthoblocks

If a variable has more than one copy, then we require without loss of generality
that the transformations are orthogonal.
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2.7 Constraints

As discussed earlier, each variable has a cone of transformations associated
with it, and we optimize over these transformations. In ALSOS and classical
Gifi the three type of transformation cones considered are nominal, ordinal,
and numerical. Our use of B-splines generalizes this distinction, because both
numerical and nominal can be implemented using splines. What remains is
the choice for the degree of the spline and the location of the knots.
Choice of degree and knots is basically up to the user, but the programs
have some defaults. In most cases the default is to use crisp indicators with
knots at the data points. Of course for truly categorical variables (i.e. for
factors in R) crisp indicators are simply constructed by using the levels of
the factor. We include some utilities to place knots at percentiles, or equally
spaced on the range, or to have no interior knots at all (in which case we fit
polynomials).
And finally the user decides, for all variables, if she wants the transformations
(step functions, splines, and polynomials) to be monotonic with the data.
Default is not requiring monotonicity.
Note that we require the spline to be monotonic in the non-missing data
points – this does not mean the spline is monotonic outside the range of
the data (think, for example, of a quadratic polynomial), it does not even
mean the spline is monotonic between data points. This makes our spline
transformations different from the integrated B-splines, or I-splines, used by
Winsberg and Ramsay (1983), which are monotone on the whole real line.
Because each variable has a finite image we are not really fitting a spline, we
are fitting a number of discrete points that are required to be on a spline,
and optionally to be monotonic with the data. In Winsberg and Ramsay
(1983) the requirement is that the fitted points are on an I-spline, which
automatically makes them monotonic with the data. Clearly our approach
is the less restrictive one.

2.8 Missing Data

The utility makeMissing() expands the basis for the non-missing data in
various ways. Option “m” (for “multiple”) is the default. It replaces the
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basis with the direct sum of the non-missing basis and an identity matrix
for the missing elements. Option “s” (for “single”) adds a single binary
column to the basis indicating which elements are missing. Option “a” (for
“average”) codes missing data by having all the elements in rows of the basis
corresponding with missing data equal to one over the number of rows. With
all three options the basis remains an indicator. Some of these options make
most sense in the context of crisp indicators, where they are compared in
Meulman (1982).
So suppose the data are

## [,1]
## [1,] -0.50
## [2,] NA
## [3,] 0.75
## [4,] 0.99
## [5,] NA

Create a basis for the non-missing values with

mprint(basis <- bsplineBasis(x[which(!is.na(x))],1,c(-1,0,1)))

## [,1] [,2] [,3]
## [1,] 0.50 0.50 0.00
## [2,] 0.00 0.25 0.75
## [3,] 0.00 0.01 0.99

The three different completion options for missing data give

mprint (makeMissing (x, basis, missing = "m"))

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.50 0.50 0.00 0.00 0.00
## [2,] 0.00 0.00 0.00 1.00 0.00
## [3,] 0.00 0.25 0.75 0.00 0.00
## [4,] 0.00 0.01 0.99 0.00 0.00
## [5,] 0.00 0.00 0.00 0.00 1.00
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mprint (makeMissing (x, basis, missing = "s"))

## [,1] [,2] [,3] [,4]
## [1,] 0.50 0.50 0.00 0.00
## [2,] 0.00 0.00 0.00 1.00
## [3,] 0.00 0.25 0.75 0.00
## [4,] 0.00 0.01 0.99 0.00
## [5,] 0.00 0.00 0.00 1.00

mprint (makeMissing (x, basis, missing = "a"))

## [,1] [,2] [,3]
## [1,] 0.50 0.50 0.00
## [2,] 0.33 0.33 0.33
## [3,] 0.00 0.25 0.75
## [4,] 0.00 0.01 0.99
## [5,] 0.33 0.33 0.33

The default option for missing data in the previous version of the Gifi system
was “missing data deleted”, which involves weighting the rows in the loss
functions by the number of non-missing data in that row. This leads to some
complications, and consequently we have no option “d” in this version of Gifi.

2.9 Active and Passive Variables

If a variable is passive (or supplementary) it is incorporated in the analysis,
but it does not contribute to the loss. Thus an analysis that leaves the passive
variables out will give the same results for the active variables. Passive
variables are transformed like all the others, but they do not contribute to
the block scores, and thus not to the loss. They have category quantifications
and scores, and can be used in the corresponding plots.
If all variables in a block are passive, then the whole block does not contribute
to the loss. This happens specifically for singletons, if the single variable in
the block is passive.
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2.10 Interactive Coding

One of the major contributions of Analyse des Données is the emphasis on
coding, which in our context can be defined as choosing how to represent the
raw data of an experiment in an actual data frame (and, to a lesser extent,
how to choose blocks, number of copies, dimensionality, degrees, and knots).
In the section we discuss one important coding variation. Suppose we have
n observations on two factors, one with p levels and one with q levels. Then
the data can be coded as n observations on one factor with p × q levels,
and we can construct a corresponding crisp indicator. The same reasoning
applies to more than two categorical variables, which we can always code
interactively. It also applies to bases for numerical variables, where we can
define an interactive basis by using products of columns from the bases of
each of the variables.
If G = {gis} and H = {hit} are two indicators of dimensions n × mg and
n ×mh, then the n ×mgmh matrix with elements {g_{is}h_{it}} is again
an indicator: the elements are non-negative, and rows add up to one.

mprint (x <- bsplineBasis (1:9/10, 1, .5))

## [,1] [,2] [,3]
## [1,] 1.00 0.00 0.00
## [2,] 0.75 0.25 0.00
## [3,] 0.50 0.50 0.00
## [4,] 0.25 0.75 0.00
## [5,] 0.00 1.00 0.00
## [6,] 0.00 0.75 0.25
## [7,] 0.00 0.50 0.50
## [8,] 0.00 0.25 0.75
## [9,] 0.00 0.00 1.00

mprint (y <- makeIndicator (c (rep (1, 5), rep (2, 4))))

## [,1] [,2]
## [1,] 1.00 0.00
## [2,] 1.00 0.00
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## [3,] 1.00 0.00
## [4,] 1.00 0.00
## [5,] 1.00 0.00
## [6,] 0.00 1.00
## [7,] 0.00 1.00
## [8,] 0.00 1.00
## [9,] 0.00 1.00

mprint (makeColumnProduct (list (x, y)))

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.00 0.00 0.00 0.00 0.00 0.00
## [2,] 0.75 0.00 0.25 0.00 0.00 0.00
## [3,] 0.50 0.00 0.50 0.00 0.00 0.00
## [4,] 0.25 0.00 0.75 0.00 0.00 0.00
## [5,] 0.00 0.00 1.00 0.00 0.00 0.00
## [6,] 0.00 0.00 0.00 0.75 0.00 0.25
## [7,] 0.00 0.00 0.00 0.50 0.00 0.50
## [8,] 0.00 0.00 0.00 0.25 0.00 0.75
## [9,] 0.00 0.00 0.00 0.00 0.00 1.00
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Chapter 3

Aspects

3.1 Definition

An aspect is a real valued function ϕ defined on the compact convex set
Rm×m of correlation matrices of order m. Note that a correlation matrix is
a positive semi-definite matrix with ones on the diagonal.

In De Leeuw (2004) a class of MVAOS techniques is defined by optimizing
aspects, using majorization algorithms. Optimization is over a set R of
correlation matrices, usually the correlation matrices that correspond with
admissible transformations of the data. See De Leeuw (1988b) and De Leeuw,
Michailidis, and Wang (1999) for additional results on aspects. Software in
R that optimizes general aspects is discussed by Mair and De Leeuw (2010).

The aspect optimization algorithm is based on majorization, and assumes
that the aspect that is maximized is a convex function on the space of corre-
lation matrices (or, equivalently, that the aspect is concave and minimized).
Some examples of interesting convex aspects are:

• The sum of the p largest eigenvalues of the correlation matrix (as in
principal component analysis).

• The squared multiple correlation (SMC) of one variable with the others
(as in multiple regression).

• The sum of some SMC’s over some or all variables (as in path analysis).
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There are also some convex aspects are not directly associated with a stan-
dard multivariate technique.

• The sum of the pth powers of the correlation coefficients, with p ≥ 1.
• The sum of the pth powers of the absolute values of the correlation

coefficients, with p ≥ 1.
• Any norm on the space of correlation matrices.

Another interesting aspect, related to multinormal maximum likelihood es-
timation, is

ϕ(R) = min
Γ∈G

log det(Γ) + tr RΓ−1,

where G is some (possibly parametrized) subset of the correlation matrices.
For instance, G could be all matrices satisfying some factor analysis or struc-
tural equations model. To compute ϕ we have to calculate the multinormal
maximum likelihood estimate of the model for given R. The aspect ϕ is
concave in R, so in our framework we minimize it over R ∈ R.

3.2 Stationary Equations

The stationary equations when optimizing a differentiable aspect ϕ over the
centered and standardized transformations in xj are

m∑
ℓ=1

∂ϕ

∂rjℓ

E(xℓ|xj) = λjxj

3.3 Bilinearizability



Chapter 4

Pattern Constraints and Gifi
Loss

4.1 Aspects from Patterns

MVAOS is a linear multivariate technique in the sense that it makes linear
combinations of transformed variables, and it is a nonlinear multivariate
technique in the sense that these transformations are generally nonlinear.
The coefficients of the linear combinations are collected in a matrix A, which
we call the pattern. There are L linear combinations of the m variable blocks,
and consequently there are mL submatrices Ajℓ. L is the number of equation
blocks. Constraints on the pattern largely define the technique. The typical
situation is that either Ajℓ is free to vary over all matrices of the appropriate
dimensions, or Ajℓ is equal to a fixed matrix, usually either the identity
or zero. But more complicated constraints on the Ajℓ are sometimes also
necessary.
An MVAOS System is a bilinear homogeneous system in the transformed
variables H and the pattern A of the form HA = 0. There is no assumption
that for actual data this system has a non-trivial solution. We will look for
approximate solutions, using a least squares loss function. Thus we define Gifi
Multivariate Analysis, or MVAOS, as the minimization of the loss function

σ(H, A) =
L∑

ℓ=1
SSQ (

m∑
j=1

HjAjℓ), (4.1)
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over H and A, under suitable restrictions. Here SSQ() is the (unweighted)
sum of squares. The usual restriction on A is that for each block of equations
ℓ there is at least one block of variables j such that Ajℓ = I.

If we write the MVAOS system simply as HA = 0 the loss function becomes
σ(H, A) = tr A′R(H)A, with R(H) =: H ′H the induced correlation matrix
of the transformed variables in H.

In order to make MVAOS systems less mysterious we give three examples,
choosing the names of the parameters to fit the problem. This is also an
opportunity to sprinkle some more acronyms around. The first is multivariate
linear regression (MLR). Its MVAOS system is

[
Y X

] [
I
−B

]
=

[
0

]
,

which means we minimize SSQ(Y −XB) over B and possibly over transfor-
mations of the columns of X and Y . If we require that rank(B) = p, with
p less than the minimum of the number of rows and columsn of B, then this
becomes reduced rank regression (RRR). The second example is principal
component analysis (PCA). This has the same MVAOS system as MLR, but
the minimization over X is over all orthoblocks, i.e. all X such that X ′X = I.
The final example for now is exploratory factor analysis (EFA). Its MVAOS
system is

[
Y F U

]  I
−A
−∆

 =
[
0

]
,

and we minimize SSQ(Y − FA − U∆), with the constraint that (F | U) is
an orthoblock and that ∆ is diagonal.
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4.2 Gifi Loss

For embedding the previous Gifi work in our new framework we define a
specific class of MVAOS systems, called Gifi systems. They are of the form

[
X H1 · · · Hm

]


I 0 · · · 0
−A1 I · · · 0

0 −A2 · · · 0
... ... . . . ...
0 0 · · · I
0 0 · · · −Am


and thus Gifi loss is

σ(X, H, A) =
m∑

j=1
SSQ (X −HjAj). (4.2)

In (4.2) the matrix X is an orthoblock, which contains the object scores. Note
that in Gifi loss each variable block j corresponds with a unique submatrix
Aj, except for the object scores block, which contributes to all equation
blocks. In Gifi systems the Aj are generally unconstrained.
There is some additional terminology that is more or less specific to Gifi
loss. The variable scores are Vk =: hka′

k = Gkzka′
k, and the block scores are

Uj =: HjAj = ∑
k∈Kj

Vk. The category quantifications are Yk =: zka′
k, so that

Vk = GkYk. Note that both variable scores and category quantifications, as
defined here, are of rank one. In other words, their columns as well as their
rows are proportional to each other.
A Gifi solution can be associated with various sets of loadings, i.e. correlations
between observed variables and constructed (or latent) variables, in this case
object scores. Since both X and Hj are centered and normalized the variable
loadings for block j are simply the cross-product X ′Hj. Because optimal Aj is
the linear least squares solution for given X and Hj we have H ′

j(X−HjAj) =
0, which means the loadings are equal to the covariances between transformed
variables and block scores. Each block has a discrimination matrix, defined
as ∆j =: A′

jH
′
jHjAj = A′

jH
′
jX = X ′HjH

+
j X, with H+

j the Moore-Penrose
inverse. The diagonal Λj =: diag(∆j) of the discrimination matrix, the
discrimination measures, are the variances of the block scores. Thus the
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block loadings, the correlations between transformed variables Hj and block
scores Uj are equal to the correlations between the object scores and the
block scores, and are given by H ′

jUjΛ
− 1

2
j = X ′UjΛ

− 1
2

j .

