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Note

This book will be expanded/updated frequently and unpredictably. The di-
rectory deleeuwpdx.net/pubfolders/stress has a pdf version, the bib file, the
complete Rmd file with the code chunks, the R and C source code, and what-
ever else is needed for perfect reproducibility. Suggestions for improvement
of text and code are welcome. All text and code are in the public domain
and can be copied and used by anybody in any way they like. Attribution
will be appreciated, but is not required.
Just as an aside: “above” in the text refers to anything that comes earlier
in the book and “below” refers to anything that comes later. This always
confuses me, so I had to write it down. I also number all displayed equations.
Equations are displayed if and only if they are important, are referred to in
the text, or mess up the line spacing.
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Preface

Many recent algorithms in computational statistics are variations on a com-
mon theme. In this book we discuss four such classes of algorithms. Or,
more precisely, we discuss a single large class of algorithms, and we show
how various well-known classes of statistical algorithms fit into this common
framework. The types of algorithms we consider are, in logical order,
There is not much statistics, in the sense of data analysis or inference, in
this book. It is almost exclusively about deterministic optimization problems
(although we shall optimize a likelihood function or two). Some of our results
have been derived in the statistical literature in the context of maximizing a
multinomial or multinormal likelihood function. In most cases statisticians
have developed their own results, not relying on the more comprehensive
results in the optimization literature. We will try, from the start, to use
existing results and apply them to our specific optimization methods.
There are many, many excellent books on optimization and mathematical
programming. Without a doubt the canonical reference for statisticians is,
and will be for many years to come, the book by Lange (2013). In particular
his chapters 7,8, 9, and 12 have substantial overlap with this book. There is
even more overlap with the book in progress MM Optimization Algorithms
(Lange 2016).
For the record, the books that have been most useful to me throughout my
personal optimization career are Ortega and Rheinboldt (1970a), Ostrowski
(1966), Rockafellar (1970), and, above all, Zangwill (1969). They were all
published in a five year interval, at the end of the sixties. Around that
time also started the ten-year period of my greatest intellectual curiosity and
creativity.
Throughout the book we try to present our results in three different lan-

13
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Figure 1: Algorithm Types
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guages: the language of mathematics, the language of graphics, and the
programming language R. We use R for all computations, tables, and figures
(R Core Team 2016). In fact, all figures and tables are dynamically generated
by chunks of R code using knitr (Xie 2015) and bookdown (Xie 2016) .
There are many examples throughout the book. They are usually presented
in considerable and sometimes exasperating detail, with code, computations,
and figures. I like to work on such examples, so please indulge me. It is nice
to have an infinite number of pages available. The examples are mostly in
separate subsections, so if you do not like them you can easily skip them.
In many cases the examples are simple one-dimensional optimization prob-
lems, which is maybe surprising, because the techniques we discuss are largely
intended for high-dimensional problems. To further simplify the examples the
functions involved are often cubic or quartic polynomials. Thus these small
examples are not particularly representative for the types of applications we
are interested in, but they are used to produce nice graphs, a more complete
analysis, and illustrations of various general principles and properties. Also
it sometimes makes sense to think of the polynomial examples as models, in
the same sense in which the quadratic is a model for Newton’s method.
Many of the remaining examples are taken from multivariate statistical anal-
ysis, which we define in the broadest possible sense. It includes data analysis
using linear and bilinear algebra, and in particular it includes multidimen-
sional scaling and cluster analysis. Given my history, it is probably not
surprising that many examples have their origin in psychometrics, and more
specifically in publications of researchers directly or loosely associated with
the Data Theory group at Leiden University, starting in 1968. See Van der
Heijden and Sijtsma (1996).
We take the point of view in this book that having global convergence of
an iterative algorithm, i.e. convergence from an arbitrary starting point, is
a desirable property. But it is neither necessary nor sufficient for the useful-
ness of the algorithm, because in addition one needs information about its
speed of convergence. We try to give as much information as possible about
convergence speed and complexity in our presentation of the examples.
It should be noted that this book is a corrected, updated, and expanded
version of a twenty-five year old chapter in a conference proceedings volume
(De Leeuw 1994). It will not be possible to erase all the traces of these
humble beginnings. Specifically, references will often be to material from
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before 1994, and more recent work will probably be less completely covered.
Much of the material in this book is pasted together from published and
unpublished papers and reports. This may lead to inconsistencies in the
notation and to annoying duplications. Over time I will eliminate these
blemishes as much as possible.
Items in the bibliography freely available on the internet are hyperlinked
by title to external pdf files. This includes all published and unpublished
works authored or co-authored by me. They can also be found in my bibli-
ography of about 750 items, most of them linked to pdf files, on my server
gifi.stat.ucla.edu.

http://gifi.stat.ucla.edu/janspubs/0_bib_material/index.html


Chapter 1

Introduction

1.1 Some History

The methods discussed in this book are special cases of what we shall call
block-relaxation methods, although other names such as decomposition or
nonlinear Gauss-Seidel or ping-pong or seesaw methods have also been used.
There are many areas of applied mathematics where methods of this type
have been discussed. Mostly, of course, in optimization and mathematical
programming, but also in control and numerical analysis, and in differential
equations.

In this section we shall give some informal definitions to establish our termi-
nology. We will give some of the historical context, but the main historical
and technical details will be discussed in subsequent chapters.

In a block relaxation method we minimize a real-valued function of several
variables by partitioning the variables into blocks. We choose initial values
for all blocks, and then minimize over one of the blocks, while keeping all
other blocks fixed at their current values. We then replace the values of the
active block by the minimizer, and proceed by choosing another block to
become active. An iteration ofthe algorithm steps through all blocks in turn,
each time keeping the non-active blocks fixed at current values, and each
time replacing the active blocks by solving the minimization subproblems. If
there are more than two blocks there are different ways to cycle through the
blocks. If we use the same sequence of active blocks in each iteration then

17



18 CHAPTER 1. INTRODUCTION

the block method is called cyclic.

In the special case in which blocks consist of only one coordinate we speak
of the _ coordinate relaxation method_ or the coordinate descent (or CD)
method. If we are maximizing then it is coordinate ascent (or CA). The
cyclic versions are CCD and CCA.

Alternating Least Squares (or ALS) methods are block relaxation methods
in which each minimization subproblem is a linear or nonlinear least squares
problem. As far as we know, the term “Alternating Least Squares” was first
used in De Leeuw (1968). There certainly were ALS methods before 1968,
but the systematic use of these techniques in psychometrics and multivariate
analysis started around that time. The inspiration clearly was the pioneering
work of Kruskal (1964a), Kruskal (1964b) in nonmetric scaling. De Leeuw,
Young, and Takane started the ALSOS system of techniques and programs
around 1973 (see F. W. Young, De Leeuw, and Takane (1980)), and De
Leeuw, with many others, at Leiden University started the Gifi system around
1975 (see Gifi (1990)).

ALS works well for fitting the usual linear, bilinear, and multilinear forms to
data. Thus it covers much of classical multivariate analysis and its extensions
to higher dimensional arrays. But pretty early on problems arose in Euclidean
multidimensional scaling, which required fitting quadratic forms or, even
worse, square roots of quadratic forms to data. Straightforward ALS could
not be used, because the standard matrix calculations of least squares and
eigen decomposition did not apply. Takane, Young, and De Leeuw (1977)
circumvented the problem by fitting squared distances using cyclic coordinate
descent, which only involved unidimensional minimizations.

Around 1975, however, De Leeuw greatly extended the scope of ALS by using
majorization. This was first applied to Euclidean multidimensional scaling
by De Leeuw (1977), but it became clear early on that majorization was a
general technique for algorithm construction that also covered, for example,
the EM algorithm, which was discovered around the same time (Dempster,
Laird, and Rubin (1977)). In each iteration of a majorization algorithm we
construct a surrogate function (Lange, Hunter, and Yang (2000)) or ma-
jorization (De Leeuw (1994), Heiser (1995)) that lies above the function we
are minimizing and touches it in the current iterate. We then minimize this
surrogate function to find an update of the current iterate, then construct
a new majorization function in that update, and so on. The majorization
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function, if suitably chosen, can often be minimized using ALS techniques.
De Leeuw (1994) argues there is another important class of algorithms ex-
tending ALS. It is intermediate, since it is a special case of block relaxation
and it contains majorization as a special case. In augmentation methods for
the minimization of a real valued function we introduce an augmentation,
which uses an additional vector of variables, with a surrogate function on
the product of both sets, such that the original objective function is the min-
imum of the surrogate function over the augmenting block of variables. We
then apply block relaxation to the augmented function.
Ortega and Rheinboldt majorization, Kantorovich, Toland duality, decom-
position, quasi-linearization, Marshall-Olkin-Arnold, NIPALS, Moreau cou-
pling functions
block relaxation is majorization
it suffices to study two blocks (in a sense)

1.2 Optimization Methods

Our block relaxation methods look for desirable points, which are usually
fixed points of point-to-set maps. They minimize, in a vast majority of the
applications, a loss function or badness-of-fit function, which is often derived
from some general data analysis principle such as Least Squares or Maximum
Likelihood. The desirable points are the local or global minimizers of this
loss function.
Under certain conditions, which are generally satisfied in statistical appli-
cations, our block relaxation methods have global convergence, which means
that the iterative sequences they generate converge to desirable points, no
matter where we start them. They are generally stable, which means in this
context that each step in the iterative process decreases the loss function
value.
Under stronger, but still quite realistic, conditions our block relaxation meth-
ods exhibit linear convergence, i.e. the distance of the iterates to the desir-
able points decreases at the rate of a geometric progression. In many high-
dimensional cases the ratio of the progression is actually close to one, which
makes convergence very slow, and in some cases the ratio is equal to one
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and convergence is sublinear. We will also discuss stable block relaxation
algorithms with superlinear convergence, but they are inherently more com-
plicated. In addition we will discuss techniques to accelerate the convergence
of block relaxation iterations.
In the optimization and mathematical programming literature, at least until
recently, methods with linear convergence rates were generally deprecated or
ignored. It was thought they were too slow to be of any practical relevance.
This situation has changed for various reasons, all of them having to do
with the way in which we now program and compute. Here “we” specifically
means statisticians and data analysts, but the same reasons probably apply
in other fields as well.
In the first place block relaxation methods often involve simple computations
in each of their iterations. As a consequence they can tackle problems with
a large number of variables, and they are often easily parallelized. In the
second place, with the advent of personal computers it is not necessarily a
problem any more to let an iterative process run for days in the background.
Mainframe computer centers used to frown on such practices. Third, they are
now many specific large problems characterized by a great deal of sparseness,
which make block and coordinate methods natural alternatives because they
can take this sparseness into account. And finally, simple computations in
each of the steps make it easy to write ad hoc programs in interpreted special
purpose languages such as R. Such programs can take the special structure of
the problem they are trying to solve into account, and this makes them more
efficient compared to general purpose optimization methods which may have
faster convergence rates.
Statistics optimization
R optimization



Chapter 2

Block Relaxation

2.1 Introduction

The history of block relaxation methods is complicated, because many special
cases were proposed before the general idea became clear. I make no claim
here to be even remotely complete, but I will try to mention at least most of
the general papers that were important along the way.

It makes sense to distinguish the coordinate descent methods from the more
general block methods. Coordinate descent methods have the major advan-
tage that they lead to one-dimensional optimization problems, which are
generally much easier to handle than multidimensional ones.

We start our history with iterative methods for linear systems. Even there
the history is complicated, but it has been ably reviewed by, among others,
Forsythe (1953), D. M. Young (1990), Saad and Van der Vorst (2000), Benzi
(n.d.), and Axelsson (2010). The origins are in 19th century German math-
ematics, starting perhaps with a letter from Gauss to his student Gerling on
December 26, 1823. See Forsythe (1950) for a translation. To quote Gauss:
“I recommend this method to you for imitation. You will hardly ever again
eliminate directly, at least not when you have more than 2 unknowns. The
indirect procedure can be done while half asleep, or while thinking about other
things.” For discussion of subsequent contributions by Jacobi (1845), Seidel
(1874), Von Mises and Pollackzek-Geiringer (1929), we refer to the excellent
historical overviews mentioned before, and to the monumental textbooks by

21
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Varga (1962) and D. M. Young (1971).

The next step in our history is the quadratic programming method proposed
by Hildreth (1957). Coordinate descent is applied to the dual program,
which is a simple quadratic problem with non-negativity constraints, origi-
nating from the Lagrange multipliers for the primal problem. Because the
constraints are separable in the dual problem the technique can easily han-
dle a large numbers of inequality constraints and can easily be parallelized.
Hildreth already considered the non-cyclic greedy and random versions of
coordinate descent. A nice historical overview of Hildreth’s method and its
various extensions is in Dax (2003).