Loss function (4.2) can be interpreted geometrically. Zero loss, i.e. solvability
of the Gifi system, means that the scores xi for object i coincide with the j
block scores uij, which consequently coincide with each other. This is why
Gifi analysis is also called homogeneity analysis, because we transform and
combine the variables in such a way that the block scores are as homogeneous
as possible. If we plot the n object scores xi and the n block scores uij in a p-
dimensional plot, then we want to make the squared distances SSQ(xi−uij)
summed over all i and j to be as small as possible.

4.3 Associated Eigenvalue Problems

Associated with the problem of minimizing loss function (4.2) are some eigen-
value and singular value problems defined by the matrices Hj. This has been
discussed in detail in Gifi (1990), and there are some more recent discussions
in A. Tenenhaus and Tenenhaus (2011) and Van der Velden and Takane
(2012).

We begin the section with some definitions, which are more or less standard
in MVAOS. First H =: (H1 | H2 | · · · | Hm), and C =: H ′H. The matrix C,
which is called the Burt matrix in correspondence analysis, is a p × p block
matrix, with m × m blocks define by Cjℓ =: H ′

jHℓ. We also use separate
notation Dj =: Cjj = H ′

jHj for the diagonal blocks in C, and for their direct
sum D =: D1 ⊕ · · · ⊕Dm. Finally A stacks the Aj on top of each other.

The stationary equations for minimizing σ over X ′X = I and A, for given
H, are

H ′X = DA, (4.3)
HA = XM, (4.4)

with X ′X = I, and M an r × r symmetric matrix of Lagrange multipliers.
It follows that

CA = DAM, (4.5)
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as well as
HD+H ′X = XM, (4.6)

with X ′X = I and D+ the Moore-Penrose inverse of D. It follows that X =
KT , where K are eigenvectors corresponding with the r largest eigenvalues
of HD+H and L is an arbitrary rotation matrix. In the same way A = LT ,
where L are the eigenvectors corresponding with the r largest eigenvalues of
D+C. The non-zero eigenvalues of HD+H ′ and D+C are the same, both are
equal to the squares of the singular values of HD− 1

2 , with D− 1
2 the symmetric

square root of D+.
The result can be made a bit more intuitive by defining the orthogonal pro-
jectors Pj =: HjD

+
j H ′

j and their average P⋆. Then X can be chosen as
the normalized eigenvectors of P⋆ and, if λs are the corresponding ordered
eigenvalues,

min
X′X=I

min
A

σ(X, A, H) =
r∑

s=1
(1− λs(P⋆)). (4.7)

The eigenvalues in Λ are all between zero and one.
In MVAOS the fit of block j is called the discrimination matrix. It is defined
as ∆j =: X ′PjX = A′

jDjAj. Note that the average discrimination measure
∆⋆ is equal to the diagonal matrix Λ.

4.4 History

The history of loss function (4.1) is simple. Although numerous special cases
have been used over the years, in its general form it only occurs, as far as
we know, in De Leeuw (2004). It was designed to bridge the gap between
(4.2) and linear systems such as RRR, MIMIC, EFA, and LISREL/EQS. It
mainly differs from (4.2) in its systematic use of copies and orthoblocks.
The history of (4.2), on the other hand, is complicated. It is easiest to start
with the special case in which all variables are numerical (in our system that
means no internal knots and degree equal to one). In that case MVAOS is a
form of Generalized Canonical Correlation Analysis (GCCA), which extends
canonical correlation analysis (CCA) to two or more blocks of variables.
The various GCCA techniques proposed over the years for computing p-
dimensional solutions are either simultaneous or successive. In a successive
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algorithm the loss function is only defined for p = 1. It is first optimized over
all one-dimensional solutions. And then, for a subsequent dimension q, the
one-dimensional criterion is optimized over all solutions that are orthogonal
to solutions 1, · · · , q − 1. In a simultaneous technique the loss function is
defined for all p, and the solution is computed by minimizing over all p-
dimensional solutions. In a successive solution the first p dimensions of a p+1
dimensional solution are the p dimensional soution, i.e. successive solutions
are nested. Simultaneous solutions are generally not nested. On the other
hand the successive p dimensional solution is usually not the best possible p
dimensional solution.

GCCA starts with Horst (1961b), Horst (1961a). The techniques proposed by
Horst are successive, which means his loss functions are only defined for one-
dimensional solutions, specifically one-dimensional block scores uj = Hjaj.
In Horst (1961a) four different techniques are proposed, with different loss
functions, all defined as functions of the induced correlation matrix of the
block scores. For our purposes, the interesting one is his method 2, in which
the largest eigenvalue of the induced correlation matrix is maximized. Horst
(1961b) uses a different criterium, the sum of the correlation coefficients,
which is not related to the Gifi loss function in any simple way.

In a small paper, hidden away in a large proceedings volume, Carroll (1968)
proposed a successive method maximizing ∑m

j=1 cor2(x, Hjaj) over aj and the
auxilary variable x. This turns out to be equivalent to method 2 of Horst.
The work of Horst and Carroll was extended by Kettenring (1971) (in greater
detail in Kettenring (1969)), who introduced several additional criteria, and
baptized the Horst-Carroll method MAXVAR. In later work, it was shown
by Gifi (1980) that minimizing ∑p

s=1
∑m

j=1 cor2(xs, Hjajs) over X ′X = I and
A gives the same result as successive MAXVAR. Also see M. Tenenhaus and
Young (1985). We need one important qualification, using terminology in-
troduced by Dauxois and Pousse (1976), which is that the successive method
should use weak orthogonality ∑m

j=1 a′
jsHjHjajt = δst, with δst the Kronecker

delta, and not strong orthogonality, which says that a′
jsHjHjajt = δst for

all j, s, t. More recently Kiers, Cléroux, and Ten Berge (1994) have shown
that simultaneous/successive MAXVAR also optimizes various measures of
correlation defined on matrix space.

The most important contribution of Gifi, however, is the switch from cor-
relations and quadratic forms to least squares loss functions and Euclidean



4.4. HISTORY 39

distances, ultimately leading to the loss function (4.2). Undoubtedly this
was partly due to the heavily geometrical approach to MVA we were taught
by John van de Geer, the father of Albert Gifi (Van de Geer (1971)). Van
de Geer was influenced in turn by Coombs (1964), who introduced another
basically geometric approach for the representation of data. On the com-
putational side there was the influence of multidimensional scaling, with its
emphasis on distance, breaking through in in the late sixties and early sev-
enties. Shepard, Kruskal, Gnanadesikan, and Kettenring all worked at Bell
Telephone Laboratories in Murray Hill, and both De Leeuw and Benzécri
had visiting positions there around that time.
In the classical Gifi system (Gifi (1990), Michailidis and De Leeuw (1998)) a
slightly different parametrization of Gifi loss, and a correspondingly different
ALS algorithm, were used. The loss function used by Gifi is

σ(X, Y ) = 1
m

m∑
j=1

SSQ (X −
∑

ℓ∈Kj

GℓYℓ), (4.8)

where the Gℓ are known spanning matrices for the cones of transformations,
and the Yℓ are matrices of category quantifications. Loss function (4.8) is
geared more towards quantification of discrete categorical variables.
Because of the full rank decompositions Yjℓ = ZjℓAjℓ it follows that (4.2) and
(4.8) are essentially the same. Simply define Hj = GjZj. We feel that the
alternative parametrization in terms of Hj and Aj has some conceptual and
computational advantages.
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Chapter 5

Algorithm

5.1 Block Relaxation

Our task is to minimize σ(H, A) over H and A, suitably constrained. Write
the constraints as H ∈ H and A ∈ A. The strategy we use is block relaxation
((deleeuw_B_15?)). Thus we iterate as follows.

0. Set k = 0 and start with some H(0).
1. A(k) ∈ argmin

A∈A
σ(H(k), A).

2. H(k+1) ∈ argmin
H∈H

σ(H, A(k)).
3. If converged stop. Else k ← k + 1 and go to step 1.

It is assumed that step 1, updating A for given H, can be carried out simply
by some form of linear least squares. We assume that for each ℓ there is at
least one j such that Ajℓ = I. Note that this is the case for MLR, PCA,
EFA, and for all Gifi Systems.
Step 2 is somewhat more intricate, because of the cone restrictions. In par-
titioned form we can write the loss function as

σ(H, A) =
m∑

i=1
tr H ′

i

m∑
j=1

Hj

L∑
ℓ=1

AjℓA
′
iℓ

Bij(A) =
L∑

ℓ=1
AjℓA

′
iℓ

41
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5.2 Majorization

tr H ′HG = tr (H̃ +(H−H̃))′(H̃ +(H−H̃))G ≥ tr H̃ ′H̃G+2tr H̃ ′(H−H̃)G

tr H ′H̃G(H̃)

5.3 Alternating Least Squares

The standard way to minimize loss function (4.8) is implemented in the
OVERALS program Meulman and Heiser (2012). It is also the one used in the
homals package (De Leeuw and Mair 2009a).
In this paper the algorithm is different because we use the loss function
(4.2). We still use ALS, which means in this case that we cycle through
three substeps in each iteration. We update A for given X and H, we then
update X for given H and A, and finally we update H for given X and A.
Algorithm A goes as follows.

0. Set k = 0 and start with some X(0), H(0), A(0).
1. X(k+1) = ortho(center(H(k)A(k)).
2. For j = 1, · · · , m compute A

(k+1)
j = {H(k)

j }+X(k+1).
3. For j = 1, · · · , m and s = 1, · · · pj compute h

(k+1)
js = projKjs∩S((X(k+1)−∑

t<s h
(k+1)
jt {a(k+1)

jt }′ −∑
t>s h

(k)
jt {a

(k+1)
jt }′)a(k+1)

s ).
4. If converged stop. Else k ← k + 1 and go to step 1.

In step 1 we use superscript + for the Moore-Penrose inverse. In step 2 the
center operator does column centering, the ortho operator finds an orthonor-
mal basis for the column space of its argument.
The complicated part is step 4, the optimal scaling, i.e. the updating of Hj

for given X and Aj. We cycle through the variables in the block, each time
projecting a single column on the cone of admissible transformations of the
variable, and then normalizing the projection to length one. The target,
i.e. the vector we are projecting, is complicated, because the other variables
in the same block must be taken into account.
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In order to simplify the optimal scaling computations within an iteration we
can use majorization (deleeuw_B_15?). This has the additional benefit
that the optimal scaling step becomes embarassingly parallel. We expand
the loss for block j around a previous solution H̃j.

SSQ(X−HjAj) = SSQ(X−H̃jAj)−2tr (Hj−H̃j)′(X−H̃jAj)A′
j+tr A′

j(Hj−H̃j)′(Hj−H̃j)Aj.

Now

tr (Hj − H̃j)AjA
′
j(Hj − H̃j)′ ≤ κj tr (Hj − H̃j)′(Hj − H̃j),

where κj is the largest eigenvalue of A′
jAj. Thus

SSQ(X−HjAj) ≤ SSQ(X−H̃jAj)+κj SSQ(Hj−Uj)−
1
κj

SSQ((X−H̃jAj)A′
j),

where Uj is the target

Uj = H̃j + 1
κj

(X − H̃jAj)A′
j. (3)

It follows we can update the optimal scaling of the variables by projecting
the columns of Uj on their respective cones and then normalizing. See De
Leeuw (1975) for results on normalized cone regression. This can be done for
all variables in the block separately, without taking any of the other variables
in the block (or in any of the other blocks) into account. Thus the optimal
scaling is easy to parallellize. The resulting algorithm B is as follows.

0. Set k = 0 and start with some X(0), H(0), A(0).
1. X(k+1) = ortho(center(H(k)A(k)).
2. For j = 1, · · · , m compute A

(k+1)
j = {H(k)

j }+X(k+1).
3. For j = 1, · · · , m compute U

(k+1)
j = H

(k)
j + 1

κj
(X(k+1)−H

(k)
j A

(k+1)
j ){A(k+1)

j }′

and for s = 1, · · · pj compute h
(k+1)
js = projKjs∩S(u(k+1)

js ).
4. If converged stop. Else k ← k + 1 and go to step 1.

5.4 Implementation Details

If we follow the ALS strategy strictly the ortho() operator should be im-
plemented using Procrustus rotation (Gibson 1962). Thus if Z = KΛL′ is
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the singular value decomposition of X, then ortho(Z) = KL′. Note, how-
ever, that any other basis for the column space of Z merely differs from
the Procrustus basis by a rotation. And this rotation matrix will carry un-
modified into the upgrade of Aj in step 2 of the algorithm, and thus after
steps 1 and 2 the loss will be the same, no matter which rotation we select.
In our algorithm we use the QR decomposition to find the basis, using the
Gram-Schmidt code from De Leeuw (2015b).

In actual computation we column-center the basis and compute a full rank
QR decomposition, using the code in De Leeuw (2015b). Thus Gℓ = QℓRℓ,

We implement the cone restrictions by the constraints hjs = Gjszs in com-
bination with Tjshjs ≥ 0. Thus the transformed variables must be in the
intersection of the subspace spanned by the columns of the transformation
basis Gjs and the polyhedral convex cones of all vectors h such that Tjsh ≥ 0.
We suppose that all columns of the Gjs add up to zero, and we require, in
addition, the normalization SSQ(hjs) = 1.