Coordinate relaxation for convex functions, not necessarily quadratic, was
introduced by D’Esopo (1959). in an important paper, followed by influ-
ential papers of Schechter (1962), Schechter (1968), Schechter (1970). The
D’Esopo paper actually has an early version of Zangwill’s general conver-
gence theory, applied to functions that are convex in each variable separably
and are minimized under separable bound constraints.

Ortega and Rheinboldt (1967), Ortega and Rheinboldt (1970b), Elkin (1968),
Céa (1968), Céa (1970), Céa and Glowinski (1973), Auslender (1970), Auslen-
der (1971), Martinet and Auslender (1974) Many of these papers present the
method as a nonlinear generalization of the Gauss-Seidel method of solving
a system of linear equations.

Modern papers on block-relaxation are by Abatzoglou and O’Donnell (1982)
and by Bezdek et al. (1987).

So many more now Spall (2012), Beck and Tetruashvili (1913), Saha and
Tewari (2013), Wright (2015)

In Statistics .. Statistical applications to mixed linear models, with the
parameters describing the mean structure collected in one block and the
parameters describing the dispersion collected in the second block, are in
Oberhofer and Kmenta (1974). Applications to exponential family likelihood
functions, cycling over the canonical parameters, are in Jensen, Johansen,
and Lauritzen (1991). Applications in lasso etc.
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2.2 Definition

Block relaxation methods are fixed point methods. A brief general introduc-
tion to fixed point methods, with some of the terminology we will use, is in
the fixed point section 14.4 of the background chapter.
Let us thus consider the following general situation. We minimize a real-
valued function f defined on the product-set X = X1⊗X2⊗ · · · ⊗Xp, where
Xs ⊆ Rns .

In order to minimize f over X we use the following iterative algorithm.

Starter: Start with x(0) ∈ X .
Step k.1: x

(k+1)
1 ∈ argmin

x1∈X1

f(x1, x
(k)
2 , · · · , x(k)

p ).

Step k.2: x
(k+1)
2 ∈ argmin

x2∈X2

f(x(k+1)
1 , x2, x

(k)
3 , · · · , x(k)

p ).

· · · · · ·
Step k.p: x(k+1)

p ∈ argmin
xp∈Xp

f(x(k+1)
1 , · · · , x(k+1)

p−1 , xp).

Motor: k ← k + 1 and go to k.1

Observe that we assume that the minima in the substeps exist, but they need
not be unique. The argmin’s are point-to-set maps, although in many cases
they map to singletons. In actual computations we will always have to make
a selection from the argmin.
We set x(k) := (x(k)

1 , · · · , x(k)
p ), and f (k) := f(x(k)). The map A that is the

composition of the p substeps on an iteration satisfies x(k+1) ∈ A(x(k)). We
call it the iteration map (or the algorithmic map or update map). If A(x) is
a singleton for all x ∈ X , then we can write x(k+1) = A(x(k)) without danger
of confusion, and call A the iteration function.
If A is differentiable on X then we introduce some extra terminology and
notation. The matrix M(x) := DA(x) of partial derivatives is called the
Iteration Jacobian and its spectral radius ρ(x) := ρ(DA(x)), the eigenvalue
of maximum modulus, is called the Iteration Spectral Radius or simply the
Iteration Rate. Note that for a linear iteration x(k+1) = Ax(k) + b we have
M(x) = A and ρ(x) = ρ(A).
The function blockRelax() in Code Segment 1 is a reasonable general R
function for unrestricted block relation in which each Xs is all of Rns . The
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arguments are the function to be minimized, the initial estimate, and the
block structure. Both the initial estimate and the block structure are of
length n = ∑

ns, and block structure is indicated by two elements having
the same integer value if and only if they are in the same block. Each of the
subproblems is solved by a call to the optim() function in R.

2.3 First Examples

Our first examples of block relaxation are linear least squares examples.
There are obviously historical reasons to choose linear least squares, and
in a sense they provide the simplest examples that allow us to illustrate
various important calculations and results.

2.3.1 Two-block Least Squares

Suppose we have a linear least squares problems with two sets of predictors
A1 and A2, and outcome vector b. Matrices A1 and A2 are m × n1 and
m × n2, and the vector of regressions coefficients x = (x1 | x2) is of length
n = n1 + n2. Without loss of generality we assume n1 ≤ n2.

Minimizing f(x) = (b−A1x1−A2x2)′(b−A1x1−A2x2) is then conveniently
done by block relaxation, alternating the two steps

x
(k+1)
1 = A+

1 (b− A2x
(k)
2 ),

x
(k+1)
2 = A+

2 (b− A1x
(k+1)
1 ).

Here A+
1 and A+

2 are Moore-Penrose inverses.

Define

c := A+
1 b,

d := A+
2 b,

R := A+
1 A2,

S := A+
2 A1.
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Then the iterations are

x
(k+1)
1 = c−Rx(k)

2 ,

x
(k+1)
2 = d− Sx(k+1)

1 .

A solution (x̂1, x̂2) of the least squares problem satisfies

x̂1 = c−Rx̂2,

x̂2 = d− Sx̂1,

and thus

(x(k+1)
1 − x̂1) = R(x(k)

2 − x̂2),
(x(k+1)

2 − x̂2) = S(x(k+1)
1 − x̂1),

and

(x(k+1)
2 − x̂2) = SR(x(k)

2 − x̂2),
(x(k+1)

1 − x̂1) = RS(x(k)
1 − x̂1).

The matrices SR = A+
2 A1A

+
1 A2 and RS = A+

1 A2A
+
2 A1 have the same eigen-

values λs, equal to ρ2
s, the squares of the canonical correlations of A1 and A2.

Consequently 0 ≤ λs ≤ 1 for all s. Specifically there exists a non-singular K
of order n1 and a non-singular L of order n2 such that

K ′A′
1A1K = I1,

L′A′
2A2L = I2,

K ′A′
1A2L = D.

Here I1 and I2 are diagonal, with the n1 and n2 leading diagonal elements
equal to one and all other elements zero. D is a matrix with the non-zero
canonical correlations in non-increasing order along the diagonal and zeroes
everywhere else. This implies R = KDL−1 and S = LD′K−1, and conse-
quently RS = KDD′K−1 and SR = LD′DL−1.
Let us look at the convergence speed of the x(k)

1 . The results for x(k)
2 will be

basically the same. Define

δ(k) ∆=K−1(x(k)
1 − x̂1)
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It follows, using RS = KDD′K−1, that δ(k) = Λkδ(0), with the squared
canonical correlations on the diagonal of Λ = DD′. If λ+ := maxi λi > 0 and
I = {i | λi = λ+} then

δ
(k)
i

λk
+
→

δ
(0)
i if i ∈ I,

0 otherwise

and thus
∥δ(k+1)∥
∥δ(k)∥

→ λ+.

This implies
∥x(k)

1 − x̂1∥
λk

→ ∥
∑
i∈I

δ
(0)
i ki ∥

where the ki are columns of K. In turn this implies

∥x(k+1)
1 − x̂1∥
∥x(k)

1 − x̂1∥
→ λ.

2.3.2 Multiple-block Least Squares

Now suppose there are multiple blocks. We minimize the loss function

f(x) = SSQ(b−
m∑

j=1
Ajxj). (2.1)

Block relaxation in this case is Gauss-Seidel iteration.
The update formula for the Gauss-Seidel method is

β
(k+1)
j = X ′

j

y − j−1∑
ℓ=1

Xℓβ
(k+1)
ℓ −

m∑
ℓ=j+1

Xℓβ
(k)
ℓ

 .
Define CL to be the block triangular matrix with the blocks X ′

jXℓ with j > ℓ
of C below the diagonal, and CU the block triangular matrix with the upper
diagonal blocks X ′

jXℓ with j < ℓ. Thus CL + CU + I = C and CL = C ′
U .

Now
β(k+1) = X ′y − CLβ

(k+1) − CUβ
(k),
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and thus
β(k+1) = (I + CL)−1X ′y − (I + CL)−1CUβ

(k).

The least squares estimate β̂ satisfies

β̂ = (I + CL)−1X ′y − (I + CL)−1CU β̂,

and thus
β(k+1) − β̂ = −(I + CL)−1CU(β(k) − β̂),

or
β(k) − β̂ =

[
−(I + CL)−1CU

]k
(β(0) − β̂).

Code in Code Segment 2.

2.4 Generalized Block Relaxation

In some cases, even the supposedly simple minimizations within blocks may
not have very simple solutions. In that case, we often use generalized block
relaxation, which is defined by p maps As mapping X into (subsets of) X .
We have

As(x) ∈ {x1} ⊗ · · · ⊗ {xs−1} ⊗ Fs(x)⊗ {xs+1} ⊗ · · · ⊗ {xp},

where z ∈ Fs(x$ implies

f(x1, · · · , xs−1, z, xs+1, · · · , xp) ≤ f(x1, · · · , xs−1, xs, xs+1, · · · , xp).

In ordinary block relaxation

Fs(x) = argmin
z∈Xs

f(x1, · · · , xs−1, z, xs+1, · · · , xp),

but in generalized block relaxation we could update xs by taking one or
more steps of a stable and convergent iterative algorithm for minimizing
f(x1, · · · , xs−1, z, xs+1, · · · , xp) over z ∈ Xs.
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2.4.1 Rasch Model

In the item analysis model proposed by Rasch, we observe a binary n ×m
matrix Y = {yij}. The (unconditional) log-likelihood is

L(x, z) =
n∑

i=1

m∑
j=1

yij log πij(x, z) + (1− yij) log(1− πij(x, z)),

with
πij(x, z) = exp(xi + zj)

1 + exp(xi + zj)
.

The negative log-likelihood can be written as

f(x, z) =
n∑

i=1

m∑
j=1

log{1 + exp(xi + zj)} −
n∑

i=1
yi⋆xi −

m∑
j=1

y⋆jzj,

where ⋆ indicates summation over an index. The stationary equations have
the elegant form

πi⋆(x, z) = yi⋆

π⋆j(x, z) = y⋆j.

The standard algorithm for the unconditional maximum likelihood problem
(Wainer, Morgan, and Gustafsson (1980)) cycles through these two blocks
of equations, using Newton’s method at each substep. In this case Newton’s
method turns out to be

x
(k+1)
i = x

(k)
i −

πi⋆(x(k), z(k))− yi⋆∑m
j=1 πij(x(k), z(k))(1− πij(x(k), z(k))) ,

and similarly for z(k+1)
j .

2.4.2 Nonlinear Least Squares

Consider the problem of minimizing
n∑

i=1
(yi −

m∑
j=1

ϕj(xi, θ)βj)2,
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with the ϕj known nonlinear functions.
Again the parameters separate naturally into two blocks β and θ, and finding
the optimal β for given θ is again linear regression.
The best way of finding the optimal θ for given β will typically depend on
a more precise analysis of the problem, but one obvious alternative is to
linearize the ϕj and apply Gauss-Newton.

2.5 Block Order

If there are more than two blocks, we can move through them in different
ways. In analogy with linear methods such as Gauss-Seidel and Gauss-Jacobi,
we distinguish cyclic and free-steering methods. We could select the block,
for instance, that seems most in need of improvement. This is the greedy
choice. We can pivot through the blocks in order, and start again when all
blocks have been visited. Or we could go back in the reverse order after
arriving at the last block. We can even choose blocks in random order, or
use some other chaotic strategy.
We emphasize, however, that the methods we consider are all of the Gauss-
Seidel type, i.e. as soon as we upgrade a block we use the new values in
subsequent computations. We do not consider Gauss-Jordan type strategies,
in which all blocks are updated independently, and then all blocks are re-
placed simultaneously. The latter strategy leads to fewer computations per
cycle, but it will generally violate the monotonicity requirement for the loss
function values.
We now give a formalization of these generalizations, due to Fiorot and Huard
(1979) Suppose ∆s are p point-to-set mappings of Ω into P(Ω), the set of all
subsets of Ω. We suppose that ω ∈ ∆s(ω) for all s = 1, · · · , p. Also define

Γs(ω) ∆= argmin{ψ(ω) | ω ∈ ∆s(ω)}.

There are now two versions of the generalized block-relaxation method which
are interesting.
In the free-steering version we set

ω(k+1) ∈ ∪p
s=1Γs(ω(k)).
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This means that we select, from the p subsets defining the possible updates,
one single update before we go to the next cycle of updates.

In the cyclic method we set

ω(k+1) ∈ ⊗p
s=1Γs(ω(k)).