We use the code described in De Leeuw (2015c) to generate B-spline bases.
Note that for coding purposes binary indicators are B-splines of degree zero,
while polynomials are B-splines without interior knots. We include the
utility functions to generate lists of knots. There is knotsQ() for knots at
the quantiles, knotsR() for knots equally spaced on the range, knotsD() for
knots at the data points, and knotsE() for no interior knots. Also note that
binary indicators can be created for qualitative non-numerical variables, for
which B-splines are not defined. We have added the option using degree
-1 to bypass the B-spline code and generate an indicator matrix, using the
utility makeIndicator(). Note that 'makeIndicator(foo) is equivalent to
bsplineBasis(foo, degree = 0, innerknots = sort(unique(foo))).
Throughout we first orthonormalize the basis matrices Gjs, using the
Gram-Schmidt code from De Leeuw (2015b).

The matrices Tjs in the homogeneous linear inequality restrictions that de-
fine the cones Kjs can be used to define monotonicity or convexity of the
resulting transformations. In the current implementation we merely allow
for monotonicity, which means the Tjs do not have to be stored. The trans-
formations for each variable can be restricted to be increasing, or they can
be unrestricted. By using splines without interior knots we allow in addition
for polynomial transformations, which again can be restricted to be either
monotonic or not. Note that it is somewhat misleading to say we are fitting
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monotone splines or polynomials, we are mainly requiring monotonicity at
the data points.

If there are multiple copies of a variable in a block then requiring the transfor-
mation to be ordinal means that we want the transformation of the first copy
to be monotonic. The transformations of the other copies are not constrained
to be monotonic. If you want all copies to be transformed monotonically, you
have to explicitly introduce them as separate variables.

For variables with copies there is yet another complication. For copies we
have HjAj = Gj(ZjAj) = GjYj. If we require monotonicity in MVAOS we
constrain a column of Hj (in fact, the first one) to be monotonic. In classic
Gifi, in which the Gj are binary indicators, we constrain the first column of
Yj, which automatically implies the first column of GjYj is monotonic as well.
In previous Gifi work with B-splines, we also constrained the first column of
Yj, which again implied the first column of GjYj was monotnic as well. But
in our current MVAOS implementation monotonicity of the first column of
Hj does not imply monotonicity of the first column of HjAj, even if the basis
Gj is a binary indicator. This discrepancy between the old and the new Gifi
only comes into play for ordinal variables with multiple copies.

Missing data are incorporated in the definition of the cones of transformations
by using a Gjs which is the direct sum of a spline basis for the non-missing
and an identity matrix for the missing data. This is called missing data
multiple in Gifi (1990). There are no linear inequality restrictions on the
quantifications of the missing data.

5.5 Wrappers

The homals() implementation in De Leeuw and Mair (2009a) is a single
monolithic program in R, which specializes to the various MVAOS techniques
by a suitable choice of its parameters. This approach has some disadvantages.
If we want principal component analysis, we already know all blocks are sin-
gletons. If we want multiple correspondence analysis we know each variable
has p copies. If we want multiple regression, we know there are two blocks,
and one is a singleton. So it is somewhat tedious to specify all parameters
all of the time. Also, some of the output, graphical and otherwise, is spe-
cific to a particular technique. For regression we want residuals and fitted
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values, in canonical analysis we want block scores and loadings. And, more
generally, we may want the output in a form familiar from the classical MVA
techniques. It is indeed possible to transform the homals() output to more
familar forms (De Leeuw (2009)), but this requires some extra effort.
In this book we go back to the original approach of Gifi (1990) and write sep-
arate programs for nonlinear versions principal component analysis, multiple
regression, canonical analysis, discriminant analysis, and so on.
These programs, now written in R and no longer in FORTRAN, are wrappers
for the main computational core, the program gifiEngine(). The wrappers,
which have the familiar names morals(), corals(), princals(), homals(),
criminals(), overals(), primals(), and canals(), create a gifi object
from the data and parameters, and then pass this to gifiEngine(). Com-
putations are itereated to convergence, and result are stored in a xGifi object.
Then the output is transformed to a format familiar from the corresponding
technique from classical MVA. Each wrapper foo returns a structure of class
foo.
This modular approach saves code, because both makeGifi() and
gifiEngine() are common to all programs. It also makes it comparatively
easy to add new wrappers not currently included, possibly even contributed
by others.
Although we like the above quotation from Hill (1990), it is not quite ac-
curate. Our current generation of wrappers can use B-spline bases, it can
use an arbitrary number of copies of a variable, and each copy can be either
categorical, ordinal, polynomial, or splinical. Thus, even more so than the
original gifi programs, we have a substantial generalization of the classical
techniques, not merely a sequence of synonyms.

5.6 Structures

The computations are controlled by the arguments to the wrappers. These
arguments are used to construct three structures: the gifi, the gifiBlock,
and the gifiVariable. A gifi is just a list of gifiBlocks, and a gifiBlock is
a list of gifiVariables. This reflects the partitioning of the variables into
blocks. A gifiVariable contains a great deal of information about the variable.
The function makeGifiVariable() is a constructor that returns a structure



5.6. STRUCTURES 47

of class gifiVariable. The contents of a gifiVariable remain the same
throughout the computations.

return (structure (
list (

data = data,
basis = basis,
qr = qr,
copies = copies,
degree = degree,
ties = ties,
missing = missing,
ordinal = ordinal,
active = active,
name = name,
type = type

),
class = "gifiVariable"

))

There are three corresponding structures containing initial and intermedi-
ate results, and eventually output, the xGifi, xGifiBlock, and xGifiVariable.
Again, an xGifi is a list of xGifiBlocks, and an xGifiBlock is a list of xGi-
fiVariables. The constructor for an xGifiVariable returns an object of class
xGifiVariable, which contains the elements that are updated in each iter-
ation during the computations. There is an xGifiVariable for both active
and passive variables.

return (structure (
list(

transform = transform,
weights = weights,
scores = scores,
quantifications = quantifications

),
class = "xGifiVariable"

))
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Chapter 6

Multiple Correspondence
Analysis and homals()

6.1 Introduction

Suppose all basis matrices Gjℓ in block j are the same, say equal to Gj. Then
the block scores HjAj are equal to GjZjAj, which we can write simply as
GjYj. Thus loss must be minimized over X and the Yj.

If all Gj are binary indicators of categorical variables, and the m blocks are
all of span one, then MVAOS is multiple correspondence analysis (MCA).
The block scores GjYj are kj different points in Rp, with kj the number
of categories of the variable, which is usually much less than n. The plot
connecting the block scores to the object scores is called the star plot of the
variable. If kj is much smaller than n a star plot will connect all object scores
to their category centroids, and the plot for a block (i.e. a variable) will show
kj stars. Since loss σ is equal to the sum of squared distances between object
scores and block scores, we quantify or transform variables so that stars are
small.

In our MVAOS MCA function homals() we allow for B-spline bases and
for monotonicity restrictions. The input data (as for all MVAOS programs)
needs to be numeric, and we included a small utility function makeNumeric()
that can be used on data frames, factors, and character variables to turn them
into numeric matrices. All other arguments to the function have default

49
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values.

homals <-
function (data,

knots = knotsD (data),
degrees = rep (-1, ncol (data)),
ordinal = rep (FALSE, ncol (data)),
ndim = 2,
ties = "s",
missing = "m",
names = colnames (data, do.NULL = FALSE),
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE)

The output is a structure of class homals, i.e. a list with a class at-
tributehomals. The list consists of transformed variables (in xhat), their
correlation (in rhat), the objectscores (in objectscores), the blockscores
(in blockscores, which is itself a list of length number of variables), the
discrimination matrices (in dmeasures, a list of length number of variables),
their average (in lambda), the weights (in a), the number of iterations (in
ntel), and the loss function value (in f).

return (structure (
list (

transform = v,
rhat = corList (v),
objectscores = h$x,
scores = y,
quantifications = z,
dmeasures = d,
lambda = dsum / ncol (data),
weights = a,
loadings = o,
ntel = h$ntel,
f = h$f
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),
class = "homals"

))

Note that in MCA we have HjAj = GjYj. In previous Gifi publications the
Yj are called category quantifications. Our current homals() does not output
the categaory quantifications directly, only the block scores GjYj. If the Gj

are binary indicators, the Yj are just the distinct rows of GjYj. There is also
some indeterminacy in the representation HjAj, which we resolve, at least
partially, by using the QR decomposition Hj = QjRj to replace Hj by Qj,
and use HjAj = Qj(RjAj). One small problem with this is that we may
have rj =: rank(Hj) < r, in which case there are only rj copies in Qj. This
happens, for example, in the common case in which variable j is binary and
takes only two values.

6.2 Equations

6.3 Examples

6.3.1 Hartigan’s Hardware

Our first example are semi-serious data from Hartigan (1975) (p. 228), also
analyzed in Gifi (1990) (p. 128-135). A number of screws, tacks, nails, and
bolts are classified by six variables. The data are

## thread head indentation bottom length brass
## tack N F N S 1 N
## nail1 N F N S 4 N
## nail2 N F N S 2 N
## nail3 N F N F 2 N
## nail4 N F N S 2 N
## nail5 N F N S 2 N
## nail6 N C N S 5 N
## nail7 N C N S 3 N
## nail8 N C N S 3 N
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## screw1 Y O T S 5 N
## screw2 Y R L S 4 N
## screw3 Y Y L S 4 N
## screw4 Y R L S 2 N
## screw5 Y Y L S 2 N
## bolt1 Y R L F 4 N
## bolt2 Y O L F 1 N
## bolt3 Y Y L F 1 N
## bolt4 Y Y L F 1 N
## bolt5 Y Y L F 1 N
## bolt6 Y Y L F 1 N
## tack1 N F N S 1 Y
## tack2 N F N S 1 Y
## nailb N F N S 1 Y
## screwb Y O L S 1 Y

We can do a simple MCA, using all the default values.

h <- homals (makeNumeric(hartigan))

After 54 iterations we find a solution with loss 0.5157272962. The object
scores are plotted in figure 2.
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Figure 2: Hartigan Data, Object Scores

The star plots, produced by the utility starPlotter() are in figure 3.
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Figure 3: Hartigan Data, Star Plots
The discriminations matrices ∆j are

## [,1] [,2]
## [1,] 0.93 0.16
## [2,] 0.16 0.03
## [,1] [,2]
## [1,] 0.96 0.04
## [2,] 0.04 0.64
## [,1] [,2]
## [1,] 0.94 0.07
## [2,] 0.07 0.66
## [,1] [,2]
## [1,] 0.39 -0.13
## [2,] -0.13 0.04
## [,1] [,2]
## [1,] 0.29 -0.19
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## [2,] -0.19 0.82
## [,1] [,2]
## [1,] 0.07 0.05
## [2,] 0.05 0.03

and their average Λ is

## [,1] [,2]
## [1,] 0.60 0.00
## [2,] 0.00 0.37

Note that the loss was 0.5157272962, which is one minus the average of the
trace of Λ. The induced correlations are

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 1.00 1.00 0.01 0.98 -0.20 0.46 0.03 0.41 -0.22
## [2,] 1.00 1.00 -0.00 0.98 -0.21 0.46 0.03 0.41 -0.22
## [3,] 0.01 -0.00 1.00 0.08 0.38 0.18 -0.59 0.40 -0.02
## [4,] 0.98 0.98 0.08 1.00 0.00 0.50 -0.10 0.43 -0.21
## [5,] -0.20 -0.21 0.38 0.00 1.00 0.14 -0.66 0.05 0.09
## [6,] 0.46 0.46 0.18 0.50 0.14 1.00 -0.17 0.28 -0.29
## [7,] 0.03 0.03 -0.59 -0.10 -0.66 -0.17 1.00 -0.00 -0.10
## [8,] 0.41 0.41 0.40 0.43 0.05 0.28 -0.00 1.00 0.23
## [9,] -0.22 -0.22 -0.02 -0.21 0.09 -0.29 -0.10 0.23 1.00

Of the six variables, three are binary. Thus they only have a single trans-
formed variable associated with them, which is just the standardization to
mean zero and sum of squares one. The total number of transformed variables
is consequently 9. The eigenvalues of the induced correlation matrix (divided
by the number of variables, not the number of transformed variables) are

## [1] 0.60 0.37 0.21 0.13 0.10 0.07 0.02 0.00 -0.00

Note that the two dominant eigenvalues are again equal to the diagonal
elements of Λ.
###GALO
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The second example is somewhat more realistic. In the GALO dataset
(Peschar (1975)) data on 1290 school children in the sixth grade of an ele-
mentary school in 1959 in the city of Groningen (Netherlands) were collected.
The variables are gender, IQ (categorized into 9 ordered categories), advice
(teacher categorized the children into 7 possible forms of secondary educa-
tion, i.e., Agr = agricultural; Ext = extended primary education; Gen =
general; Grls = secondary school for girls; Man = manual, including house-
keeping; None = no further education; Uni = pre- University), SES (parent’s
profession in 6 categories) and school (37 different schools). The data have
been analyzed previously in many Gifi publications, for example in De Leeuw
and Mair (2009a). For our MCA we only make the first four variables, school
is treated as passive
We use this example to illustrate some of the constraints on transformations.
Two copies are used for all variables (although gender effectively only has
one, of course). IQ is treated as ordinal, using a piecewise linear spline with
knots at the nine data points.

galo_knots <- knotsD(galo)
galo_degrees <- c(-1,1,-1,-1,-1)
galo_ordinal <- c(FALSE, TRUE, FALSE, FALSE,FALSE)
galo_active <-c (TRUE, TRUE, TRUE, TRUE, FALSE)

h <- homals (galo, knots = galo_knots, degrees = galo_degrees, ordinal = galo_ordinal, active = galo_active)

We first give transformations for the active variables (and their copies) in
figure 4 . We skip gender, because transformation plots for binary variables
are not very informative. We give two transformation plots for IQ, first
using H and then using HA. This illustrates the point made earlier, that
transformation plots of block scores for ordinal variables with copies need not
be monotone. It also illustrates that additional copies of an ordinal variable
are not scaled to be monotone. Note that the plots for advice and SES are
made with the utility stepPlotter(). Because the degree of the splines for
those variables is zero, these transformation plots show step functions, with
the steps at the knots, which are represented by vertical lines.
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Figure 4: Galo Data, Transformations

The four star plots for the active variables, together with the four category
quantification plots, are in figure 5. Note that homals() does not com-
pute category quantifications, we have to compute them from the homals()
output. Also note that for gender, advice and SES the object scores are
connected to the category centroids of the variables. For IQ object scores are
connected to points on the line connecting adjacent category quantifications.
See De Leeuw and Rijckevorsel (1988) for category plots using forms of fuzzy
coding (of which B-splines are an example).
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Figure 5: Galo Data, Category Quantifications and Star Plots
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For this analysis we need 52 iterations to obtain loss 0.5425100382. The
average discrimination matrix over the four active variables is

## [,1] [,2]
## [1,] 0.54 0.00
## [2,] 0.00 0.38

while the eigenvalues of the induced correlation matrix of the active variables
and their copies, divided by four, are

## [1] 0.54 0.38 0.26 0.21 0.18 0.13 0.05

The category quantifications for the passive variable indicating the 37 schools
are in figure 6.
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Figure 6: Galo Data, Schools as Passive
If we look at the scale of the plot we see all schools are pretty close to the
origin. The discrimination matrices are consequently also small. In 1959
schools were pretty much the same.

## [,1] [,2]
## [1,] 0.0011 -0.0014
## [2,] -0.0014 0.0022
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6.3.2 Thirteen Personality Scales

Our next example is a small data block from the psych package (Revelle
2015) of five scales from the Eysenck Personality Inventory, five from a Big
Five inventory, a Beck Depression Inventory, and State and Trait Anxiety
measures.

epi<- read.csv("data/epi.bfi.csv")
epi_knots <- knotsQ(epi)
epi_degrees <- rep (0, 13)
epi_ordinal <- rep (FALSE, 13)

We perform a two-dimensional MCA, using degree zero and inner knots at
the three quartiles for all 13 variables.

h <- homals(epi, knots = epi_knots, degrees = epi_degrees, ordinal = epi_ordinal)

We have convergence in 271 iterations to loss 0.7472905867. The object scores
are in figure 7.
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Figure 7: Personality Scales, Object Scores, Multiple Nominal, Degree Zero

Figure 8 has the GjYj for each of the thirteen variables, with the first dimen-
sion in red, and the second dimension in blue.
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Figure 8: Personality Scales, Transformations, Multiple Nominal, Degree
Zero

The thirteen star plots are in figure 8.
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Figure 9: Personality Scales, Star Plots, Multiple Nominal, Degree Zero

Now change the degree to two for all variables, i.e. fit piecewise quadratic
polynomials which are differentiable at the knots. We still have two copies
for each variable, and these two copies define the blocks.

epi_degrees <- rep (2, 13)
h <- homals (epi, knots = epi_knots, degrees = epi_degrees, ordinal = epi_ordinal)

We have convergence in 560 iterations to loss 0.7179023033. The object scores
are in figure 10 and the transformation plots in figure 11.
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Figure 10: Personality Scales, Object Scores, Multiple Nominal, Degree Two
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Figure 11: Personality Scales, Transformations, Multiple Nominal, Degree
Two
#Correspondence Analysis and corals()
##Introduction
Ordinary correspondence analysis (OCA) is the special case of MCA in which
there are only two variables, and both variables have the maximum number
of copies. Consequently the homals() wrapper can be used to compute a
CA. Because input and output can be organized a bit differently for OCA
we have written the separate wrapper corals().
Note that corals() is not really intended for routine OCA computation.
There are many packages in R which do that job much more efficiently. We
mention, for example, anacor (De Leeuw and Mair (2009b)) and ca (Nenadic
and Greenacre (2007)). However, corals() can be used for a number of cases
which the usual OCA packages do not cover.
In corals(), as in the other packages, the default input is a single non-
negative matrix F . Although any non-negative matrix will do, the most
common, and the most natural, input is an r × c cross table with bivariate
frequencies. Suppose the frequencies add up to the total number of obser-
vations n. Then gifiEngine(), which is called by corals(), requires input
in the form of an n × 2 matrix. Thus a 2 × 2 table with 1000 observations
becomes a 1000× 2 matrix. The utility preCorals() makes the conversion,
but of course the representation is embarrassingly inefficient, both in terms of
memory and in terms of computation. After the computations are done, the
utility postCorals() restores transformations and scores to the appropriate
row and column dimensions.
Here are the arguments and their defaults.

## function (data, ftype = TRUE, xknots = NULL, yknots = NULL, xdegree = -1,
## ydegree = -1, xordinal = FALSE, yordinal = FALSE, xties = "s",
## yties = "s", xmissing = "m", ymissing = "m", xname = "X",
## yname = "Y", ndim = 2, itmax = 1000, eps = 1e-06, seed = 123,
## verbose = FALSE)
## NULL

If dtype is FALSE, then data is a matrix of dimension n×2, with n the number
of observations. This takes us back to the input format of homals() with
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two variables. If xknots and yknots are kept to their default NULL then they
are replaced in corals() by the quartiles of the two variables.
The redeeming feature of corals() is that, unlike the other classical OCA
packages, it can handle numerical variables, it can incorporate higher order
splines, it can impose monotonicity restrictions, and it can deal with missing
data in one of both of the variables. If there are supplementary variables
then it makes more sense to use homals().
##Equations
The usual stationary equations for OCA, using the category quantifications
Y1 and Y2 are

C12Y2 = D1Y1Λ,

C21Y1 = D2Y2Λ,

with normalization Y ′
1D1Y1 = I and Y ′

2D2Y2 = I.
In the output of gifiEngine() the category quantifications Ỹ1 and Ỹ2 and
the object scores X satisfy

G1Ỹ1 + G2Ỹ2 = 2XΛ̃,

D−1
1 G′

1X = Ỹ1,

D−1
2 G′

2X = Ỹ2,

with normalization X ′X = I. It follows that

C12Ỹ2 = D1Ỹ1(2Λ̃− I),
C21Ỹ1 = D2Ỹ2(2Λ̃− I),

and thus for the discrimination matrices Ỹ ′
1D1Ỹ1 = Ỹ ′

2D2Ỹ2 = X ′P1X =
X ′P2X = Λ̃. The two sets of quantities from OCA and corals() are related
by Λ = 2Λ̃− I, Y1 = Ỹ1Λ̃− 1

2 and Y2 = Ỹ2Λ̃− 1
2 .

In classical OCA there is no direct equivalent of the object scores X. Also
we typically do not use the decomposition HjAj = GjZjAj = GjYj, with
H ′

jHj = Z ′
jDjZj = I. From corals() we get the loadings H ′

jX, the correla-
tions between the object scores and transformed copies, which for singleton
blocks are always equal to the weights Aj. But since the decomposition
Yj = ZjAj is not unique these are of limited use. The correlations between



72CHAPTER 6. MULTIPLE CORRESPONDENCE ANALYSIS AND HOMALS()

X and the GjỸj are more interesting. Since X ′GjỸj = Λ̃, we see these
correlations are equal to Λ̃ 1

2 .

##Examples

###Glass

We start with a classical OCA example that was also used by Gifi (1990) (p
277-280) and by De Leeuw and Mair (2009b). Data are from Glass (1954).
Occupational status of the fathers is crossed with occupational status of the
son, for 3497 British families. The row (father) and column (son) categories
are

• PROF professional and high administrative
• EXEC managerial and executive
• HSUP higher supervisory
• LSUP lower supervisory
• SKIL skilled manual and routine nonmanual
• MEMI semi-skilled manual
• UNSK unskilled manual

data (glass, package = "anacor")
names <- c("PROF","EXEC","HSUP","LSUP","SKIL","MEMI","UNSK")
glass <- as.matrix (glass)

We apply apply corals() with the default options. Thus we only compute
two dimensions and use crisp indicators.

h <- corals(glass)

Minimum loss is 0.3017408039, attained after 88 iterations. The two discrim-
ination matrices are both equal to

## [,1] [,2]
## [1,] 0.76 -0.00
## [2,] -0.00 0.63
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which means the corresponding canonical correlations are 0.5256290124,
0.2674055567. The maximum correlation between SES of father and son is
0.5256290124.

The category quantifications for fathers are

## [,1] [,2]
## [1,] -0.0594 0.0384
## [2,] -0.0312 -0.0214
## [3,] -0.0098 -0.0198
## [4,] -0.0009 -0.0119
## [5,] 0.0049 -0.0003
## [6,] 0.0099 0.0118
## [7,] 0.0112 0.0163

and for sons

## [,1] [,2]
## [1,] -0.0652 0.0436
## [2,] -0.0295 -0.0221
## [3,] -0.0138 -0.0146
## [4,] -0.0005 -0.0144
## [5,] 0.0045 -0.0023
## [6,] 0.0090 0.0122
## [7,] 0.0106 0.0153

We did not require the first dimension to be increasing, it just came out that
way. We plot category quantifications in figure 12.



74CHAPTER 6. MULTIPLE CORRESPONDENCE ANALYSIS AND HOMALS()

−0.06 −0.03 0.00

−
0.

02
0.

00
0.

02
0.

04

Fathers

dimension 1

di
m

en
si

on
 2

PROF

EXEC
HSUP

LSUP

SKIL

MEMI

UNSK

−0.06 −0.02

−
0.

02
0.

00
0.

02
0.

04

Sons

dimension 1

di
m

en
si

on
 2

PROF

EXEC

HSUP LSUP

SKIL

MEMI
UNSK

Figure 12: Glass Data, Category Quantifications

The 3497 objectscores can take only 49 different values, of which only 47
actually occur in the data. They are plotted in figure 27. Point labels
are first letters of the two corresponding SES categories, first letter for the
fathers, second letter for the sons.
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Figure 13: Glass Data, Object Scores
Next, we look at regression plots, made with the utility regressionPlotter().
One-dimensional category quantifications for rows and columns are used
to locate row and column categories on the horizontal and vertical axes.
Frequencies from the table are used to label the intersections of the corre-
sponding vertical and horizontal lines. We then compute the regression lines,
using row and column averages of the category quantifications, for these
transformed variables. In the first plot we see what happens if we use equally
spaced scores for the categories of both fathers and sons. Regressions are not
quite linear. Then we use the first dimension of the OCA quantifications,
which linearizes the regressions. And in the third plot we use the second
dimension, which again linearizes the regressions, but permutes the rows
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and colums of the table.
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Integer Quantifications
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12 35 65 66 123 23 21

11 20 58 110 223 64 32

14 36 114 185 714 258 189

0 6 19 40 179 143 71

0 3 14 32 141 91 106
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Figure 14: Glass Data, Regression Plots

###Galton

To illustrate some of the additional corals() options we use the classical
father-child RFF height data of Galton (1889). It has mid-parent height in
the rows and mid-adult-child height in the columns.

data (galton, package = "anacor")
galton <- as.matrix (galton)
galton <- galton[nrow (galton):1, ]
galton

## below 62.2 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2
## below 64.5 1 0 2 4 1 2 2 1 1 0 0 0
## 64.5 1 1 4 4 1 5 5 0 2 0 0 0
## 65.5 1 0 9 5 7 11 11 7 7 5 2 1
## 66.5 0 3 3 5 2 17 17 14 13 4 0 0
## 67.5 0 3 5 14 15 36 38 28 38 19 11 4
## 68.5 1 0 7 11 16 25 31 34 48 21 18 4
## 69.5 0 0 1 16 4 17 27 20 33 25 20 11
## 70.5 1 0 1 0 1 1 3 12 18 14 7 4
## 71.5 0 0 0 0 1 3 4 3 5 10 4 9
## 72.5 0 0 0 0 0 0 0 1 2 1 2 7
## above 72.5 0 0 0 0 0 0 0 0 0 0 0 1
## 73.2 above 73.2
## below 64.5 0 0
## 64.5 0 0
## 65.5 0 0
## 66.5 0 0
## 67.5 0 0
## 68.5 3 0
## 69.5 4 5
## 70.5 3 3
## 71.5 2 2
## 72.5 2 4
## above 72.5 3 0
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The regression plots from a one-dimensional corals(), with default options,
in the familiar before and after format, are in figure 15.
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Integer Quantifications

Children

P
ar

en
ts

1 0 2 4 1 2 2 1 1 0 0 0 0 0

1 1 4 4 1 5 5 0 2 0 0 0 0 0

1 0 9 5 7 11 11 7 7 5 2 1 0 0

0 3 3 5 2 17 17 14 13 4 0 0 0 0

0 3 5 14 15 36 38 28 38 19 11 4 0 0

1 0 7 11 16 25 31 34 48 21 18 4 3 0

0 0 1 16 4 17 27 20 33 25 20 11 4 5

1 0 1 0 1 1 3 12 18 14 7 4 3 3

0 0 0 0 1 3 4 3 5 10 4 9 2 2

0 0 0 0 0 0 0 1 2 1 2 7 2 4

0 0 0 0 0 0 0 0 0 0 0 1 3 0

Corals Quantifications

Children

P
ar

en
ts

10 2 412 2 1 1 00 0 00

11 4 415 5 0 2 00 0 00

10 9 571111 7 7 52 1 00

03 3 521717 1413 40 0 00

03 5 14153638 2838 1911 4 00

10 7 11162531 3448 2118 4 30
00 1 1641727 2033 2520 11 45
10 1 011 3 1218 147 4 3300 0 013 4 3 5 104 9 22

00 0 000 0 1 2 12 7 2400 0 000 0 0 0 00 1 30
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Figure 15: Galton Data, Regression Plots

We see some deviations from monotonicity and the ends of the scale, where
some columns of the table are interchanged. This is presumably because of
the small number of observations in the extreme categories. We repeat the
analysis with ordinal transformations of degree 2 (i.e. piecewise quadratics,
differentiable at the knots, and monotone at the data points) and equally
spaced knots.

galton_knots = c(2, 4, 6, 8, 10)
h <- corals(

galton,
ndim = 1,
xord = TRUE,
yord = TRUE,
xdeg = 2,
ydeg = 2,
xknots = galton_knots,
yknots = galton_knots

)

The transformations of the variables are in figure 16. They show some clear
deviations from linearity.
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Figure 16: Galton Data, Transformation Plots
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Chapter 7

Canonical Correspondence
Analysis and coranals()

7.1 Introduction

7.2 Equations

Canonical analysis of GX and H.