In a little bit more detail this means

ω(k,0) = ω(k),

ω(k,1) ∈ Γs(ω(k,0)),
· · · ∈ · · · ,

ω(k,p) ∈ Γs(ω(k,p−1)),
ω(k+1) = ω(k,p).

Since ω ∈ ∆s(ω), we see that, for both methods, if ξ ∈ Γ(ω) then ψ(ξ) ≤
ψ(ω). This implies that Theorem ?? continues to apply to this generalized
block relaxation method.

A simple example of the ∆s is the following. Suppose the Gs are arbitrary
mappings defined on Ω. They need not even be real-valued. Then we can set

∆s(ω) ∆={ξ ∈ Ω | Gs(ξ) = Gs(ω)}.

Obviously ω ∈ ∆s(ω) for this choice of ∆s.

There are some interesting special cases. If Gs projects on a subspace of
Ω, then ∆(ω) is the set of all ξ which project into the same point as ω.
By defining the subspaces using blocks of coordinates, we recover the usual
block-relaxation method discussed in the previous section. In a statistical
context, in combination with the EM algorithm, functional constraints of
the form

Gs(ω) = Gs(ω)

were used by Meng and Rubin (1993). They call the resulting algorithm the
ECM algorithm.
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2.5.1 Projecting Blocks

2.6 Rate of Convergence

2.6.1 LU-form

In block relaxation methods, including generalized block methods, we update
x = (x1, · · · , xn) to y = (y1, · · · , yn) by the rule

ys = Fs(y1, · · · , ys−1, xs, xs+1, · · · , xn).

Differentiation gives

Dtys =
∑
u<s

(DuFs)(Dtyu) +
0 if t < s,

DtFs if t ≥ s.
. (1)

It should be emphasized that in many cases of interest in Fs does not depend
on xs, so that DsFs = 0 for all s. It is also important to realize that the
derivatives, which we write without arguments in this section, are generally
evaluated at points of the form (y1, · · · , ys−1, xs, · · · , xp). At fixed points,
however, xs = ys for all s, and we can just write Dtys without ambiguity.
And for our purposes the derivatives at fixed points are the interesting ones.
Now define

M ∆=


D1y1 D2y1 · · · Dny1
D1y2 D2y2 · · · Dny2

... ... . . . ...
D1yn D2yn · · · Dnyn

 ,
and

N ∆=


D1F1 D2F1 · · · DnF1
D1F2 D2F2 · · · DnF2

... ... . . . ...
D1Fn D2Fn · · · DnFn

 .
Also

NL
∆=


0 0 · · · 0
D1F2 0 · · · 0

... ... . . . ...
D1Fn D2Fn · · · 0

 ,
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and

NU
∆=


D1F1 D2F1 · · · DnF1

0 D2F2 · · · DnF2
... ... . . . ...
0 0 · · · DnFn

 ,
so that N = NU +NL. From (1)

M = NLM+NU ,

or
M = (I −NL)−1NU .

This is the Lower-Upper or LU form of the derivative of the algorithmic map.
For two blocks M is equal to[

D1F1 D2F1
(D1F2)(D1F1) (D1F2)(D2F1) +D2F2

]
,

and if D1F1 = 0 and D2F2 = 0 this is[
0 D2F1
0 (D1F2)(D2F1)

]
.

Thus the non-zero eigenvalues are the eigenvalues of (D1F2)(D2F1).

2.6.2 Product Form

There is another way to derive the formulas from the previous section. We
use the fact that the algorithmic map A is a composition of the form

A(x) = Ap(Ap−1(· · · (A1(x))),
where each As leaves all blocks, except block s, intact, and changes only the
variables in block s, Thus

As(x) =



x1
...

xs−1
Fs(x1, · · · , xp)

xs+1
...
xp


.
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Blocks (u, v) of the matrix of partials is (surpressing the dependence on x
again for the time being)

{DAs}uv
∆=


DvFu if u = s,

I if u = v ̸= p,

0 otherwise.

Again, in many cases of interest we have {DA}uv = 0 if u = v = s.
Now clearly, from the chain rule,

M = DA = DApDAp−1 · · · DA1

This is the product form of the derivative of the algorithmic map.
For two blocks, and zero diagonal blocks, we have, as in the previous section,

M = DA2DA1 =
[

I 0
D1F2 0

] [
0 D2F1
0 I

]
=
[
0 D2F1
0 D1F2D2F1

]
.

Thus the non-zero eigenvalues of M are the non-zero eigenvalues of
D1F2D2F1.
In the general cases with p blocks computing eigenvalues of M we can use
the result that the spectrum of ApAp−1 · · ·A1 is related in a straightforward
fashion to the spectrum of the cyclic matrix

Γ(A1, · · · , Ap) ∆=



0 0 · · · 0 Ap

A1 0 · · · 0 0
0 A2 · · · 0 0
... ... . . . ... ...
0 0 · · · Ap−1 0

 .

In fact if λ is an eigenvalue of Γ(A1, · · · , Ap) then λp is an eigenvalue of
ApAp−1 · · ·A1, and if µ is a eigenvalue of ApAp−1 · · ·A1 then the p solutions
of λp = µ are eigenvalues of Γ(A1, · · · , Ap).

2.6.3 Block Optimization Methods

The results in the previous two sections were for general block modification
methods. We now specialize to block relaxation methods for unconstrained
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differentiable optimization problems. The rate of convergence of block re-
laxation algorithms depends on the block structure, and on the matrix of
second derivatives of the function f we are minimizing.
The functions Fs that update block s are defined implicitly by

Dsf(x1, x2, · · · , xp) = 0.

From the implicit function theorem

DtFs(x) = −[Dssf(x)]−1Dstf(x).

If we use this in the LU-form M = (I −BL)−1BU we find

M(x) = −


D11f(x) 0 · · · 0
D21f(x) D22f(x) · · · 0

... ... . . . ...
Dp1f(x) Dp2f(x) · · · Dppf(x)


−1 

0 D12f(x) · · · D1pf(x)
0 0 · · · D2pf(x)
... ... . . . ...
0 0 · · · 0

 ,

If there are only two blocks the result simplifies to

M(x) = −
[

[D11f(x)]−1 0
−[D22f(x)]−1D21f(x)[D11f(x)]−1 [D22f(x)]−1

] [
0 D12f(x)
0 0

]
=[

0 −[D11f(x)]−1D12f(x)
0 [D22f(x)]−1D21f (x)[D11f(x)]−1D12f(x)

]

Thus, in a local minimum, where the matrix of second derivatives is non-
negative definite, we find that the largest eigenvalue of M(x) is like the
largest squared canonical correlation ρ of two sets of variables, and is conse-
quently less than or equal to one.
We also see that a sufficient condition for local convergence to a stationary
point of the algorithm is that ρ < 1. This is always true for an isolated local
minimum, because there the matrix of second derivatives is positive definite.
If D2f(x) is singular at the solution x, we find a canonical correlation equal
to +1, and we do not have guaranteed linear convergence.
For the product form we find that

DAs(x) = I − Es[Dssf(x)]−1E ′
sD2f(x),
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where Es has blocks of zeroes, except for block s, which is the identity. Thus

M(x) = {I−Es[Dssf(x)]−1E ′
sD2f(x)}×· · ·×{I−E1[D11f(x)]−1E ′

1D2f(x)}.

It follows thatM(x)z = z for all z such that D2f(x)z = 0. Thus ρ(M(z)) =
1 whenever D2f(x) is singular.

For two blocks

M(x) =
[

I 0
−[D22f(x)]−1D21f(x) 0

] [
0 −[D11f(x)]−1D12f(x)
0 I,

]

which gives the same result as obtained from the LU-form.

The code in blockRate.R in Code Segment 3 computesM(x) in one of four
ways. We can use the analytical form of the Hessian or compute it numeri-
cally, and we can use the LU-form or the product form. If we compute the
Hessian numerically we give the function we are minimizing as an argument,
if we use the Hessian analytically we pass a function for evaluating it at x.

2.6.4 Block Newton Methods

In block Newton methods we update using

ys = xs − [Dssf(y1, · · · , ys−1, xs, . . . , xp)]−1Dsf(y1, · · · , ys−1, xs, . . . , xp)

It follows that at a point x where the derivatives vanish we have

DtFs(x) = δstI − [Dssf(x)]−1Dstf(x)

and in particular DsFs(x) = 0. The iteration matrix M(x) is the same as
the one in section 2.6.3, and consequently the convergence rate is the same
as well. We will again have the same rate if we make more than one Newton
step in each block update.

Of course the single-step block Newton method does not guarantee decrease
of the loss function, and consequently needs to be safeguarded in some way.



36 CHAPTER 2. BLOCK RELAXATION

2.6.5 Constrained Problems

Similar calculations can also be carried out in the case of constrained opti-
mization, i.e. when the subproblems optimize over differentiable manifolds
and/or convex sets. We then use the implicit function calculations on the
Langrangean or Kuhn-Tucker conditions, which makes them a bit more com-
plicated, but essentially the same. In the manifold case, for example, it
suffices to replace the matrices Dpq by the matrices H ′

pDpqHq, where the ma-
trices Hp contain a local linear coordinate system for Ωp near the solution.
In this note we look at the special case in which f is differentiable, and the
Xs are of the form

Xs = {x ∈ Rns | Gs(x) = 0}
for some differentiable vector-valued Gs.
The algorithm shows that the update ys of block s is defined implicitly in
terms of y1, · · · , ys−1 and xs+1, · · · , xp by the equations

Dsf(y1, · · · , ys, xs+1, · · · , xp)−DGs(ys)λs = 0,

and
Gs(ys) = 0.

The equations also implicitly define the vector λs of Lagrange multipliers.
Let us differentiate this again with respect to x. Define

Hsr = D2
srf,

Usr = Drys,

Vsr = Drλs,

as well as
Ws(λ) =

∑
r=1

λrD2gsr

and
Es = DGs.

From the first set of equations we find for all r > 1[
H11 −W1(λ) −E1

E1 0

] [
U1r

V1r

]
=
[
−H1r

0

]
.

which can easily be solved for U1r and V1r.
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2.7 Additional Examples

2.7.1 Canonical Correlation

Canonical Correlation is a matrix problem in which the notion of blocks of
variables is especially natural. The problem can be formulated in various
ways, but we prefer a least squares formulation. We want to minimize

σ(A,B) ∆= tr (XA− ZB)′(XA− ZB)

over A and B. In order to avoid boring complications which merely lead to
more elaborate notations we again suppose that X ′X = I and Z ′Z = I.

Note that this problem is basically a multivariate version of the block least
squares problem with Y = 0 in the previous example. There are some crucial
differences, however. The fact that Y = 0 means that A = B = 0 trivially
minimizes σ. Thus we need to impose some normalization condition such as
A′A = I and/or B′B = I to exclude this trivial solution. Nevertheless, in
our analysis we shall initially proceed without actually using normalization.

Start with A(0). To find the optimal B(k) for given A(k) we compute R′A(k) =
B(k), and then we update A with RB(k) = A(k+1), where R ∆=X ′Z, as before.
Thus A(k+1) = R′RA(k) and A(k) = (R′R)kA(0). Clearly A(k) → 0 if R′R ≲ I,
which implies convergence to the correct, but trivial, solution A = B = 0.

Suppose R′R = KΛK ′ is the eigen-decomposition and define ∆(k) ∆=K ′A(k),
so that ∆(k) = Λk∆(0). As in the previous example

∥∆(k)∥
λk

+
→ ∥∆̃(0)∥,

where ∆̃(0) consists of the columns corresponding with the dominant eigen-
value. Again

∥∆(k+1)∥
∥∆(k)∥

→ λ+.

Now consider

Ξ(k) = A(k)((A(k))′A(k))− 1
2 = Λk∆0(∆′

0Λ2k∆0)− 1
2
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2.7.2 Low Rank Approximation

Given an n×m matrix X we want to minimize

σ(A,B) = tr (X − AB′)′(X − AB′)

over the n× p matrices A and the m× p matrices B. In other words, we find
the projection of X, in the Frobenius norm, on the set of matrices of rank
less than or equal to p.
The block relaxation iterations are

B(k+1) = X ′A(k)((A(k))′A(k))−1

A(k+1) = XB(k+1)((B(k+1))′B(k+1))−1,

or
A(k+1) =

[
XX ′A(k)((A(k))′XX ′A(k))−1(A(k))′

]
A(k).

A(k)(B(k+1))′ = P
(k)
A X,

A(k+1)(B(k+1))′ = XP
(k+1)
B ,

It follows that (A(k))′(A(k+1) − A(k)) = 0 and, thus, for all k

∥A(k+1) − A(k)∥2 = ∥A(k+1)∥2 − ∥A(k)∥2 ≥ 0.