7.3 Examples
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Chapter 8

Nonlinear Principal Component
Analysis and princals()

8.1 Introduction

princals, principals, Shepard-Kruskal, mdrace, history

8.2 Equations

Suppose all m blocks each contain only a single variable. Then the Burt
matrix is the correlation matrix of the Hj, which are all n × 1 matrices
in this case. It follows that MVAOS maximizes the sum of the r largest
eigenvalues of the correlation matrix over transformations, i.e. MVAOS is
nonlinear principal component analysis (De Leeuw 2014).

8.3 Examples

8.3.1 Thirteen Personality Scales

We use the same data as before for an NLPCA with all blocks of rank one,
all variables ordinal, and splines of degree 2.
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epi_copies <- rep (1, 13)
epi_ordinal <- rep (TRUE, 13)
h <- princals(epi, epi_knots, epi_degrees, epi_ordinal, epi_copies)

In 19 iterations we find minimum loss 0.7330408597. The object scores are in
figure 17 and the transformation plots in figure 18. NLPCA maximizes the
sum of the two largest eigenvalues of the correlation matrix of the variables.
Before transformation the eigenvalues are 4.0043586779, 2.6702003226,
1.9970911525, 0.8813983145, 0.6571462887, 0.6299946278, 0.524689638,
0.4657021776, 0.3457514762, 0.3403360653, 0.2767530816, 0.1835448669,
0.0230333104, after transformation they are 4.1956970306, 2.7452518707,
1.6036670387, 0.8209125803, 0.718259977, 0.676961949, 0.5185327518,
0.4544125071, 0.4197680221, 0.3519542253, 0.2932653658, 0.1700269788,
0.0312897028. The sum of the first two goes from 6.6745590006 to
6.9409489014.

plot(h$objectscores, xlab = "dim1", ylab = "dim2", col = "RED", cex = .5)
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Figure 17: Personality Scales, Object Scores, Single Ordinal, Degree Two
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Figure 18: Personality Scales, Transformations, Single Ordinal, Degree Two

We repeat the analysis with ordinal variables of degree two, without interior
knots. Thus we the transformation plots will be quadratic polynomials that
are monotone over the range of the data.

h <- princals(epi, knotsE(epi), epi_degrees, epi_ordinal)

In 21 iterations we find minimum loss 0.7392792203. The object scores are in
figure 19 and the transformation plots in figure 20. The eigenvalues are now
4.0845452813, 2.6942027568, 1.8268475832, 0.8731782338, 0.6698533738,
0.6503449076, 0.5406240035, 0.4597013756, 0.3666352518, 0.3470225888,
0.2847374711, 0.1783404951, 0.0239666775, with sum of the first two equal
to 6.7787480381.
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Figure 19: Personality Scales, Object Scores, Single Numerical, Degree Two
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Figure 20: Personality Scales, Transformations, Single Numerical, Degree
Two
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Chapter 9

Canonical Analysis and canals()

9.1 Equations

If there are only two blocks the generalized eigenvalue problem for the Burt
matrix becomes [

D1 C12
C21 D2

] [
a1
a2

]
= 2λ

[
D1 0
0 D2

] [
a1
a2

]
,

which we can rewrite as

C12a2 = (2λ− 1)D1a1,

C21a1 = (2λ− 1)D2a2,

from which we see that MVAOS maximizes the sum of the r largest canonical
correlations between H1 and H2. See also Van der Velden (2012).

9.2 Examples
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Chapter 10

Multiple Regression and
morals()

If the second block only contains a single copy of a single variable then
we choose transformations that maximize the multiple correlation of that
variable and the variables in the first block.

10.1 Equations

10.2 Examples

10.2.1 Polynomial Regression

x <- center(as.matrix (seq (0, pi, length = 20)))
y <- center(as.matrix (sin (x)))
h<- morals (x, y, xknots = knotsE(x), xdegrees = 3, xordinal = TRUE)
plot(y, h$yhat)
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10.2.2 Gases with Convertible Components

We analyze a regression example, using data from Neumann, previously used
by Willard Gibbs, and analyzed with regression in a still quite readable article
by Wilson (1926). Wilson’s analysis was discussed and modified using splines
in Gifi (1990) (pages 370-376). In the regression analysis in this section we
use two copies of temperature, with spline degree zero, and the first copy
ordinal. For pressure and the dependent variable density we use a single
ordinal copy with spline degree two.

data (neumann, package = "homals")
xneumann <- neumann[, 1:2]
yneumann <- neumann[, 3, drop = FALSE]
xdegrees <- c(0,2)

h <- morals (xneumann, yneumann, xdegrees = c(0,2), xcopies = c(2,1))

In 58 iterations we find minimum loss 0.026805848, corresponding with a
multiple correlation of 0.8956511807. The object scores are in figure 21 plot-
ted against the original variables (not the transformed variables), and the
transformation plots in are figure 22.
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Figure 21: Gases with Convertible Components, Objects Scores
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Figure 22: Gases with Convertible Components, Transformations

10.3 Conjoint Analysis and addals()
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Chapter 11

Discriminant Analysis and
criminals()

11.1 Equations

If the second block contains more than one copy of a single variable and we
use binary indicator coding for that variable, then we optimize the eigenvalue
(between/within ratio) sums for a canonical discriminant analysis.

11.2 Examples

11.2.1 Iris data

The next example illustrates (canonical) discriminant analysis, using the
obligatory Anderson-Fisher iris data. Since there are three species of iris,
we use two copies for the species variable. The other four variables are in
the same block, they are transformed using piecewise linear monotone splines
with five knots.

data(iris, package="datasets")
iris_vars <- names(iris)
iris_knots <- knotsQ(iris[,1:4])
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x <- as.matrix(iris[,1:4])
y <- as.matrix(iris[[5]])

h <- criminals (x, y, xdegrees = 1)

In 191 iterations we find minimum loss 0.0302260098. The object scores
are in figure 23 plotted against the original variables (not the transformed
variables), and the transformation plots are in figure 24.
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Figure 23: Iris Data, Objects Scores
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Figure 24: Iris Data, Transformations
Discriminant analysis decomposes the total dispersion matrix T into a sum
of a between-groups dispersion B and a within-groups dispersion W , and
then finds directions in the space spanned by the variables for which the
between-variance is largest relative to the total variance. MVAOS optimizes
the sum of the r largest eigenvalues of T −1B. Before optimal transformation
these eigenvalues for the iris data are r, after transformation they are r.
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Chapter 12

Multiblock Canonical
Correlation and overals()

12.1 Equations

12.2 Examples

12.2.1 Thirteen Personality Scales

This is the same example as before, but now we group the five scales from
the Eysenck Personality Inventory and the five from the Big Five inventory
into blocks. The remaining three variables define three separate blocks. No
copies are used, and we use monotone cubic splines with the interior knots
at the quartiles.

epi_knots <- lapply (epi, function (x) fivenum (x)[2:4])
epi_degrees <- rep (3, 13)
epi_blocks <- c(1,1,1,1,1,2,2,2,2,2,3,4,5)

h <- overals(epi, epi_blocks, epi_copies, epi_knots, epi_degrees, epi_ordinal)

In 191 iterations we find minimum loss 0.0302260098. The object scores are
in figure 25 and the transformation plots in figure 26.
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Figure 25: Personality Scales, Multi-Set, Objects Scores
Figure 26: Personality Scales, Multi-Set, , Transformations



Chapter 13

Code

13.1 R Code

13.1.1 Driver

source ("rcode/gifiEngine.R")
source ("rcode/gifiUtilities.R")
source ("rcode/gifiWrappers.R")
source ("rcode/gifiStructures.R")
source ("rcode/aspectEngine.R")
source ("rcode/theAspects.R")
source ("rcode/matrix.R")
source ("rcode/coneRegression.R")
source ("splineBasis.R")
source ("coding.R")

13.1.2 Engine

gifiEngine <-
function (gifi,

ndim,
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itmax,
eps,
seed,
verbose) {

set.seed (seed)
nobs <- nrow (as.matrix (gifi[[1]][[1]]$data))
nsets <- length (gifi)
nvars <- sum (sapply (gifi, length))
itel <- 1
if (nvars == 1)

stop("a gifiAnalysis needs more than one variable")
x <- matrix (rnorm (nobs * ndim), nobs, ndim)
x <- gsRC (center (x))$q
xGifi <- xGifi (gifi, x)
fold <- 0
asets <- 0
for (i in 1:nsets) {

gifiSet <- gifi[[i]]
xGifiSet <- xGifi[[i]]
nvarset <- length (gifiSet)
ha <- matrix (0, nobs, ndim)
activeCount <- 0
for (j in 1:nvarset) {

if (gifiSet[[j]]$active) {
activeCount <- activeCount + 1
ha <- ha + xGifiSet[[j]]$scores

}
}
if (activeCount > 0) {

asets <- asets + 1
fold <- fold + sum ((x - ha) ˆ 2)

}
}
fold <- fold / (asets * ndim)
repeat {

xz <- matrix(0, nobs, ndim)
fnew <- fmid <- 0
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for (i in 1:nsets) {
gifiSet <- gifi[[i]]
xGifiSet <- xGifi[[i]]
nvarset <- length (gifiSet)
hh <- matrix (0, nobs, 0)
activeCount <- 0
for (j in 1:nvarset) {

if (gifiSet[[j]]$active) {
activeCount <- activeCount + 1
hh <- cbind (hh, xGifiSet[[j]]$transform)

}
}
if (activeCount == 0)

next
lf <- lsRC (hh, x)
aa <- lf$solution
rs <- lf$residuals
kappa <- max (eigen (crossprod (aa))$values)
fmid <- fmid + sum (rs ˆ 2)
target <- hh + tcrossprod (rs, aa) / kappa
hh <- matrix (0, nobs, 0)
scopies <- 0
for (j in 1:nvarset) {

gifiVar <- gifiSet[[j]]
jdata <- gifiVar$data
jbasis <- gifiVar$basis
jcopies <- gifiVar$copies
jdegree <- gifiVar$degree
jties <- gifiVar$ties
jmissing <- gifiVar$missing
jordinal <- gifiVar$ordinal
ja <- aa[scopies + 1:jcopies, , drop = FALSE]
jtarget <- target[, scopies + 1:jcopies, drop = FALSE]
hj <-

gifiTransform (
data = jdata,
target = jtarget,
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basis = jbasis,
copies = jcopies,
degree = jdegree,
ordinal = jordinal,
ties = jties,
missing = jmissing

)
hj <- gsRC(normalize (center (hj)))$q
sc <- hj %*% ja
xGifi[[i]][[j]]$transform <- hj
xGifi[[i]][[j]]$weights <- ja
xGifi[[i]][[j]]$scores <- sc
xGifi[[i]][[j]]$quantifications <-

lsRC(jbasis, sc)$solution
activeCount <- 0
if (gifiSet[[j]]$active) {

activeCount <- activeCount + 1
hh <- cbind (hh, hj)

}
scopies <- scopies + jcopies

}
if (activeCount > 0) {

ha <- hh %*% aa
xz <- xz + ha
fnew <- fnew + sum ((x - ha) ˆ 2)

}
}
fmid <- fmid / (asets * ndim)
fnew <- fnew / (asets * ndim)
if (verbose)

cat(
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"fold: ",
formatC (

fold,
digits = 8,



13.1. R CODE 113

width = 12,
format = "f"

),
"fmid: ",
formatC (

fmid,
digits = 8,
width = 12,
format = "f"

),
"fnew: ",
formatC (

fnew,
digits = 8,
width = 12,
format = "f"

),
"\n"

)
if (((itel == itmax) || ((fold - fnew) < eps)) && (itel > 1))
break

itel <- itel + 1
fold <- fnew
x <- gsRC (center (xz))$q

}
return (list (

f = fnew,
ntel = itel,
x = x,
xGifi = xGifi

))
}

gifiTransform <-
function (data,

target,
basis,
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copies,
degree,
ordinal,
ties,
missing) {

nobs <- nrow (as.matrix (data))
h <- matrix (0, nobs, copies)
if (degree == -1) {

if (ordinal) {
h[, 1] <-

coneRegression (
data = data,
target = target[, 1],
type = "c",
ties = ties,
missing = missing

)
}
else {

h[, 1] <-
coneRegression (

data = data,
target = target[, 1],
basis = basis,
type = "s",
missing = missing

)
}

}
if (degree >= 0) {

if (ordinal) {
h[, 1] <-

coneRegression (
data = data,
target = target[, 1],
basis = basis,
type = "i",
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ties = ties,
missing = missing