Thus ||A(k)||2 increases to a limit less than or equal to the upper bound α.
Also

k∑
i=1
∥A(i+1) − A(i)∥2 = ∥A(k+1)∥2 − ∥A(0)∥2 ≤ α− ∥A(0)∥2,

and consequently ∥A(i+1) − A(i)∥ converges to zero.
Now suppose Ã(k) = A(k)S, with S nonsingular. Then B̃(k+1) = B(k+1)S−t,
and thus

Ã(k)(B̃(k+1))′ = A(k)(B(k+1))′.

In addition Ã(k+1) = A(k+1)S, and thus

Ã(k+1)(B̃(k+1))′ = A(k+1)(B(k+1))′.
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Alternative

B+ = X ′A,

A+ = XB+((B+)′B+)−1 = XX ′A(A′XX ′A)−1,

B+ = X ′A(A′XX ′A)− 1
2 ,

A+ = XB+ = XX ′A(A′XX ′A)− 1
2 ,

A+(B+)′ = X{X ′A(A′XX ′A)−1A′X}

2.7.3 Optimal Scaling with LINEALS

Suppose we have m categorical variables, where variable j has kj categories.
Also suppose Cjℓ are the kj×kℓ cross tables and Dj are the diagonal matrices
with univariate marginals. Both the Cjl and the Dj are normalized so they
add up to one.
A quantification of variable j is a kj element vector yj, normalized by
e′Djyj = 0 and y′

jDjyj = 1. If we replace the categories of a variable by
the corresponding elements of the quantification vector then the correlation
between quantified variables j and ℓ is

ρjℓ(y1, · · · , ym) ∆= y′
jCjℓyℓ .

Of course ρjℓ(y1, · · · , ym) = ρℓj(y1, · · · , ym) for all j and ℓ, and
ρjj(y1, · · · , ym) = 1 for all j.
The correlation ratio between variables j and ℓ is

η2
jℓ(y1, · · · , ym) ∆= y′

jCjlD
−1
ℓ Cℓjyj .

In general η2
jℓ(y1, · · · , ym) ̸= η2

ℓj(y1, · · · , ym), but still η2
jj(y1, · · · , ym) = 1.

Statistical theory, and the Cauchy-Schwartz inequality, tell us that

ρ2
jℓ(y1, · · · , ym) ≤ η2

jℓ(y1, · · · , ym),
ρ2

jℓ(y1, · · · , ym) ≤ η2
ℓj(y1, · · · , ym),
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with equality if and only if

Cℓjyj = ρjℓ(y1, · · · , ym)Dℓyℓ,

Cjℓyℓ = ρjℓ(y1, · · · , ym)Djyj,

i.e. if and only if the regressions between the quantified variables are both
linear.
De Leeuw (1988) has suggested to find standardized quantifications in such
a way that the loss function

f(y1, · · · , ym)
m∑

j=1

m∑
ℓ=1

(η2
jℓ(y1, · · · , ym)− ρ2

jℓ(y1, · · · , ym))

is minimized. Thus we try to find quantifications of the variables that lin-
earize all bivariate regressions. A block relaxation method to do just this is
implemented in the lineals function of the R package aspect (Mair and De
Leeuw (2010)). In lineals there is the additional option of requiring that
the elements of the yj are increasing or decreasing.
If we change quantification yj while keeping all yℓ with ℓ ̸= j at their current
values, then we have to minimize

y′
j

∑
ℓ̸=j

Cjl

[
D−1

ℓ − yℓy
′
ℓ

]
Cℓj

 yj (1)

over all yj with e′Djyj = 0 and y′
jDjyj = 1. Thus each step in the cycle

amounts to finding the eigenvector corresponding with the smallest eigen-
value of the matrix in (1).

2.7.4 Multinormal Maximum Likelihood

The negative log-likelihood for a multinormal random sample is

f(θ, ξ) = n log det(Σ(θ)) +
n∑

i=1
(xi − µ(ξ))′Σ−1(θ)(xi − µ(ξ)).

The vector of means µ depends on the parameters ξ and the matrix of covari-
ances Σ depends on θ. We assume the two sets of parameters are separated,
in the sense that they do not overlap.
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Oberhofer and Kmenta (1974) study this case in detail and give a proof of
convergence, which is actually the expected special case of Zangwill’s theo-
rem.
Suppose we have a normal GLM of the form

y ∼ N [Xβ,
p∑

s=1
θsΣs]

where the Σs are known symmetric matrices. We have to estimate both β
and θ, perhaps under the constraint that ∑p

s=1 θsΣs is positive semi-definite.
This can be done, in many case, by block relaxation. Finding the optimal
β for given θ is just weighted linear regression. Finding the optimal θ for
given β is more complicated, but the problem has been studied in detail by
Anderson and others.
For further reference, we give the derivatives of the log-likelihood function
for this problem.

∂L
∂θs

= tr Σ−1Σs − tr Σ−1ΣsΣ−1S.

∂2L
∂θs∂θt

= tr Σ−1ΣsΣ−1ΣtΣ−1S + tr Σ−1ΣtΣ−1ΣsΣ−1S − tr Σ−1ΣsΣ−1Σt.

Taking expected values in Equation ?? gives

E
{

∂2L
∂θs∂θt

}
= tr Σ−1ΣsΣ−1Σt.

2.7.5 Array Multinormals

2.7.6 Rasch Model

The Rasch example has a rather simple structure for the second deriva-
tives of the negative log-likelihood f defined in section @(blockrelax-
ation:generalizedblockrelaxation:raschmodel).
The elements of D12f(x) are equal to πij(x)(1 − πij(x)), while D11f(x) is a
diagonal matrix with the row sums of D12f(x), and D22f(x) is a diagonal
matrix with the column sums.
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This means that computing the eigenvalues of

[D11f(x)]−1D12f(x)[D22f(x)]−1D21f(x)

amounts, in this case, to a correspondence analysis of the matrix with ele-
ments πij(x)(1− πij(x)).The speed of convergence will depend on the maxi-
mum correlation, i.e. on the degree in which the off-diagonal matrix D12f(x)
deviates from independence.

2.8 Some Counterexamples

2.8.1 Convergence to a Saddle

Convergence, even it occurs, does not need to be towards a minimum. Con-
sider

f(x, y) = 1
6y

3 − 1
2y

2x+ 1
2yx

2 − x2 + 2x.

Perspective and contour plots of this function are in figures 2.1 and 2.2.
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Figure 2.1: Contour Plot Bivariate Cubic
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x

y

f(x,y)

Figure 2.2: Perspective Plot Bivariate Cubic

The derivatives are

D1f(x, y) = (y − 2)(x− 1
2(y + 2)),

D2f(x, y) = 1
2(x− y)2,

and
D2f(x, y) =

[
y − 2 x− y
x− y y − x

]
.

Start with y(0) > 2. Minimizing over x for given y(k) gives

x(k) = 1
2(y(k) + 2),

and minimizing over y for given x(k) gives

y(k+1) = x(k).

It follows that

x(k+1) − 2 = 1
2(x(k) − 2),

y(k+1) − 2 = 1
2(y(k) − 2).
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Thus both x(k) and y(k) decrease to two with linear convergence rate 1
2 . The

function f has a saddle point at (2, 2), and

D2f(2, 2) =
[
0 0
0 0

]
.

2.8.2 Convergence to Incorrect Solutions

Convergence needs not be towards a minimum, even if the function is convex.
This example is an elaboration of the one in Abatzoglou and O’Donnell
(1982).
Let

f(a, b) = max
x∈[0,1]

| x2 − bx− a | .

To compute min f(a, b) we do the usual Chebyshev calculations. If
h(x) ∆= bx + a and g(x) ∆=x2 − h(x) we must have g(0) = ϵ, g(y) = −ϵ for
some 0 < y < 1 and g(1) = ϵ. Moreover g′(y) = 0. Thus

−a = ϵ,

y2 − by − a = −ϵ,
1− b− a = ϵ,

2y − b = 0.

The solution is b = 1, y = 1
2 , a = −1

8 , and ϵ = 1
8 . Thus the best linear

Chebyshev approximation to x2 on the unit interval is x − 1
8 , which has

function value f(−1
8 , 1) = 1

8 ,
Now use coordinate decent. Start with b(0) = 0. Then

a(0) = argmin
a

f(a, 0) = 1
2 .

and
b(1) = argmin

b
f(1

2 , b) = 0.

Thus b(1) = b(0), and we have convergence after a single cycle to a point
(a, b) = (1

2 , 0) for which f(1
2 , 0) = 1

2 .
This example can be analyzed in more in detail. First we compute the best
constant (zero degree polynomial) approximation to h(x) ∆=x2 − bx. The
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function h is a convex quadratic with roots at zero and b, with a mimimum
equal to −1

4b
2 at x = 1

2b.

We start with the simple rule that the best constant approximation is the
average of the maximum and the minimum on the interval. We will redo the
calculations later on, using a different and more general approach.

Case A: If b ≤ 0 then h is non-negative and increasing in the unit interval,
and thus argmin

a
f(a, b) = 1

2(h(0) + h(1)) = 1
2(1− b).

Case B: If 0 ≤ b ≤ 1 then h attains its minimum at 1
2b in the unit interval,

and its maximum at one, thus

argmin
a

f(a, b) = 1
2(h(1

2b) + h(1)) = −1
8b

2 − 1
2b+ 1

2
.

Case C: If 1 ≤ b ≤ 2 then h still attains its minimum at 1
2b in the

unit interval, but now the maximum is at zero, and thus argmin
a

f(a, b) =
1
2(h(1

2b) + h(0)) = −1
8b

2.

Case D: If b ≥ 2 then h is non-positive and decreasing in the unit interval,
and thus again argmin

a
f(a, b) = 1

2(h(0) + h(1)) = 1
2(1− b).

We can derive the same results, and more, by using a more general approach.
First

f(a, b) = max
{

max
0≤x≤1

(x2 − a− bx),− min
0≤x≤1

(x2 − a− bx)
}
.

Since x2 − a− bx is convex, we see

f(a, b) = max
{
−a, 1− a− b,− min

0≤x≤1
(x2 − a− bx)

}
.

Now x2 − a − bx has a minimum at x = 1
2b equal to −a − 1

4b
2. This is the

minimum over the closed interval if 0 ≤ b ≤ 2, otherwise the minimum occurs
at one of the boundaries. Thus

min
0≤x≤1

(x2 − a− bx) =
−a−

1
4b

2 if 0 ≤ b ≤ 2,
min(−a, 1− a− b) otherwise,
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and

f(a, b) =


max{1− a− b, a+ 1

4b
2} if 0 ≤ b ≤ 1,

max{−a, a+ 1
4b

2} if 1 ≤ b ≤ 2,
max{|a|, |1− a− b|} otherwise.

It follows that

argmin
a

f(a, b) =


1
2 −

1
2b−

1
8b

2 if 0 ≤ b ≤ 1,
−1

8b
2 if 1 ≤ b ≤ 2,

1
2(1− b) otherwise.

It is more complicated to compute argmin
b

f(a, b), because the corresponding
Chebyshev approximation problem does not satisfy the Haar condition, and
the solution may not be unique.

We make the necessary calculations, starting from the left. Define
g1(b) ∆= max{|a|, |1 − a − b|}. For b ≤ 0 we have f(a, b) = g1(b). Define
b−

∆=(1− a)− |a| and b+
∆=(1− a) + |a|. Then

g1(b) =


(1− a)− b if b ≤ b−,

|a| if b1 < b < b+,
b− (1− a) if b ≥ b+.

Note that b+ > 0 for all a. If b− < 0 then g1 has a minimum equal to −b−
for all b in [b−, 0]. Now b− < 0 if and only if a > 1

2 . Thus for a > 1
2 we have

Arg min
b
f(a, b) = [(1− a)− |a|, 0].

Switch to g2(b) ∆= max{1 − a − b, a + 1
4b

2}. For 0 ≤ b ≤ 1 we have f(a, b) =
g2(b). We have 1 − a − b > a + 1

4b
2 if and only if 1

4b
2 + b + (2a − 1) < 0.

The discriminant of this quadratic is 2(1− a), which means that if a > 1 we
have g2(b) = a+ 1

4b
2 everywhere. If a < 1 define b− and b+ as the two roots

−2± 2
√

2(1− a) of the quadratic. Now

g2(b) =
1− a− b if b− ≤ b ≤ b+,

a+ 1
4b

2 otherwise.
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Clearly b− < 0. If a > 1
2 then also b+ < 0 and thus g2(b) = a+ 1

4b
2 on [0, 1].

If 0 < b+ < 1 then g2 has a minimum at b+. Thus if −1
8 < a < 1

2 we have

argmin
b

f(a, b) = 2 + 2
√

2(1− a).

Next g3(b) ∆= max{−a, a + 1
4b

2}, which is equal to f(a, b) for 1 ≤ b ≤ 2. If
a > 0 then g3(b) = a+ 1

4b
2 everywhere. If a < 0 define b− and b+ as ±

√
−8a.

Then

g3(b) =
−a if b− ≤ b ≤ b+,

a+ 1
4b

2 otherwise.

If 1 < b+ < 2 then we have a minimum of g3 at b+. Thus if −1
2 < a < −1

8
we find

argmin
b

f(a, b) =
√
−8a.

And finally we get back to g1 again at the right hand side of the real line.
We have a minimum if b+ > 2, i.e. a < −1

2 . In that case

Arg min
b
f(a, b) = [2, (1− a) + |a|]

So, in summary,

Arg min
b
f(a, b) =



[(1− a)− |a|, 0] if a > 1
2 ,

{2 + 2
√

2(1− a)} if − 1
8 < a < 1

2 ,

{
√
−8a} if − 1

2 < a < −1
8 ,

[2, (1− a) + |a|] if a < −1
2 .

We now have enough information to write a simple coordinate descent algo-
rithm. Of course such an algorithm would have to include a rule to select
from the set of minimizers if the minimers are not unique. In our R implemen-
tation in ccd.R we allow for different rules. If the minimizers are an interval,
we always choose the smallest point, or always to largest point, or always the
midpoint, or a uniform draw from the interval. We shall see in our example
that these different options have a large influence on the approximation the
algorithm converges too, in fact even on what the algorithm considers to be
desirable points.
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Insert ccd.R Here
We give the function that transforms

b(k)

into
b(k+1)

with the four different selection rules in Figure 1.
Insert upMe.R Here
The function is in red, the line b(k+1) = b(k) in blue. Thus over most of
the region of interest the algorithm does not change the slope, which means
it converges in a single iteration to an incorrect solution. It needs more
iterations only for the midpoint and random selection rules if started outside
[0, 2].
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Figure 1: The UP, LOW, MID and RANDOM rules
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2.8.3 Non-convergence and Cycling

Coordinate descent may not converge at all, even if the function is differen-
tiable.
There is a nice example, due to Powell (1973). It is somewhat surprising
that Powell does not indicate what the source of the problem is, using Zang-
will’s convergence theory. The reason seems to be that the mathematical
programming community has decided, at an early stage, that linearly conver-
gent algorithms are not interesting and/or useful. The recent developments
in statistical computing suggest that this is simply not true.
Powell’s example involves three variables, and the function

ψ(ω) = 1
2ω

′Aω + dist2(ω,K),

where

aij =
−1 if i ̸= j,

0 if i = j,

and where K is the cube

K = {ω | −1 ≤ ωi ≤ +1},

The derivatives are
Dψ = Aω + 2(ω − PK(ω)).

In the interior of the cube Dψ = Aω, which means that the only stationary
point in the interior is the saddle point at ω = 0. In general at a station-
ary point we have (A + 2I)ω = PK(ω)), which means that we must have
u′PK(ω)) = 0. The only points where the derivatives vanish are saddle points.
Thus the only place where there can be minima is on the surface of the cube.
Also for x = y = z = t > 1 we see that ψ(x, y, z) = −3t2 + 3(t− 1)2 = 3− 6t,
which is unbounded. For x = y = t > 1 and z = −t we find

ψ(x, y, z) = −t2 + 3(t− 1)2 = 2t2 − 6t+ 3.

This has its minimum −1.5 at t = 1.5 and it has a root at t = 1
2(3 +

√
12) =

4.9641.
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Let us apply coordinate descent. A search along the x-axis finds the optimum
at +1 + 1

2(y + z) if y + z > 0 and at −1 + 1
2(y + z) if y + z < 0. If y + z = 0

the minimizer is any point in [−1,+1].

This guarantees that the partial derivative with respect to x is zero. The
other updates are given by symmetry. Thus, if we start from

(−1− ϵ, 1 + 1
2ϵ,−1− 1

4ϵ),

with ϵ some small positive number, then we generate the following sequence.



(+1 + 1
8ϵ, +1 + 1

2ϵ, −1− 1
4ϵ)

(+1 + 1
8ϵ, −1− 1

16ϵ, −1− 1
4ϵ)

(+1 + 1
8ϵ, −1− 1

16ϵ, +1 + 1
32ϵ)

(−1− 1
64ϵ, −1− 1

16ϵ, +1 + 1
32ϵ)

(−1− 1
64ϵ, +1 + 1

128ϵ, +1 + 1
32ϵ)

(−1− 1
64ϵ, +1 + 1

128ϵ, −1− 1
256ϵ)



But the sixth point is of the same form as the starting point, with ϵ replaced
by ϵ

64 . Thus the algorithm will cycle around six edges of the cube. At these
edges the gradient of the function is bounded away from zero, in fact two of
the partials are zero, the others are ±2. The function value is +1. The other
two edges of the cube, i.e. (+1,+1,+1) and (−1,−1,−1) are the ones we are
looking for, because there the function value is −3, the global minimum. At
these two points all three partials are ±2.

Powell gives some additional examples which show the same sort of cycling
behaviour, but are somewhat smoother.

2.8.4 Sublinear Convergence

Convergence can be sublinear.
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ψ(ω, ξ) = (ω − ξ)2 + ω4,

D1ψ(ω, ξ) = 2(ω − ξ) + 4ω3,

D2ψ(ω, ξ) = −2(ω − ξ),
D11ψ(ω, ξ) = 2 + 12ω2,

D12ψ(ω, ξ) = −2,
D22ψ(ω, ξ) = 2.

It follows that coordinate descent updates ω(k) by solving the cubic ω−ω(k) +
2ω3 = 0. The sequence converges to zero, and by l’Hopitål’s rule

lim
k→∞

ω(k+1)

ω(k) = 1.

This leads to very slow convergence. The reason is that the matrix of second
derivatives of ψ is singular at the origin.
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Chapter 3

Coordinate Descent

3.1 Introduction

We discuss coordinate descent and ascent in a separate chapter, because it is
a very important special case of block relaxation, with many really interesting
examples.

3.2 Convergence rate

The product form of the derivative of the algorithmic map for coordinate
descent is

M(x) =
[
I −

epe
′
pD2f(x)

e′
pD2f(x)ep

]
× · · · ×

[
I − e1e

′
1D2f(x)

e′
1D2f(x)e1

]
,

where the es are unit vectors (all elements zero, except for element s, which
is equal to one).

53
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3.3 Examples

3.3.1 The Cartesian Folium

The “folium cartesii’ ’ (letter of Descartes to Mersenne, August 23, 1638) is
the function

f : R2 → R

defined by

f(x, y) = x3 + y3 − 3xy.

The gradient is

Df(x, y) =
[
3x2 − 3y
3y2 − 3x

]
,

and the Hessian is

D2f(x, y) =
[

6x −3
−3 6y

]
.

It follows that f(x, y) has a saddle point at (0, 0) and an isolated local min-
imum at (1, 1). These are the only two stationary points. At (0, 0) the
eigenvalues of the Hessian are +3 and −3, at (1, 1) they are 9 and 3.

The Hessian is singular if and only if (x, y) is on the hyperbola xy = 1
4 . It is

positive definite if and only if (x, y) is above the branch of the hyperbola in
the positive orthant.

See Figure 1 for contour plots of sections of f on two different scales.
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Figure 1: Folium, two scales, two sections

Now apply coordinate descent (De Leeuw (2007b)). The minimum over x
for fixed y only exists if y > 0, in which case it is attained at √y. In the
same way, the minimum over y for fixed x > 0 is attained at

√
x. Thus the

algorithm is simply

x(k+1) =
√
y(k),

y(k+1) =
√
x(k+1),

and the algorithmic map is

A(x, y) =
[√

y
4
√
y

]
.

The algorithm can only work if we start with y(0) > 0. It then converges,
linearly and monotonically, to (1, 1) with convergence rate 1

4 . If we start with
y(0) ≤ 0 then x3 + (y(0))3 − 3xy(0) is unbounded below and thus coordinate
descent fails.
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3.3.2 A Family of Quadratics

This example shows some of the properties of coordinate relaxation. We
want to minimize

ψλ(x, y) = 1
2x

2 + 1
2y

2 − λxy.

For each λ this is a quadratic in x and y. If we fix y and λ, the resulting
function is a convex quadratic in x. And if we fix x and λ, the resulting
function is a convex quadratic in y. Thus coordinate relaxation can always
be carried out, with a unique minimum in each substep.
The partials are given by

∂ψλ

∂x
= x− λy,

∂ψλ

∂y
= y − λx,

and the Hessian is the matrix [
1 −λ
−λ 1

]
.

Thus the eigenvalues of the Hessian are 1 + λ and 1− λ.
If −1 < λ < +1 then the function has a unique isolated minimum equal to
zero at (0, 0). If λ = +1 it has a minimum equal to zero on the line x−y = 0
and if λ = −1 it has a minimum equal to zero on the line x + y = 0. If
λ2 > 1 the unique stationary point at (0, 0) is a saddle point, and there are
no minima or maxima.
Coordinate relaxation gives the algorithm

y(k+1) = λx(k) = λ2y(k),

x(k+1) = λy(k+1) = λ2x(k),

or

x(k) = λ2kx(0),

y(k) = λ2k−1x(0).
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Thus we have convergence to (0, 0) if and only if λ2 < 1. In that case con-
vergence is linear, with rate λ2, Convergence is immediate, to (x(0), x(0)) or
(x(0),−x(0)), if λ2 = 1.
For the function values we have

ψ(k) = 1
2(1− λ2)λ4k−2[x(0)]2,

If λ2 > 1 then the function values ψ(k) decrease, and diverge to −∞. Also,
(x(k), y(k)) diverges to infinity. By defining ψ̃ = expψ, we easily change the
problem into an equivalent one with the same iterates, for which function
values converge to zero, but since (x(k), y(k)) is the same sequence as before
it still diverges to infinity.
Note that

ψ(k+1)

ψ(k) = λ4,

while
x(k+1)

x(k) = y(k+1)

y(k) = λ2.

Thus function values converge twice as fast as the coordinates of the solution
vector.

3.3.3 Loglinear Models

Let
L(θ) =

K∑
k=1

nk log λk(θ)− λk(θ),

be a Poisson-log-likelihood with

λk(θ) = exp
m∑

j=1
xkjθj.

We see that
DjL(θ) =

n∑
k=1

nkxkj −
n∑

k=1
λk(θ)xkj,

and
DjℓL(θ) = −

n∑
k=1

λk(θ)xkjxkℓ.
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Thus the log-likelihood is concave. Normally we would apply a safe-guarded
version of Newton’s method, but here we want to illustrate CCA.
Now suppose X = {xkj} is a design-type matrix, with elements equal to 0 or
1. Let

Kj
∆= {k | xkj = 1} .

Then the likelihood equations are∑
k∈Kj

nk =
∑

k∈Kj

λk(θ).

Solving each of these in turn is CCA (since we are maximizing), which is also
known in this context as the iterative propertional fitting or IPF algorithm.
We have, using ej for the coordinate directions,

λk(θ + τej) =
λk(θ) if k ̸∈ Kj,
µλk(θ) if k ∈ Kj,

with µ = exp τ. This explains the name of the algorithm, because the λk in
Kj are adjusted with the same proportionality factor.
Thus the optimal µ is simply

µ =
∑

k∈Kj
nk∑

k∈Kj
λk(θ) .

This example can be extended to the case in which the elements of the design
matrix are −1, 0, and +1. We define

K+
j

∆= {k | xkj = 1} ,

and
K−

j
∆= {k | xkj = −1} .

We now have to solve the quadratic equation

µ2 ∑
k∈K+

j

λk(θ)− µ∆j −
∑

k∈K−
j

λk(θ) = 0,

with
∆j

∆=
∑

k∈K+
j

nk −
∑

k∈K−
j

nk
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for the proportionality factor. If K−
j = ∅ then

µ =
∑

k∈K+
j
nk∑

k∈K+
j
λk(θ)

as before. If K+
j = ∅ then

µ =
∑

k∈K−
j
λk(θ)∑

k∈K−
j
nk

If the positive and negative index sets are both nonempty, then the quadratic
always has one positive and one negative root, and we select the positive one.
Basically the same CCA/IPF technique can also be applied if the elements
of X are arbitrary integers. To avoid trivialities we assume each column of
X has at least one non-zero element. In that case solving for µ amounts to
solving a higher degree polynomial equation. Suppose the non-zero elements
of column j of X are from a set Ij of integers. Elements of Ij can be positive
or negative. Define

nij
∆=
∑
{nk | xkj = i},

λij(θ) ∆=
∑
{λk(θ) | xkj = i}.