)
}
else {

h[, 1] <-
coneRegression (

data = data,
target = target[, 1],
basis = basis,
type = "s",
ties = ties,
missing = missing

)
}

}
if (copies > 1) {

for (l in 2:copies)
h[, l] <-

coneRegression (
data = data,
target = target[, l],
basis = basis,
type = "s",
ties = ties,
missing = missing

)
}
return (h)

}

13.1.3 Aspect Engine

aspectEngine <-
function (gifi,
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afunc,
eps = 1e-6,
itmax = 100,
verbose = 1,
monotone = FALSE,
...) {

nsets <- length (gifi)
for (i in 1:nsets) {

gifiSet <- gifi[[i]]
nvars <- length (gifiSet)
for (j in 1:nvars) {

gifiVar <- gifiSet[[j]]
q <- gifiVar$qr$q

}
}
itel <- 1
tdata <- matrix (0, n, m)
for (j in 1:m) {

tdata[, j] <- bd$x[[j]]
}
tdata <- apply (tdata, 2, function (z)

z - mean (z))
tdata <- apply (tdata, 2, function (z)

z / sqrt (sum (z ˆ 2)))
corr <- crossprod (tdata)
af <- afunc(corr, ...)
fold <- af$f
g <- af$g
repeat {

for (j in 1:m) {
target <- drop (tdata[, -j] %*% g[-j, j])
k <- bd$b[[j]]
v <- bd$v[[j]]
u <- drop (crossprod(k, target))
s0 <- sum(target * tdata[, j])
if (ordinal[j]) {

ns <- nnls(v, u)
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rr <- residuals(ns)
tt <- drop(k %*% rr)

} else
tt <- drop (k %*% u)

tt <- tt - mean (tt)
sq <- sum(tt ˆ 2)
if (sq > 1e-15) {

tt <- tt / sqrt (sq)
tdata[, j] <- tt

}
s1 <- sum(target * tdata[, j])
if (verbose > 1)

cat (
"**** Variable",
formatC(j, width = 3, format = "d"),
"Before",
formatC(

s0,
digits = 8,
width = 12,
format = "f"

),
"After",
formatC(

s1,
digits = 8,
width = 12,
format = "f"

),
"\n"

)
if (!monotone) {

corr <- cor (tdata)
af <- afunc (corr, ...)
fnew <- af$f
g <- af$g

}
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}
if (monotone) {

corr <- cor (tdata)
af <- afunc (corr, ...)
fnew <- af$f
g <- af$g

}
if (verbose > 0)

cat(
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"fold: ",
formatC (

fold,
digits = 8,
width = 12,
format = "f"

),
"fnew: ",
formatC (

fnew,
digits = 8,
width = 12,
format = "f"

),
"\n"

)
if ((itel == itmax) || ((fnew - fold) < eps))

break
itel <- itel + 1
fold <- fnew

}
return (list (

tdata = tdata,
f = fnew,
r = corr,
g = g
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))
}

13.1.4 Some Aspects

maxeig <- function (r, p) {
e <- eigen (r)
f <- sum (e$values[1:p])
g <- tcrossprod(e$vectors[,1:p])
return (list (f = f, g = g))

}

maxcor <- function (r, p) {
f <- sum (r ˆ p)
g <- p * (r ˆ (p - 1))
return (list (f = f, g = g))

}

maxabs <- function (r, p) {
f <- sum (abs(r) ˆ p)
g <- p * (abs(r) ˆ (p - 1)) * sign(r)
return (list (f = f, g = g))

}

maxdet <- function (r) {
f <- -log(det (r))
g <- -solve(r)
return (list (f = f, g = g))

}

maxsmc <- function (r, p) {
beta <- solve (r[-p,-p], r[p,-p])
f <- sum (beta * r[p,-p])
h <- rep (1, nrow (r))
h[-p] <- -beta
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g <- -outer (h, h)
return (list (f = f, g = g))

}

maxsum <- function (r, p) {
f <- sum (sqrt (r ˆ 2 + p))
g <- r / sqrt (r ˆ 2 + p)
return (list (f = f, g = g))

}

maximage <- function (r) {
n <- nrow(r)
f <- 0
g <- matrix (0, n, n)
for (p in 1:n) {

beta <- solve (r[-p,-p], r[p,-p])
f <- f + sum (beta * r[p,-p])
h <- rep (1, nrow (r))
h[-p] <- -beta
g <- g - outer (h, h)

}
return (list (f = f, g = g))

}

maxfac <- function (r, p) {
fa <- factanal (NULL, p, covmat = r, rotation = "none")
s <- tcrossprod (fa$loadings) + diag (fa$unique)
g <- - solve (s)
f <- -log(det (s)) + sum (g * r)
return (list (f = f, g = g))

}

13.1.5 Structures
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makeGifiVariable <-
function (data,

knots,
degree,
ordinal,
ties,
copies,
missing,
name) {

there <- which (!is.na (data))
notthere <- which (is.na (data))
nmis <- length (notthere)
nobs <- length (data)
if (length (there) == 0)

stop ("a gifiVariable cannot be completely missing")
work <- data[there]
if (degree == -1) {

type <- "categorical"
basis <- makeIndicator (work)
if (ncol (basis) == 1) {

stop ("a gifiVariable must have more than one category")
}
if (ncol (basis) == 2) {

type <- "binary"
}

}
if (degree >= 0) {

if (length (knots) == 0)
type <- "polynomial"

else
type <- "splinical"

basis <- bsplineBasis (work, degree, knots)
}
if (nmis > 0)
basis <- makeMissing (data, basis, missing)

copies <- min (copies, ncol (basis) - 1)
qr <- gsRC (center (basis))
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if (qr$rank == 0)
stop ("a gifiVariable cannot be completely zero")

return (structure (
list (

data = data,
basis = basis,
qr = qr,
copies = copies,
degree = degree,
ties = ties,
ordinal = ordinal,
name = name,
type = type

),
class = "gifiVariable"

))
}

makeGifiSet <-
function (data,

knots,
degrees,
ordinal,
ties,
copies,
missing,
names) {

nvars <- ncol (data)
varList <- as.list (1:nvars)
for (i in 1:nvars) {

varList[[i]] <-
makeGifiVariable (

data = data[, i],
knots = knots[[i]],
degree = degrees[i],
ordinal = ordinal[i],
ties[i],
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copies = copies[i],
missing = missing[i],
name = names[i]

)
}
return (structure (varList, class = "gifiSet"))

}

makeGifi <-
function (data,

knots,
degrees,
ordinal,
ties,
copies,
missing,
names,
sets) {

nsets <- max (sets)
setList <- as.list (1:nsets)
for (i in 1:nsets) {

k <- which (sets == i)
setList [[i]] <-

makeGifiSet (
data = data[, k, drop = FALSE],
knots = knots[k],
degrees = degrees[k],
ordinal = ordinal[k],
ties = ties[k],
copies = copies[k],
missing = missing[k],
names = names[k]

)
}
return (structure (setList, class = "gifi"))

}
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xGifiVariable <- function (gifiVariable, ndim) {
basis <- gifiVariable$basis
nbas <- ncol (basis)
nobs <- length (gifiVariable$data)
copies <- gifiVariable$copies
transform <- matrix (0, nobs, copies)
transform[, 1] <- drop(basis %*% (1:nbas))
if (copies > 1) {

for (i in 2:copies)
transform[, i] <- drop (basis %*% rnorm (nbas))

}
transform <- gsRC (normalize (center (transform)))$q
nbas <- ncol (transform)
weights <- matrix (rnorm (nbas * ndim), nbas, ndim)
scores <- transform %*% weights
quantifications <- lsRC (basis, scores)$solution
return (structure (

list(
transform = transform,
weights = weights,
scores = scores,
quantifications = quantifications

),
class = "xGifiVariable"

))
}

xGifiSet <- function (gifiSet, ndim) {
nvars <- length (gifiSet)
varList <- as.list (1:nvars)
for (i in 1:nvars) {

varList[[i]] <- xGifiVariable (gifiSet[[i]], ndim)
}
return (structure (varList, class = "xGifiSet"))

}

xGifi <- function (gifi, ndim) {



13.1. R CODE 125

nsets <- length (gifi)
setList <- as.list (1:nsets)
for (i in 1:nsets) {

setList[[i]] <- xGifiSet (gifi[[i]], ndim)
}
return (structure (setList, class = "xGifi"))

}

13.1.6 Wrappers

homals <-
function (data,

knots = knotsD (data),
degrees = -1,
ordinal = FALSE,
ndim = 2,
ties = "s",
missing = "m",
names = colnames (data, do.NULL = FALSE),
active = TRUE,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

nvars <- ncol (data)
g <- makeGifi (

data = data,
knots = knots,
degrees = reshape (degrees, nvars),
ordinal = reshape (ordinal, nvars),
ties = reshape (ties, nvars),
copies = rep (ndim, ncol (data)),
missing = reshape (missing, nvars),
active = reshape (active, nvars),
names = names,
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sets = 1:nvars
)
h <- gifiEngine(

gifi = g,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
a <- v <- z <- d <- y <- o <- as.list (1:ncol(data))
dsum <- matrix (0, ndim, ndim)
nact <- 0
for (j in 1:nvars) {

jgifi <- h$xGifi[[j]][[1]]
v[[j]] <- jgifi$transform
a[[j]] <- jgifi$weights
y[[j]] <- jgifi$scores
z[[j]] <- jgifi$quantifications
cy <- crossprod (y[[j]])
if (g[[j]][[1]]$active) {

dsum <- dsum + cy
nact <- nact + 1

}
d[[j]] <- cy
o[[j]] <- crossprod (h$x, v[[j]])

}
return (structure (

list (
transform = v,
rhat = corList (v),
objectscores = h$x,
scores = y,
quantifications = z,
dmeasures = d,
lambda = dsum / nact,
weights = a,
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loadings = o,
ntel = h$ntel,
f = h$f

),
class = "homals"

))
}

corals <-
function (data,

ftype = TRUE,
xknots = NULL,
yknots = NULL,
xdegree = -1,
ydegree = -1,
xordinal = FALSE,
yordinal = FALSE,
xties = "s",
yties = "s",
xmissing = "m",
ymissing = "m",
xname = "X",
yname = "Y",
ndim = 2,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

if (ftype) {
xy <- preCorals (as.matrix(data))
x <- xy[, 1, drop = FALSE]
y <- xy[, 2, drop = FALSE]

} else {
x <- data[, 1, drop = FALSE]
y <- data[, 2, drop = FALSE]

}
if (is.null(xknots))
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xknots <- knotsD(x)
if (is.null(yknots))

yknots <- knotsD(y)
g <- makeGifi (

data = cbind (x, y),
knots = c(xknots, yknots),
degrees = c(xdegree, ydegree),
ordinal = c(xordinal, yordinal),
ties = c(xties, yties),
copies = c(ndim, ndim),
missing = c(xmissing, ymissing),
active = c(TRUE, TRUE),
names = c(xname, yname),
sets = c(1, 2)

)
h <- gifiEngine(

gifi = g,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
xg <- h$xGifi[[1]][[1]]
yg <- h$xGifi[[2]][[1]]
return (structure (

list(
burt = crossprod (cbind(g[[1]][[1]]$basis, g[[2]][[1]]$basis)),
objectscores = h$x,
xtransform = postCorals (x, xg$transform),
ytransform = postCorals (y, yg$transform),
rhat = cor (cbind (xg$transform, yg$transform)),
xweights = xg$weights,
yweights = yg$weights,
xscores = postCorals (x, xg$scores),
yscores = postCorals (y, yg$scores),
xdmeasure = crossprod (xg$scores),
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ydmeasure = crossprod (yg$scores),
xquantifications = xg$quantifications,
yquantifications = yg$quantifications,
xloadings = crossprod (xg$transform, h$x),
yloadings = crossprod (yg$transform, h$x),
lambda = (crossprod (xg$scores) + crossprod (yg$scores)) / 2,
ntel = h$ntel,
f = h$f

),
class = "corals"

))
}

coranals <- function () {

}

morals <-
function (x,

y,
xknots = knotsQ(x),
yknots = knotsQ(y),
xdegrees = 2,
ydegrees = 2,
xordinal = TRUE,
yordinal = TRUE,
xties = "s",
yties = "s",
xmissing = "m",
ymissing = "m",
xnames = colnames (x, do.NULL = FALSE),
ynames = "Y",
xactive = TRUE,
xcopies = 1,
itmax = 1000,
eps = 1e-6,
seed = 123,
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verbose = FALSE) {
npred <- ncol (x)
nobs <- nrow (x)
xdegrees <- reshape (xdegrees, npred)
xordinal <- reshape (xordinal, npred)
xties <- reshape (xties, npred)
xmissing <- reshape (xmissing, npred)
xactive <- reshape (xactive, npred)
xcopies <- reshape (xcopies, npred)
g <- makeGifi (

data = cbind (x, y),
knots = c (xknots, yknots),
degrees = c (xdegrees, ydegrees),
ordinal = c (xordinal, yordinal),
sets = c (rep(1, npred), 2),
copies = c (xcopies, 1),
ties = c (xties, yties),
missing = c (xmissing, ymissing),
active = c (xactive, TRUE),
names = c (xnames, ynames)

)
h <- gifiEngine(

gifi = g,
ndim = 1,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
xhat <- matrix (0, nobs, 0)
for (j in 1:npred)

xhat <- cbind (xhat, h$xGifi[[1]][[j]]$transform)
yhat <- h$xGifi[[2]][[1]]$transform
rhat <- cor (cbind (xhat, yhat))
qxy <- lsRC(xhat, yhat)$solution
ypred <- xhat %*% qxy
yres <- yhat - ypred
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smc <- sum (yhat * ypred)
return (structure (

list (
objscores = h$x,
xhat = xhat,
yhat = yhat,
rhat = rhat,
beta = qxy,
ypred = ypred,
yres = yres,
smc = smc,
ntel = h$ntel,
f = h$f