Also define
∆j

∆=
∑
i∈Ij

inij.

To find the optimal µ for coordinate j we must solve gj(µ) = ∆j, where

gj(µ) ∆=
∑
i∈Ij

µiiλij(θ).

Note that Dgj(µ) > 0 for all µ > 0, i.e. gj is strictly increasing. Let i+j be
the maximum of the i ∈ Ij and let i−j be the minimum. We can distinguish
three different behaviors of gj on the positive reals.

1. If i−j > 0 then gj increases from 0 to +∞.
2. If i+j < 0 then gj increases from −∞ to 0.
3. If i−j < 0 and i+j > 0 then gj increases from −∞ to +∞.
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In all three cases there is a unique positive root of the equation gj(µ) = ∆j.
To solve we note that if i−j > 0 we need to find the unique positive real root
of a polynomial of degree i+j . If i+j < 0 we solve the equation for 1

µ
, again

finding the unique positive real root of a polynomial of degree −i−j . In case
3, in which Ij has both negative and positive elements, we multiply both
sides of the equation by µ−ij

− to get∑
i∈Ij

µi−ij
−
iλij(θ) = ∆jµ

−ij
−
,

which is a polynomial equation of degree i+j − i−j , again with a single positive
real root. I have written an R program for this general case. The function
polyLogLinF() does the computations, the function polyLogLin() is the
driver for the iterations.
Insert polyLoglin.R Here
Consider the example with

> x
[,1] [,2] [,3] [,4]

[1,] 1 1 -1 0
[2,] 1 1 1 0
[3,] 1 1 -1 0
[4,] 1 2 1 0
[5,] 1 2 -1 0
[6,] 1 2 1 -1
[7,] 1 3 -1 -1
[8,] 1 3 1 -1
[9,] 1 3 -1 -1

[10,] 1 0 1 -1

and n equal to 1:10. We find, for the final iterations,

Iteration: 34 fold: 4.83068380 fnew: 4.83068066
Iteration: 35 fold: 4.83068066 fnew: 4.83067878
Iteration: 36 fold: 4.83067878 fnew: 4.83067765
Iteration: 37 fold: 4.83067765 fnew: 4.83067697
$lbd

../code/polyLoglin.R
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[1] 3.049407 2.988786 3.049407 2.925556 2.984896 7.968232 7.957861 7.799660
[9] 7.957861 8.316384

$f
[1] 4.830677

$theta
[1] 1.12628967 -0.02138247 -0.01004005 -1.00197798

Note that if we say

polyLogLin(n,x+3)

then we find the same solution, although much more slowly,

Iteration: 428 fold: 4.83072092 fnew: 4.83071986
Iteration: 429 fold: 4.83071986 fnew: 4.83071882
Iteration: 430 fold: 4.83071882 fnew: 4.83071780
Iteration: 431 fold: 4.83071780 fnew: 4.83071681
$lbd
[1] 3.049790 2.993221 3.049790 2.932093 2.987506 7.967771 7.952558 7.805050
[9] 7.952558 8.303460

$f
[1] 4.830717

$theta
[1] 1.053848982 -0.020633792 -0.009361352 -0.999688396

3.3.4 Rayleigh Quotient

The problem is to minimize the Rayleigh quotient

λ(x) = x′Ax

x′Bx

over all x. Here A and B are known matrices, with B positive definite.
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If we update x to x̃ = x+ θei, with ei a unit vector, then

λ(x̃) = θ2aii + 2θx′ai + x′Ax

θ2bii + 2θx′bi + x′Bx
.

Think of this as a continous rational function γ of the single variable θ, which
we have to minimize. Clearly γ has a horizontal asymptote, with

lim
θ→+∞

γ(θ) = lim
θ→−∞

γ(θ) = aii

bii

.

Also
Dγ(θ) = 2Q(θ)

P 2(θ) ,

with
P (θ) ∆= θ2bii + 2θx′bi + x′Bx,

and

Q(θ) ∆= θ2(aiix
′bi − biix

′ai) + θ(aiix
′Bx− biix

′Ax) + (x′aix
′Bx− x′bix

′Ax).

In addition
D2γ(θ̂) = 2P

2(θ)DQ(θ)−Q(θ)DP 2(θ)
P 4(θ) ,

and thus sign(Dγ(θ)) = sign(Q(θ)) and at values where Q(θ) = 0 we have
sign(D2γ(θ)) = sign(DQ(θ)).
We now distinguish three cases. 1. First, γ can be a constant function, ev-
erywhere equal to aii

bii
. This happens only if x = 0 or x = ei, which makes

Q(θ) = 0 for all θ. In this case we do not update, and just go to the next i.
2. Second, Q can have a zero quadratic term. If we make sure that x′Ax

x′Bx
< aii

bii

then the unique solution of the linear equation Q(θ) = 0 satisfies D2γ(θ) > 0,
and consequently corresponds with the unique minimum of γ. Updating x
guarantees that we will have x′Ax

x′Bx
< aii

bii
for all subsequent iterations. If we

happen to start with or wind up in a point with a zero quadratic term and
with x′Ax

x′Bx
> aii

bii
then γ does not have a minimum and coordinate descent fails.

3. If Q is a proper quadratic then γ is either increasing at both infinities or
decreasing at both infinities. In the first case, when Q is a convex quadratic,
γ increases from the horizontal asymptote to the maximum, then decreases
to the minimum, and then increases again to the horizontal asymptote. In
the second case, with Q a concave quadratic, γ decreases from the horizontal
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asymptote to the minimum, then increases to the maximum, and then de-
creases again to the horizontal asymptote. In either case it has two extremes,
one minimum and one maximum, corresponding to the roots of the quadratic
Q. This also shows that if Q is a proper quadratic, then it always has two
distinct real roots.
Here is some simple code to illustrate the cases distinguished above. We have
a simple function to compute λ.
Insert fRayleigh.R Here
Case 2, with the zero quadratic term, and Case 3, the proper quadratic, are
illustrated with

a <- matrix (-1, 3, 3)
diag (a) <- 1
b <- diag (3)
x <- c(1, 1, -1)
zseq <- seq (-8, 8, length = 100)
png("myOne.png")
plot (zseq, fRayleigh (zseq, 1, x, a, b),type="l",cex=3,col="RED",xlab="theta",ylab="lambda")
abline(h=a[1,1] / b[1,1])
dev.off()
x <- c(1,0,1)
png("myTwo.png")
plot (zseq, fRayleigh (zseq, 2, x, a, b),type="l",cex=3,col="RED",xlab="theta",ylab="lambda")
abline(h=a[2,2] / b[2,2])
dev.off()

For Case 2 we see that
γ

has no minimum, and CCD fails. For Case 3, which is of course the usual
case, there are no problems.

Insert Figure 1 here

Insert Figure 2 here

The coordinate descent method can obviously take sparseness into account,
and it can easily be generalized to separable constraints on the elements of

../code/fRayleigh.R
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x, such as non-negativity. Note that it also can be used to maximize the
Rayleigh quotient, simply by taking the other root of the quadratic. Or,
alternatively, we can interchange A and B.
Insert gevCCA.R Here
The second derivative of the Rayleigh quotient at a stationary point normal-
ized by x′Bx = 1 is simply

D2λ(x) = 2(A− λ(x)B).

This is singular and thus the product form of the derative of the algorithmic
map has largest eigenvalue equal to one, corresponding with the eigenvector
x. Singularity of the Hessian is due, of course, to the fact that λ is ho-
mogenous of degree zero, and rescaling x does not change the value of the
objective function. We can use this to our advantage. Suppose we normalize
x to x′Bx = 1, after each coordinate descent cycle. This will not change the
function values computed by the algorithm, but is changes the algorithmic
map. The derivative of the modified map is

M(x) = (I − yy′B)M(x),

which has the same eigenvalues and eigenvectors as M(x), except for
M(x)x = 0, while M(x)x = 1.

3.3.5 Squared Distance Scaling

In ALSCAL [Takane, Young, De Leeuw, 1977] we find multidimensional scal-
ing solutions by minimizing the loss function sstress, defined by

σ2(X) ∆= 1
2

n∑
i=1

n∑
j=1

wij(δij − d2
ij(X))2.

Thus known dissimilarities δij are approximated by squared Euclidean dis-
tances between points, which have coordinates in an n× p matrix X. Both
dissimilarities ∆ = {δij} and the weights W = {wij} are non-negative, sym-
metric, and hollow. Thus

d2
ij(X) =

p∑
s=1

(xis − xjs)2.

../code/gevCCA.R
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Figure 3.1: Case 2 – CCA Fails
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Figure 3.2: Case 3 – CCA Works
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Takane et al. discuss different block relaxation approaches to minimizing
σ2. Because the loss function is a multivariate quartic the stationary equa-
tions obtained by setting the partials equal to zero are a system of np cubic
equations in np unknowns. So, at least theoretically, we could use algebraic
methods to solve the stationary equations and find the global minimum of
sstress. This corresponds with the case in which there is only a single block
of coordinates, but in the ALSCAL context other blocks are introduced by
optimally transforming the dissimilarities and by incorporating weights for
individual difference MDS models. At the other extreme of the block relax-
ation spectrum we could introduce np blocks for the np coordinates, which
means we would use coordinate descent. Takane et al. ultimately decide to
use a generalized block relaxation method with n blocks of the p coordinates
of a single point, with a safeguarded Newton method used to minimize over
a single block.
In this section we study coordinate descent in detail. If we modify coordinate
(k, t) then only the squared distances d2

ik and d2
ki with i ̸= k will change.

Adding θ to xkt with change d2
ik to d2

ik − 2θ(xit − xkt) + θ2. Thus the part of
sstress that depends on θ is

n∑
i=1

wkj((δkj − d2
ik) + 2θ(xit − xkt)− θ2)2.

Differentiating this and setting the derivative to zero gives the cubic equation
n∑

i=1
wkj((δkj − d2

ik) + 2θ(xit − xkt)− θ2)((xit − xkt)− θ) = 0

n∑
i=1

wkj(δkj − d2
ik)(xit − xkt) + 2θ

n∑
i=1

wkj(xit − xkt)2 − θ2
n∑

i=1
wkj(xit − xkt)

− θ
n∑

i=1
wkj(δkj − d2

ik) + 2θ2
n∑

i=1
wkj(xit − xkt)− θ3

n∑
i=1

wkj

3.3.6 Least Squares Factor Analysis
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Chapter 4

Alternating Least Squares

4.1 Introduction

An Alternating Least Squares or ALS algorithm is defined as a block relax-
ation algorithm applied to a least squares loss function. Least squares loss
functions are somewhat loosely defined. We will discuss what we have in
mind, before giving some of the history of ALS methods.
We start with have a functions f of the form

f(x) =
m∑

j=1

m∑
ℓ=1

wjℓgj(x)gℓ(x),

where W is an m×m fixed positive semi-definite matrix of weights, and we
minimize f over x ∈ X .
One obvious property of least squares loss functions is that they are bounded
below by zero, which means that a decreasing sequence of loss function values
f (k) = f(x(k)), generated for example by an iterative algorithm, necessarily
converges.
Alternating least squares methods by definition use block relaxation, so we
introduce a block structure. As usual the block structure is designed to make
the minimization subproblems relatively easy to solve. A first step towards
simplicity is to

f(x1, · · · , xp) =
m∑

j=1

m∑
ℓ=1

wjℓgj(x1, · · · , xp)gℓ(x1, · · · , xp),

69
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which must be minimized over xs ∈ Xs, where X = X1 ⊗ · · · ⊗ Xp. To
make the problem interesting for block optimization we have separated the
constraints on x into separate constraints on the n blocks xi.
In many ALS examples there is additional structure. A familar special case
has the form

f(x1, x2) =
m∑

j=1

m∑
ℓ=1

wjℓ(gj(x1)− hj(x2))(gℓ(x1)− hℓ(x2))

Of course x1 and x2 can be further partitioned into blocks if that is conve-
nient. Even more structure is introduced into the ALS problem when the
functions gj and hj are polynomials or multilinear functions.
As explained in section 1.1 the term Alternating Least Squares was first used
in De Leeuw (1968). There certainly were ALS methods before 1968. Ex-
amples are the missing data methods in factorial analysis of variance pi-
oneered by Yayes (1933), the iterative principal factor analysis method of
Thomson (1934), or the MINRES method for factor analysis by Harman and
Jones (1966). The systematic use of ALS techniques in psychometrics and
multivariate analysis started after the pioneering work of Kruskal (1964a),
Kruskal (1964b), Kruskal (1965) in nonmetric multidimensional scaling. De
Leeuw, Young, and Takane started the ALSOS system of techniques and pro-
grams around 1973 (see F. W. Young, De Leeuw, and Takane (1980)), and
De Leeuw, with many others, at Leiden University started the Gifi system
around 1975 (see Gifi (1990)).

4.2 Close Relatives

4.2.1 ALSOS

ALSOS algorithms are ALS algorithms in which one or more of the blocks
defines transformations of variables.

f(x, z) =
m∑

j=1

m∑
ℓ=1

wjℓgj(x1, · · · , xp, z)gℓ(x1, · · · , xp, z).

Suppose we have n observations on two sets of variables xi and yi. We want
to fit a model of the form

Fθ(Φ(xi)) ≈ Gξ(Ψ(yi))
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where the unknowns are the structural parameters θ and ξ and the transfor-
mations Φ and Ψ. In ALS we measure loss-of-fit by

σ(θ, ξ,Φ,Ψ) =
n∑

i=1
[Fθ(Φ(xi))−Gξ(Ψ(yi))]2.

This loss function is minimized by starting with initial estimates for the trans-
formations, minimizing over the structural parameters, keeping the transfor-
mations fixed at their current values, and then minimizing over the trans-
formations, with structural values kept fixed at their new values. These two
minimizations are alternated, which produces a nonincreasing sequence of
loss function values, bounded below by zero, and thus convergent. This is a
version of the trivial convergence theorem.

The first ALS example is due to Kruskal (1965). We have a factorial ANOVA,
with, say, two factors, and we minimize

σ(ϕ, µ, α, β) =
n∑

i=1

m∑
j=1

[ϕ(yij)− (µ+ αi + βj)]2.

Kruskal required ϕ to be monotonic. Minimizing loss for fixed ϕ is just
doing an analysis of variance, minimizing loss over ϕ for fixed µ, α, β is doing
a monotone regression. Obviously also some normalization requirement is
needed to exclude trivial zero solutions.

This general idea was extended by De Leeuw, Young, and Takane around
1975 to

σ(ϕ;ψ1, · · · , ψm) =
n∑

i=1
[ϕ(yi)−

p∑
s=1

ψj(xij)]2.

This ALSOS work, in the period 1975-1980, is summarized in F. W. Young,
De Leeuw, and Takane (1980). Subsequent work, culminating in the book
by Gifi (1990) generalized this to ALSOS versions of principal component
analysis, path analysis, canonical analysis, discriminant analysis, MANOVA,
and so on. The classes of transformations over which loss was minimized
were usually step-functions, splines, monotone functions, or low-degree poly-
nomials. To illustrate the use of more sets in ALS, consider

σ(ψ1, · · · , ψm;α, β) =
n∑

i=1

m∑
j=1

(ψj(xij)−
p∑

s=1
αisβjs)2.
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This is principal component analysis (or partial singular value decomposi-
tion) with optimal scaling. We can now cycle over three sets, the transfor-
mations, the component scores αis and the component loadings βjs. In the
case of monotone transformations this alternates monotone regression with
two linear least squares problems.

4.2.2 ACE

The ACE methods, developed by Breiman and Friedman (1985), minimize
over all smooth functions.
A problem with ACE is that smoothers, at least most smoothers, often do
not minimize a loss function, or the same loss function as is used for the
remaining parameters.
In any case, ACE is less general than ALS, because not all least squares
problems can be interpreted as computing conditional expectations.
Another obviously related area in statistics is the Generalized Additive Mod-
els discussed extensively by Hastie and Tibshirani (1990).

4.2.3 NIPALS and PLS

4.3 Rate of Convergence

The least squares loss function, in the most general form we consider here, is

f(x) = 1
2

m∑
j=1

m∑
ℓ=1

wjℓgj(x)gℓ(x),

with W a fixed symmetric positive semi-definite matrix of weights.
Thus

Df(x) =
m∑

j=1

m∑
ℓ=1

wjℓgj(x)Dgℓ(x),

and
D2f(x) =

m∑
j=1

m∑
ℓ=1

wjℓ

{
gj(x)D2gℓ(x) +Dgj(x)(Dgℓx)′

}
.
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Note: Older piece follows (fix) 03/12/15
It is easy to apply the general results from the previous sections to ALS.
The results show that it is important that the solutions to the subproblems
are unique. The least squares loss function has some special structure in its
second derivatives which we can often exploit in a detailed analysis. If

σ(ω, ξ) =
n∑

i=1
(fi(ω)− gi(ξ))2,

then
D2σ =

[
S1 0
0 S2

]
+
[
G′G −G′H
−H ′G H ′H

]
,

with G and H the Jacobians of f and g, and with S1 and S2 weighted sums of
the Hessians of the fi and gi, with weights equal to the least squares residuals
at the solution. If S1 and S2 are small, because the residuals are small, or
because the fi and gi are linear or almost linear, we see that the rate of ALS
will be the canonical correlation between G and H.

4.4 Examples

4.4.1 Homogeneity Analysis

4.4.2 Fixed Rank Approximation

4.4.3 Multilinear Fitting

4.4.4 MCR-ALS

4.4.5 Scaling and Splitting

Early on in the development of ALS algorithms some interesting complica-
tions where discovered. Let us consider canonical correlation analysis with
optimal scaling. There we want to minimize

σ(X, Y,A,B) = tr (XA− Y B)′(XA− Y B),
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where the X and the Y are optimally scaled or transformed variables. This
problem is analyzed in detail in Van der Burg and De Leeuw (1983). This
seems like a perfectly straightforward ALS problem. It can be formulated as a
problem with the two blocks (X, Y ) and (A,B), or as a problem with the four
blocks X, Y,A,B. But no matter how one formulates it, a normalization must
be chosen to prevent trivial solutions. In the spirit of canonical analysis it
makes sense to require A′X ′XA = I or B′Y ′Y B = I. Both sets of conditions
basically lead to the same solution, but in the intermediate iterations the
normalization condition creates a problem, because it involves elements from
two different blocks. Also, although A′X ′XA = I is a simple constraint on
A for given X, it is not such a simple constraint on X for given $A.
The solution to this dilemma, basically due to Takane, is to constrain either
(X,A) or (Y,B), always update the unconstrained block, and switch nor-
malizations after each update. Global convergence (at least of loss function
values) is guaranteed by the following analysis.
Theorem 1:

min
A

min
B′Y ′Y B=I

σ(X, Y,A,B) = min
A′X′XA=I

min
B
σ(X, Y,A,B) =

p∑
s=1

(1−ρ2
s(X, Y )).

Proof:

min
A
σ(X, Y,A,B) = tr B′Y ′Y B −B′Y ′X(X ′X)−1X ′Y B,

and minimizing the right-hand side over B′Y ′Y B = I clearly proves the first
part of the Theorem. The second part goes the same. QED



Chapter 5

Augmentation and
Decomposition Methods

5.1 Introduction

We take up the historical developments. Alternating Least Squares was useful
for many problems, but it some cases it was not powerful enough to do the
job. Or, to put it differently, the subproblems were still too complicated to be
efficiently solved a large number of times. In order to solve some additional
least squares problems, we can use augmentation. We first illustrate this with
some examples.

The examples show that augmentation is somewhat of an art (like integra-
tion). The augmentation is in some cases not obvious, and there are no
mechanical rules. The idea of adding variables that augment the problem
to a simpler one is very general. It is also at the basis, for instance, of the
Lagrange multiplier method.

5.2 Definition

Formalizing augmentation is straightforward. Suppose f is a real valued
function, defined for all x ∈ X , where X ⊆ Rn. Suppose there exists another
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real valued function g, defined on X ⊗ Y , where Y ⊆ Rm, such that

f(x) = min
y∈Y

g(x, y).

We also suppose that minimizing f over X is hard while minimizing g over
X is easy for all y ∈ Y . And we suppose that minimizing g over y ∈ Y is
also easy for all x ∈ X . This last assumption is not too far-fatched, because
we already know what the value at the minimum is.
I am not going to define hard and easy. What may be easy for you, may be
hard for me.
Anyway, by augmenting the function we are in the block-relaxation situation
again, and we can apply our general results on global convergence and linear
convergence. The results can be adapted to the augmentation situation.
Note: augmentation duality.

h(y) = min
x∈X

g(x, y)

then
min
x∈X

f(x) = min
x∈X

min
y∈Y

g(x, y) = min
y∈Y

min
x∈X

g(x, y) = min
y∈Y

h(y).

5.3 Rate of Convergenc

Because of the structure of f we know that Df(x) = D1g(x, y(x)), where
y(x) is defined implicitly by f(x) = g(x, y(x)), or more explicitly by

y(x) = argmin
y∈Y

g(x, y),

or, in the unconstrained and differentiable case,

D2g(x, y(x)) = 0.

Differentiating again gives

D2f(x) = D11g(x, y(x))−D12g(x, y(x))[D22g(x, y(x))]−1D21g(x, y(x)),

It follows that
M(x) = I − [D11g(x, y(x))]−1D2f(x).



5.4. HALF-QUADRATIC METHODS 77

This shows how the iteration matrix does not depend (directly) on the deriva-
tives of g with respect to y, and can be interpreted as one minus the curvature
of the function at the minimum, relative to the curvature of the augmentation
function.

5.4 Half-Quadratic Methods

Half-quadratic or HQ methods are used heavily in image restoration and
reconstructions problems. They were introduced in two different but related
forms in Geman and Reynolds [1992] and Geman and Yang [1995].

f(x) = ∥Ax− z∥2
2 + β

∑
i∈I

ϕ(u′
ix− vi)

potential funcion, regularization function. edge-preserving requires non-
quadratic potential function typically U is a discrete version of a differential
operator, such as a first or second-order difference matrix

g(x, y) = ∥Ax− z∥2
2 + β

r∑
i=1

bi

2 ∥Dix∥2
2 + k(bi)

k(b) := sup
t∈R

{
−1

2bt
2 + h(t)

}
.

By convex conjugacy
h(t) = inf

b∈R

{1
2bt

2 + k(b)
}

and the infimum is attained at

b =
h′′(0+) if t = 0,

h′(t)
t

if t ̸= 0.

5.5 Examples

5.5.1 Yates Augmentation

A linear least squares problem is balanced if the design matrixA is orthogonal.
In the balanced case the problem of minimizing

f(x) = (b− Ax)′(b− Ax) (1)
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is easily solved, with solution x = A′b. Computing x does not involve any
matrix inversion. In the case of a balanced factorial design it simply involves
computing means of rows, columns, slices, and so on.
If some elements of b are missing then we can partition A and b into a missing
and non-missing part as in

A =
[
A1
A2

]
b =

[
b1
b2

]
,

with A1 and b1 the non-missing part, and minimize

f(x) = (b1 − A1x)′(b1 − A1x).

Now A′
1A1 = I − A′

2A2 < I, and the optimal x can no longer be computed
with a simple matrix multiplication.
If one want to avoid matrix inversion, then we can use the basic approach
suggested by Yayes (1933). We define the augmentation g by

g(x, z) = (b1 − A1x)′(b1 − A1x) + (z − A2x)′(z − A2x).

Because f(x) = minz g(x, z) this leads to an easy block relaxation algorithm.

z(k+1) = A2x
(k),

x(k+1) = A′
1b1 + A′

2z
(k+1).

This gives

z(k+1) = A2A
′
1b1 + A2A

′
2z

(k),

x(k+1) = A′
1b1 + A′

2A2x
(k).

As we have shown in section blockrelaxation:twoblockleastsquares this im-
plies an iteration radius equal to the largest eigenvalue of A′

2A2.
Note that Yates augmentation can be used to transform any linear least
squares problem to a balanced problem, even if there are no missing data.
In minimizing f(x) of (1) we first check if A′A ≲ I. If this is the case, there
is no need to normalize. If we do not have A′A ≲ I we start by dividing A
by τ(A) =

√
tr A′A. This new normalized A, say Ã, now satisfies Ã′Ã ≲ I.

Then find any G such that Ã′Ã+G′G = I, and iterate according to

z(k+1) = Gx(k),

x(k+1) = Ã′b+G′z(k+1),

../blockrelaxation/bls.html
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which amounts to
x(k+1) = Ã′b+ (I − Ã′Ã)x(k).

The iteration radius is
κ = 1− λmin(A′A)

tr A′A
.