),
class = "morals"

))
}

princals <-
function (data,

knots = knotsQ (data),
degrees = 2,
ordinal = TRUE,
copies = 1,
ndim = 2,
ties = "s",
missing = "m",
names = colnames (data, do.NULL = FALSE),
active = TRUE,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

aname <- deparse (substitute (data))
nvars <- ncol (data)
nobs <- nrow (data)
g <- makeGifi (
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data = data,
knots = knots,
degrees = reshape (degrees, nvars),
ordinal = reshape (ordinal, nvars),
sets = 1:nvars,
copies = reshape (copies, nvars),
ties = reshape (ties, nvars),
missing = reshape (missing, nvars),
active = reshape (active, nvars),
names = names

)
h <- gifiEngine(

gifi = g,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
a <- v <- z <- d <- y <- o <- as.list (1:nvars)
dsum <- matrix (0, ndim, ndim)
for (j in 1:nvars) {

jgifi <- h$xGifi[[j]][[1]]
v[[j]] <- jgifi$transform
a[[j]] <- jgifi$weights
y[[j]] <- jgifi$scores
z[[j]] <- jgifi$quantifications
cy <- crossprod (y[[j]])
dsum <- dsum + cy
d[[j]] <- cy
o[[j]] <- crossprod (h$x, v[[j]])

}
return (structure (

list (
transform = v,
rhat = corList (v),
objectscores = h$x,
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scores = y,
quantifications = z,
dmeasures = d,
lambda = dsum / ncol (data),
weights = a,
loadings = o,
ntel = h$ntel,
f = h$f

),
class = "princals"

))
}

criminals <-
function (x,

y,
xknots = knotsQ(x),
yknots = knotsD(y),
xdegrees = 2,
ydegrees = -1,
xordinal = TRUE,
yordinal = FALSE,
xcopies = 1,
xties = "s",
yties = "s",
xmissing = "m",
ymissing = "m",
xactive = TRUE,
xnames = colnames (x, do.NULL = FALSE),
ynames = "Y",
ndim = 2,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

aname <- deparse (substitute (data))
npred <- ncol (x)
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nobs <- nrow (x)
g <- makeGifi (

data = cbind (x, y),
knots = c(xknots, yknots),
degrees = c (reshape (xdegrees, npred), ydegrees),
ordinal = c (reshape (xordinal, npred), yordinal),
sets = c (rep(1, npred), 2),
copies = c (reshape (xcopies, npred), length (unique (y))),
ties = c (reshape (xties, npred), yties),
missing = c (reshape (xmissing, npred), ymissing),
active = c (reshape (xactive, npred), TRUE),
names = c(xnames, ynames)

)
h <- gifiEngine(

gifi = g,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
x <- matrix (0, nobs, 0)
for (j in 1:npred)

x <- cbind (x, h$xGifi[[1]][[j]]$transform)
y <- as.vector(y)
g <- ifelse (outer (y, unique (y), "=="), 1, 0)
d <- colSums (g)
v <- crossprod (x)
u <- crossprod (g, x)
b <- crossprod (u, (1 / d) * u)
w <- v - b
e <- eigen (v)
k <- e$vectors
l <- sqrt (abs (e$values))
l <- ifelse (l < 1e-7, 0, 1 / l)
f <- eigen (outer(l, l) * crossprod (k, b %*% k))
a <- k %*% (l * f$vectors)
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z <- x %*% a
u <- (1 / d) * crossprod (g, x)
return (structure (

list(
objectscores = h$x,
xhat = x,
loadings = a,
scores = z,
groupmeans = u,
bwratios = f$values,
ntel = h$ntel,
f = h$f

),
class = "criminals"

))
}

canals <-
function (x,

y,
xknots = knotsQ(x),
yknots = knotsQ(y),
xdegrees = rep(2, ncol(x)),
ydegrees = rep(2, ncol(y)),
xordinal = rep (TRUE, ncol (x)),
yordinal = rep (TRUE, ncol (y)),
xcopies = rep (1, ncol (x)),
ycopies = rep (1, ncol (y)),
ndim = 2,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

h <- gifiEngine(
data = cbind (x, y),
knots = c(xknots, yknots),
degrees = c(xdegrees, ydegrees),
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ordinal = c(xordinal, yordinal),
sets = c(rep(1, ncol(x)), rep(2, ncol (y))),
copies = c(xcopies, ycopies),
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
x <- h$h[, 1:sum(xcopies)]
y <- h$h[, -(1:sum(xcopies))]
u <- crossprod (x)
v <- crossprod (y)
w <- crossprod (x, y)
a <- solve (chol (u))
b <- solve (chol (v))
s <- crossprod (a, w %*% b)
r <- svd (s)
xw <- a %*% (r$u)
yw <- b %*% (r$v)
xs <- x %*% xw
ys <- y %*% yw
xl <- crossprod (x, xs)
yl <- crossprod (y, ys)
return (structure (

list(
xhat = x,
yhat = y,
rhat = cor (cbind (x, y)),
cancors = r$d,
xweights = xw,
yweights = yw,
xscores = xs,
yscores = ys,
xloadings = xl,
yloadings = yl,
ntel = h$ntel,
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f = h$f
),
class = "canals"

))
}

overals <-
function (data,

sets,
copies,
knots = knotsQ (data),
degrees = rep (2, ncol (data)),
ordinal = rep (TRUE, ncol (data)),
ndim = 2,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = FALSE) {

h <- gifiEngine(
data = data,
knots = knots,
degrees = degrees,
ordinal = ordinal,
sets = sets,
copies = copies,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose

)
xhat <- h$h
rhat <- cor (xhat)
a <- h$a
y <- xhat
for (j in 1:ncol(data)) {
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k <- (1:ndim) + (j - 1) * ndim
y[, k] <- xhat[, k] %*% a[k,]

}
return (structure (

list (
xhat = xhat,
rhat = rhat,
objscores = h$x,
quantifications = y,
ntel = h$ntel,
f = h$f

),
class = "overals"

))
}

primals <- function () {

}

addals <- function () {

}

pathals <- function () {

}

13.1.7 Splines

bsplineBasis <- function (x, degree, innerknots, lowknot = min(x,innerknots), highknot = max(x,innerknots)) {
innerknots <- unique (sort (innerknots))
knots <- c(rep(lowknot, degree + 1), innerknots, rep(highknot, degree + 1))
n <- length (x)
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m <- length (innerknots) + 2 * (degree + 1)
nf <- length (innerknots) + degree + 1
basis <- rep (0, n * nf)
res <- .C("splinebasis", d = as.integer(degree),

n = as.integer(n), m = as.integer (m), x = as.double (x), knots = as.double (knots), basis = as.double(basis))
basis <- matrix (res$basis, n, nf)
basis <- basis[,which(colSums(basis) > 0)]
return (basis)

}

knotsQ <- function (x, n = rep (5, ncol (x))) {
do <- function (i) {

y <- quantile (x[, i], probs = seq(0, 1, length = max (2, n[i])))
return (y[-c(1, length(y))])

}
lapply (1:ncol(x), function (i)

do (i))
}

knotsR <- function (x, n = rep (5, ncol (x))) {
do <- function (i) {

y <- seq (min(x[, i]), max(x[, i]), length = max (2, n[i]))
return (y[-c(1, length(y))])

}
lapply (1:ncol(x), function (i)

do (i))
}

knotsE <- function (x) {
lapply (1:ncol(x), function (i)

numeric(0))
}

knotsD <- function (x) {
do <- function (i) {

y <- sort (unique (x[, i]))
return (y[-c(1, length(y))])
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}
lapply (1:ncol(x), function (i)

do (i))
}

13.1.8 Gram-Schmidt

gsRC <- function (x, eps = 1e-10) {
n <- nrow (x)
m <- ncol (x)
h <-

.C(
"gsC",
x = as.double(x),
r = as.double (matrix (0, m, m)),
n = as.integer (n),
m = as.integer (m),
rank = as.integer (0),
pivot = as.integer (1:m),
eps = as.double (eps)

)
rank = h$rank
return (list (

q = matrix (h$x, n, m)[, 1:rank, drop = FALSE],
r = matrix (h$r, m, m)[1:rank, , drop = FALSE],
rank = rank,
pivot = h$pivot

))
}

lsRC <- function (x, y, eps = 1e-10) {
n <- nrow (x)
m <- ncol (x)
h <- gsRC (x, eps)
l <- h$rank
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p <- order (h$pivot)
k <- 1:l
q <- h$q
a <- h$r[, k, drop = FALSE]
v <- h$r[, -k, drop = FALSE]
u <- crossprod (q, y)
b <- solve (a, u)
res <- drop (y - q %*% u)
s <- sum (res ˆ 2)
b <- rbind(b, matrix (0, m - l, ncol(y)))[p, , drop = FALSE]
if (l == m) {

e <- matrix(0, m, 1)
} else {

e <- rbind (-solve(a, v), diag(m - l))[p, , drop = FALSE]
}
return (list (

solution = b,
residuals = res,
minssq = s,
nullspace = e,
rank = l,
pivot = p

))
}

nullRC <- function (x, eps = 1e-10) {
h <- gsRC (x, eps = eps)
rank <- h$rank
r <- h$r
m <- ncol (x)
t <- r[, 1:rank, drop = FALSE]
s <- r[, -(1:rank), drop = FALSE]
if (rank == m)

return (matrix(0, m, 1))
else {

nullspace <- rbind (-solve(t, s), diag (m - rank))[order(h$pivot), , drop = FALSE]
return (gsRC (nullspace)$q)
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}
}

ginvRC <- function (x, eps = 1e-10) {
h <- gsRC (x, eps)
p <- order(h$pivot)
q <- h$q
s <- h$r
z <- crossprod (s, (solve (tcrossprod(s), t(q))))
return (z[p, , drop = FALSE])

}

13.1.9 Cone regression

dyn.load ("lib/pava.so")

amalgm <- function (x, w = rep (1, length (x))) {
n <- length (x)
a <- rep (0, n)
b <- rep (0, n)
y <- rep (0, n)
lf <-

.Fortran (
"AMALGM",
n = as.integer (n),
x = as.double (x),
w = as.double (w),
a = as.double (a),
b = as.double (b),
y = as.double (y),
tol = as.double(1e-15),
ifault = as.integer(0)

)
return (lf$y)

}
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isotone <-
function (x,

y,
w = rep (1, length (x)),
ties = "s") {

there <- which (!is.na (x))
notthere <- which (is.na (x))
xthere <- x[there]
f <- sort(unique(xthere))
g <- lapply(f, function (z)

which(x == z))
n <- length (x)
k <- length (f)
if (ties == "s") {

w <- sapply (g, length)
h <- lapply (g, function (z)

y[z])
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
for (i in 1:k)

s[g[[i]]] <- r[i]
s[notthere] <- y[notthere]
}
if (ties == "p") {

h <- lapply (g, function (z)
y[z])

m <- rep (0, n)
s <- rep (0, n)
for (i in 1:k) {

ii <- order (h[[i]])
g[[i]] <- g[[i]][ii]
h[[i]] <- h[[i]][ii]

}
m <- unlist (h)
r <- amalgm (m, w)
s[there] <- r[order (unlist (g))]
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s[notthere] <- y[notthere]
}
if (ties == "t") {

w <- sapply (g, length)
h <- lapply (g, function (x)

y[x])
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
for (i in 1:k)

s[g[[i]]] <- y[g[[i]]] + (r[i] - m[i])
s[notthere] <- y[notthere]

}
return (s)

}

coneRegression <-
function (data,

target,
basis = matrix (data, length(data), 1),
type = "i",
ties = "s",
missing = "m",
itmax = 1000,
eps = 1e-6) {

itel <- 1
there <- which (!is.na (data))
notthere <- which (is.na (data))
nmis <- length (notthere)
solution <- rep(0, length (data))
wdata <- data[there]
wtarget <- target[there]
wbasis <- basis [there, ]
if (type == "s") {

solution <- drop (basis %*% lsRC (basis, target)$solution)
}
if ((type == "c") && (missing != "a")) {
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solution[there] <- isotone (x = wdata, y = wtarget, ties = ties)
if (nmis > 0) {

if (missing == "m")
solution[notthere] <- target[notthere]

if (missing == "s")
solution[notthere] <- mean (target[notthere])

}
}

if ((type == "i") || ((type == "c") && (missing == "a"))) {
solution <-

dykstra (
target = target,
basis = basis,
data = data,
ties = ties,
itmax = itmax,
eps = eps

)
}
return (solution)

}

dykstra <- function (target, basis, data, ties, itmax, eps) {
x0 <- target
itel <- 1
a <- b <- rep (0, length (target))
fold <- Inf
repeat {

x1 <- drop (basis %*% lsRC (basis, x0 - a)$solution)
a <- a + x1 - x0
x2 <- isotone (data, x1 - b, ties = ties)
b <- b + x2 - x1
fnew <- sum ((target - (x1 + x2) / 2) ˆ 2)
xdif <- max (abs (x1 - x2))
if ((itel == itmax) || (xdif < eps))

break
itel <- itel + 1



146 CHAPTER 13. CODE

x0 <- x2
fold <- fnew

}
return ((x1 + x2) / 2)

}

13.1.10 Coding

dyn.load("lib/coding.so")

decode <- function(cell, dims) {
if (length(cell) != length(dims)) {

stop("Dimension error")
}
if (any(cell > dims) || any (cell < 1)) {

stop("No such cell")
}
.Call("DECODE", as.integer(cell), as.integer(dims))

}

encode <- function(ind, dims) {
if (length(ind) > 1) {

stop ("Dimension error")
}
if ((ind < 1) || (ind > prod(dims))) {

stop ("No such cell")
}
.Call("ENCODE", as.integer(ind), as.integer(dims))

}
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13.1.11 Utilities

makeNumeric <- function (x) {
do <- function (y) {

u <- unique (y)
return (drop (ifelse (outer (y, u, "=="), 1, 0) %*% (1:length (u))))

}
if (is.vector (x)) {

return (do (x))
}
else {

return (apply (x, 2, do))
}

}

center <- function (x) {
do <- function (z) {

z - mean (z)
}
if (is.matrix (x))

return (apply (x, 2, do))
else

return (do (x))
}

normalize <- function (x) {
do <- function (z) {

z / sqrt (sum (z ˆ 2))
}
if (is.matrix (x))

return (apply (x, 2, do))
else

return (do (x))
}

makeMissing <- function (data, basis, missing) {
there <- which (!is.na (data))
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notthere <- which (is.na (data))
nmis <- length (notthere)
nobs <- length (data)
ndim <- ncol (basis)
if (missing == "m") {

abasis <- matrix (0, nobs, ndim + nmis)
abasis [there, 1:ndim] <- basis
abasis [notthere, ndim + 1:nmis] <- diag(nmis)
basis <- abasis

}
if (missing == "a") {

abasis <- matrix (0, nobs, ndim)
abasis [there,] <- basis
abasis [notthere,] <- 1 / ndim
basis <- abasis

}
if (missing == "s") {

abasis <- matrix (0, nobs, ndim + 1)
abasis [there, 1:ndim] <- basis
abasis [notthere, ndim + 1] <- 1
basis <- abasis

}
return (basis)

}

makeIndicator <- function (x) {
return (as.matrix(ifelse(outer(

x, sort(unique(x)), "=="
), 1, 0)))

}

reshape <- function (x, n) {
if (length (x) == 1)

return (rep (x, n))
else

return (x)
}
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aline <- function (a) {
abline (0, a[2] / a[1])

}

aperp <- function (a, x) {
abline (x * (sum (a ˆ 2) / a[2]),-a[1] / a[2])

}

aproj <- function (a, h, x) {
mu <- (h - sum (a * x)) / (sum (a ˆ 2))
return (x + mu * a)

}

stepPlotter <- function (x, y, knots, xlab) {
y <- as.matrix (y)
plot (x,

y[, 1],
type = "n",
xlab = xlab,
ylab = "Transform")

nknots <- length (knots)
knots <- c(min(x) - 1, knots, max(x) + 1)
for (i in 1:(nknots + 1)) {

ind <- which ((x >= knots [i]) & (x < knots[i + 1]))
lev <- median (y [ind, 1])
lines (rbind (c(knots[i], lev), c (knots[i + 1], lev)), col = "RED", lwd = 3)
if (ncol (y) == 2) {

lev <- median (y [ind, 2])
lines (rbind (c(knots[i], lev), c (knots[i + 1], lev)), col = "BLUE", lwd = 3)

}
}

}

starPlotter <- function (x, y, main = "") {
plot(

x,
xlab = "dimension 1",
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ylab = "dimension 2",
col = "RED",
cex = .5,
main = main

)
points(y, col = "BLUE", cex = .5)
for (i in 1:nrow(x))

lines (rbind (x[i, ], y[i, ]))
}

regressionPlotter <-
function (table,

x,
y,
xname = "Columns",
yname = "Rows",
main = "",
lines = TRUE,
cex = 1.0,
ticks = "n") {

if (ticks != "n") {
ticks <- NULL

}
nr <- nrow (table)
nc <- ncol (table)
sr <- rowSums (table)
sc <- colSums (table)
rc <- sum (table)
x <- x - sum (sr * x) / rc
y <- y - sum (sc * y) / rc
x <- x / sqrt (sum (sr * (x ˆ 2)) / rc)
y <- y / sqrt (sum (sc * (y ˆ 2)) / rc)
ar <- drop ((table %*% y) / sr)
ac <- drop ((x %*% table) / sc)
plot (

0,
xlim = c (min(y), max(y)),



13.1. R CODE 151

ylim = c (min(x), max(x)),
xlab = xname,
ylab = yname,
main = main,
xaxt = ticks,
yaxt = ticks,
type = "n"

)
if (lines) {

for (i in 1:nr)
abline (h = x[i])

for (j in 1:nc)
abline (v = y[j])

}
for (i in 1:nr) {

for (j in 1:nc) {
text(y[j],

x[nr - i + 1],
as.character(table[i, j]),
cex = cex,
col = "RED")

}
}
lines (y, ac, col = "BLUE")
lines (ar, x, col = "BLUE")

}

corList <- function (x) {
m <- length (x)
n <- nrow (x[[1]])
h <- matrix (0, n, 0)
for (i in 1:m) {

h <- cbind (h, x[[i]])
}
return (cor (h))

}
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preCorals <- function (x) {
n <- sum (x)
r <- nrow (x)
s <- ncol (x)
v <- numeric (0)
for (i in 1:r)

for (j in 1:s)
v <- c(v, rep(c(i, j), x[i, j]))

return (matrix (v, n, 2, byrow = TRUE))
}

postCorals <- function (ff, x) {
y <- matrix(0, max(ff), ncol (x))
for (i in 1:nrow (x))

y[ff[i],] <- x[i,]
return (y)

}

preCoranals <- function (x, y) {
n <- sum (x)
m <- ncol (y)
r <- nrow (x)
s <- ncol (x)
v <- numeric (0)
for (i in 1:r)

for (j in 1:s)
v <- c(v, rep(c(y[i,], j), x[i, j]))

return (matrix (v, n, m + 1, byrow = TRUE))
}

mprint <- function (x, d = 2, w = 5) {
print (noquote (formatC (

x, di = d, wi = w, fo = "f"
)))

}

burtTable <- function (gifi) {
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nsets <- length (gifi)
nobs <- length(gifi[[1]][[1]]$data)
hh <- matrix (0, nobs, 0)
hl <- list ()
for (i in 1:nsets) {

gifiSet <- gifi[[i]]
nvars <- length (gifiSet)
hi <- matrix(0, nobs, 0)
for (j in 1:nvars) {

gifiVariable <- gifiSet[[j]]
hi <- cbind (hi, gifiVariable$basis)

}
hl <- c (hl, list (crossprod (hi)))
hh <- cbind (hh, hi)

}
return (list (cc = crossprod (hh), dd = directSum (hl)))

}

interactiveCoding <- function (data) {
cmin <- apply (data, 2, min)
cmax <- apply (data, 2, max)
if (!all(cmin == 1))

stop ("data must be start at 1")
nobs <- nrow(data)
h <- numeric(0)
for (i in 1:nobs)

h <- c(h, decode (data[i, ], cmax))
return (h)

}

makeColumnProduct <- function (x) {
makeTwoColumnProduct <- function (a, b) {

n <- nrow (a)
ma <- ncol (a)
mb <- ncol (b)
ab <- matrix (0, n, ma * mb)
k <- 1
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for (i in 1:ma) {
for (j in 1:mb) {

ab[, k] <- a[, i] * b[, j]
k <- k + 1

}
}
return (ab)

}
if (!is.list(x)) {

x <- list (x)
}
m <- length (x)
z <- matrix (1, nrow(x[[1]]), 1)
for (k in 1:m)

z <- makeTwoColumnProduct (z, x[[k]])
return (z)

}

profileFrequencies <- function (data) {
h <- interactiveCoding (data)
cmax <- apply (data, 2, max)
u <- unique (h)
m <- length (u)
g <- ifelse (outer (h, u, "=="), 1, 0)
n <- colSums (g)
h <- matrix (0, m, ncol (data))
for (j in 1:m)

h[j, ] <- encode (u[j], cmax)
return (list (h = h, n = n))

}

directSum <- function (x) {
m <- length (x)
nr <- sum (sapply (x, nrow))
nc <- sum (sapply (x, ncol))
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z <- matrix (0, nr, nc)
kr <- 0
kc <- 0
for (i in 1:m) {

ir <- nrow (x[[i]])
ic <- ncol (x[[i]])
z[kr + (1:ir), kc + (1:ic)] <- x[[i]]
kr <- kr + ir
kc <- kc + ic

}
return (z)

}

13.2 C Code

13.2.1 Splines

double bs (int nknots, int nspline, int degree, double x, double * knots);
int mindex (int i, int j, int nrow);

void splinebasis (int *d, int *n, int *m, double * x, double * knots, double * basis) {
int mm = *m, dd = *d, nn = *n;
int k = mm - dd - 1, i , j, ir, jr;
for (i = 0; i < nn; i++) {

ir = i + 1;
if (x[i] == knots[mm - 1]) {

basis [mindex (ir, k, nn) - 1] = 1.0;
for (j = 0; j < (k - 1); j++) {

jr = j + 1;
basis [mindex (ir, jr, nn) - 1] = 0.0;

}
} else {

for (j = 0; j < k ; j++) {
jr = j + 1;
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basis [mindex (ir, jr, nn) - 1] = bs (mm, jr, dd + 1, x[i], knots);
}

}
}

}

int mindex (int i, int j, int nrow) {
return (j - 1) * nrow + i;

}

double bs (int nknots, int nspline, int updegree, double x, double * knots) {
double y, y1, y2, temp1, temp2;
if (updegree == 1) {

if ((x >= knots[nspline - 1]) && (x < knots[nspline]))
y = 1.0;

else
y = 0.0;

}
else {

temp1 = 0.0;
if ((knots[nspline + updegree - 2] - knots[nspline - 1]) > 0)

temp1 = (x - knots[nspline - 1]) / (knots[nspline + updegree - 2] - knots[nspline - 1]);
temp2 = 0.0;
if ((knots[nspline + updegree - 1] - knots[nspline]) > 0)

temp2 = (knots[nspline + updegree - 1] - x) / (knots[nspline + updegree - 1] - knots[nspline]);
y1 = bs(nknots, nspline, updegree - 1, x, knots);
y2 = bs(nknots, nspline + 1, updegree - 1, x, knots);
y = temp1 * y1 + temp2 * y2;

}
return y;

}

13.2.2 Gram-Schmidt
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#include <math.h>

#define MINDEX(i, j, n) (((j)-1) * (n) + (i)-1)

void gsC(double *, double *, int *, int *, int *, int *, double *);

void gsC(double *x, double *r, int *n, int *m, int *rank, int *pivot,
double *eps) {

int i, j, ip, nn = *n, mm = *m, rk = *m, jwork = 1;
double s = 0.0, p;
for (j = 1; j <= mm; j++) {

pivot[j - 1] = j;
}
while (jwork <= rk) {

for (j = 1; j < jwork; j++) {
s = 0.0;
for (i = 1; i <= nn; i++) {

s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, j, nn)];
}
r[MINDEX(j, jwork, mm)] = s;
for (i = 1; i <= nn; i++) {

x[MINDEX(i, jwork, nn)] -= s * x[MINDEX(i, j, nn)];
}

}
s = 0.0;
for (i = 1; i <= nn; i++) {

s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, jwork, nn)];
}
if (s > *eps) {

s = sqrt(s);
r[MINDEX(jwork, jwork, mm)] = s;
for (i = 1; i <= nn; i++) {

x[MINDEX(i, jwork, nn)] /= s;
}
jwork += 1;

}
if (s <= *eps) {
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ip = pivot [rk - 1];
pivot[rk - 1] = pivot[jwork - 1];
pivot[jwork - 1] = ip;
for (i = 1; i <= nn; i++) {

p = x[MINDEX(i, rk, nn)];
x[MINDEX(i, rk, nn)] = x[MINDEX(i, jwork, nn)];
x[MINDEX(i, jwork, nn)] = p;

}
for (j = 1; j <= mm; j++) {

p = r[MINDEX(j, rk, mm)];
r[MINDEX(j, rk, mm)] = r[MINDEX(j, jwork, mm)];
r[MINDEX(j, jwork, mm)] = p;

}
rk -= 1;

}
}
*rank = rk;

}

13.2.3 Coding

#include <R.h>
#include <Rinternals.h>

SEXP DECODE( SEXP, SEXP );
SEXP ENCODE( SEXP, SEXP );

SEXP
DECODE( SEXP cell, SEXP dims )
{

int aux = 1, n = length(dims);
SEXP ind;
PROTECT( ind = allocVector( INTSXP, 1 ) );
INTEGER( ind )[0] = 1;
for( int i = 0; i < n; i++ ) {
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INTEGER( ind )[0] += aux * ( INTEGER( cell )[i] - 1 );
aux *= INTEGER(dims)[i];

}
UNPROTECT( 1 );
return (ind);

}

SEXP
ENCODE( SEXP ind, SEXP dims )
{

int n = length(dims), aux = INTEGER(ind)[0], pdim = 1;
SEXP cell;
PROTECT( cell = allocVector( INTSXP, n ) );
for ( int i = 0; i < n - 1; i++ )

pdim *= INTEGER( dims )[i];
for ( int i = n - 1; i > 0; i-- ){

INTEGER( cell )[i] = ( aux - 1 ) / pdim;
aux -= pdim * INTEGER( cell )[i];
pdim /= INTEGER( dims )[i - 1];
INTEGER( cell )[i] += 1;

}
INTEGER( cell )[0] = aux;
UNPROTECT( 1 );
return cell;

}
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