We can do better if we compute Ã by dividing A by its trace norm, i.e. its
largest singular value. Then

κ = 1− λmin(A′A)
λmax(A′A) .

There is R code for Yates augmentation in the file yates.R.
Insert yates.R Here

5.5.2 Optimal Scaling with ORDINALS

In LINEALS (section x.x.x) we try to find quantifications of the variables
that linearize all bivariate regressions. De Leeuw (1988) has suggested to
find standardized quantifications in such a way that the loss function

f(y) =
∑∑

j ̸=ℓ

{
y′

jCjlD
−1
ℓ Cℓjyj − y′

jCjlyℓy
′
ℓCℓjyj

}
(1)

is minimized.
A more general loss function is

g(y, z) =
∑∑

j ̸=ℓ

(zjl −D−1
j Cjℓyℓ)′Dj(zjl −D−1

j Cjℓyℓ), (2)

which must be minimized over both y and z. The zjl are m(m− 1) vectors,
called regression targets, and target zjl has kj elements.
To see that this loss function generalizes (1) suppose we constrain z by re-
quiring that zjℓ is proportional to yj, i.e. zjℓ = rjlyj. Then, using y′

jDjyj = 1,

g(y,R) =
∑∑

j ̸=ℓ

r2
jl − 2

∑∑
j ̸=ℓ

rjℓy
′
jCjℓyℓ +

∑∑
j ̸=ℓ

y′
ℓCℓjD

−1
j Cjℓyℓ.

This is minimized over R by rjℓ = y′
jCjℓyℓ, and the minimum is precisely the

loss function (1). Thus f(y) = minR g(y,R), and g is an augmentation of

../code/yates.R
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f . Block relaxation for g alternates minimization over R for fixed y, which
we have shown to be easy, and minimization over y for fixed R, which is a
modified eigenvalue problem of the kind discussed in BRAS3, section x.x.x.
This is not necessarily simpler than the direct minimum eigenvalue problem
for minimizing f in section x.x.x.

The major advantage from augmenting f is that it now becomes simple to
incorporate quite general restrictions on the zjℓ. For example, they can be
required to be monotone with the original data, or a spline transformation,
or a monotone spline. Or a mixture of these options. Thus we can constrain
each individual regression functionsD−1

j Cjℓyℓ to have one of a pre-determined
number of shapes.

In ordinals.R we implement the three standard options of the Gifi system.
A vector yj is treated as nominal, ordinal, or numerical. If it is nominal then
it is unconstrained, except for the normalization. In that case the zjℓ are also
unconstrained for all ℓ. If yj is treated as ordinal is must be monotone with
the data, and so must all zjℓ. And a numerical yj must be linear with the
data, together with its targets zjℓ. Of course if all variables are numerical
there is nothing to optimize, and we just compute correlations. If all variables
are nominal there is nothing to optimize either, because we immediately get
zero loss from any starting point.

Insert ordinals.R Here

5.5.3 Least Squares Factor Analysis

In LS factor analysis we want to minimize

σ(A) =
m∑

i=1

m∑
j=1

wij(rij −
p∑

s=1
aisajs)2,

with

wij =
0, if i = j,

1, if i ̸= j.

We augment by adding the communalities, i.e. the diagonal elements of R as
variables, and by using ALS over A and the communalities. For a complete

../code/ordinals.R
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R, minimizing over A just means computing the p dominant eigenvalues-
eigenvectors. This algorithm dates back to the thirties, when it was proposed
by Thomson and others.
Think of this as an algorithm for updating communalities. We have

H(k+1) = diag(I −R(k)
p )

where R(k)
p is the best rank p approximation to R−H(k).

5.5.4 Squared Distance Scaling

Suppose we want to minimize

σ(X) =
m∑

i=1

m∑
j=1

(δij − d2
ij(X))2,

with d2
ij(X) = (xi − xj)′(xi − xj) squared Euclidean distance. An augmen-

tation algorithm for this problem, modestly called ELEGANT, was designed
by De Leeuw (1975). That paper was never published and the manuscript
is probably lost, but the algorithm was described, discussed, and applied by
both Takane (1977) and Browne (1987).
We augment σ to

σ(X, η) =
m∑

i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

(ηijkℓ − (xi − xj)′(xk − xℓ))2,

where we require ηijij = δij while the other ηijkℓ are free. Define C ∆=XX ′

and assume that X is column-centered, i.e. C is doubly-centered. The aug-
mentation works because

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

((xi − xj)′(xk − xℓ))2 = 4n2tr C2.

Also
m∑

i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

ηijkℓ(xi − xj)′(xk − xℓ) = tr UC,

where
uij

∆=
m∑

k=1

m∑
ℓ=1

(ηikjℓ − ηiℓkj − ηkijℓ + ηℓikj).
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Thus we can minimize the augmented loss function over X for fixed ηijkℓ by
minimizing tr ( 1

4n2U −XX ′)2. This means computing the p largest eigenval-
ues and corresponding eigenvectors of U .
Minimizing the augmented loss over the ηijkℓ for fixed X is

η
(k)
ijkℓ =

δij if (i, j) = (k, ℓ),
(x(k)

i − x
(k)
j )′(x(k)

k − x
(k)
ℓ ) otherwise.

This is enough information to get the ALS algorithm going. The “elegance”
so far is reducing a problem involving multivariate quartics to a sequence
of eigenvalue problems. It is distinctly unelegant, however, that the compu-
tations need four-dimensional arrays. But it turns out these can easily be
gotten rid of. We use

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

η
(k)
ijkℓ(xi − xj)′(xk − xℓ) = 2tr C

(
2n2C(k) +B(X(k))

)
,

where
B(X(k)) ∆=

m∑
i=1

m∑
j=1

(δij − d2
ij(X(k)))Aij

and Aij
∆=(ei − ej)(ei − ej)′. Thus we find X(k+1) by computing eigenvalues

and eigenvectors of C(k) + 1
2n2B(X(k)) and no intermediate computation or

storage of the ηijkℓ is required.

5.5.5 Linear Mixed Model

This example is taken from a paper of De Leeuw and Liu (1993), which
describes the algorithm in detail. We simply give a list of results that show
augmentation at work. We maximize a multinormal likelihood, not a least
squares criterium.
Result: If A = B + TCT ′, with B,C > 0, y′A−1y = minx(y − Tx)′B−1(y −
Tx) + x′C−1x.

Result: If A = B + TCT ′, with B,C > 0,

log detA = log detB + log detC + log detC−1 + T ′B−1T .
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Result: If A = B + TCT ′ then

log detA+ y′A−1y = min
x

log detB + log detC+

+ log detC−1 + T ′B−1T+
+ (y − Tx)′B−1(y − Tx) + x′C−1x.

y-Tx)+x’Cˆ{-1}x. \end{multline*}

Result: If T > 0 then

log detT = min
S>0

log detS + tr S−1T − p,

with the unique minimum attained at S = T.

We can use these four results to augment the original maximum likelihood
problem.

log detA+ y′A−1y = min
x,S>0

log detB + log detC+

+ log detS + tr S−1(C−1 + T ′B−1T )+
+ (y − Tx)′B−1(y − Tx) + x′C−1x.

Minimize over x, S,B,C using block-relaxation. The conditional minimizers
are

S = C−1 + T ′B−1T,

C = S−1 + xx′,

B = TS−1T ′ + (y − Tx)(y − Tx)′,

x = (T ′B−1T + C−1)−1T ′B−1y.

5.6 Decomposition Methods

The following theorem is so simple it’s almost embarassing. Nevertheless it
seems to have some important applications to algorithm construction.
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Theorem: Suppose G : X ⊗ Y ⇒ Z and f is an extended real-valued
function. Then

inf
z∈Z

f(z) = inf
x∈X

inf
y∈Y

f(G(x, y)),

where Z = G(X, Y ). Moreover if the infimum on the right is attained in
(x̂, ŷ), then the infimum on the left is attained in ẑ = G(x̂, ŷ).
Proof: In the eating (see below).QED

Here are some quick examples. First take G(x, y) = x− y. Then

inf
z
f(z) = inf

x≥0
inf
y≥0

f(x− y) =

= inf
x

inf
y
f(x− y).

Now take G(x, λ) = λx, with λ a scalar and x a vector,

inf
z
f(z) = inf

λ≥0
inf

x′x=1
f(λx) =

= inf
λ

inf
x′x=1

f(λx) =

= inf
λ

inf
x
f(λx).

If G(x, λ) = x
λ
, with λ ̸= 0 and x′x = 1, then Z is the set of all vectors z ̸= 0.

Thus
inf
z ̸=0

f(z) = inf
λ ̸=0

inf
x′x=1

f(x
λ

).

Somewhat less trivially, for a symmetric matrix argument A,

inf
A
f(A) = inf

dg(Λ)=Λ
inf

K′K=I
f(KΛK ′).

Observe we can always interchange the two infimum operations, because
infx∈X infy∈Y = infy∈Y infx∈X . Because f is extended real valued, the infi-
mum always exists, although it may be −∞.

5.6.1 Quadratic Form on a Sphere

We now discuss an actual example. Consider the problem of minimizing the
function

f(z) = (z − b)′A(z − b) + c

z′z
,
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over z ̸= 0, where we make no assumptions on the matrix A, the vector b, and
the scalar c. Instead of going the usual route of differentiating and solving
the stationary equations, we use the decomposition approach.
Define

g(x, λ) = (λx− b)′A(λx− b) + c

λ2x′x
,

or, letting θ = λ−1,

g(x, θ) = θ2(b′Ab+ c)− 2θb′Ax+ x′Ax

x′x
,

Then
inf
z ̸=0

f(z) = inf
x′x=1

inf
θ≥0

g(x, θ),

but also
inf
z ̸=0

f(z) = inf
x′x=1

inf
θ
g(x, θ).

If x′x = 1 then

inf
θ
g(x, θ) = inf

θ
θ2(b′Ab+ c)− 2θb′Ax+ x′Ax.

We distinguish three cases.

• If b′Ab+ c > 0 the minimum is attained at

θ̂ = b′Ax

b′Ab+ c

and the minimum is equal to x′Ax, where

A = A− Abb′A

b′Ab+ c
.

It follows that in this case minz f(z) is the smallest eigenvalue of A,
written as κ(A). If x is the corresponding unit-length eigenvector, then
the minimizer of f(z) is

ẑ = b′Ab+ c

b′A′x
x.

• If b′Ab+ c < 0 the minimum is not attained and infθ g(x, θ) = −∞ for
each x. Thus infz f(z) = −∞ as well.
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• If b′Ab + c = 0 then we must distinguish two sub-cases. If b′Ax = 0
then minθ g(x, θ) = x′Ax. If b′Ax ̸= 0 then infθ g(x, θ) = −∞ again.
Thus if b′Ab + c = 0 we have infz f(z) = −∞, unless both c = 0
and Ab = 0, in which sub-case we have minz f(z) equal to κ(A), the
smallest eigenvalue of A and the minimizer equal to any corresponding
eigenvector.

Of course if Ab = 0 we have A = A. Thus

inf
z
f(z) =

κ(A) if (b′Ab+ c > 0) or (Ab = 0 and c = 0),
−∞ otherwise.

Now start with the alternative decomposition

min
z ̸=0

f(z) = min
x′x=1

min
θ≥0

θ2(b′Ab+ c)− 2θb′Ax+ x′Ax.

We want to show that although the intermediate calculations are different,
the result is the same.

• If b′Ab + c > 0 and b′Ax ≥ 0 then minθ g(x, θ) = x′Ax, as before. But
if b′Ab + c > 0 and b′Ax < 0 the minimum is attained at θ̂ = 0, and
minθ g(x, θ) = x′Ax. Because κ(A) is less than or equal to κ(A), we
still have minz f(z) equal to the smallest eigenvalue of A.

• If b′Ab+ c < 0 we still have infz f(z) = −∞.

• If b′Ab + c = 0 we distinguish three sub-cases. If b′Ax = 0 then
minθ g(x, θ) = x′Ax, as before. If b′Ax 0 then infθ g(x, θ) = −∞.
And if b′Ax < 0 the minimum is attained at θ̂ = 0 and equal to x′Ax.
Again we have infz f(z) = −∞, unless both c = 0 and Ab = 0, when
minz f(z) is equal to κ(A).

We have solved the problem by using the decompositions~(??) and~(??).
But we can also interchange the order of the infimums and use

inf
z ̸=0

f(z) = inf
θ≥0

inf
x′x=1

g(x, θ),

or
inf
z ̸=0

f(z) = inf
θ

inf
x′x=1

g(x, θ).
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Let’s look at the problem minx′x=1 g(x, θ). For a minimum we must have
x = θ(A − µI)−1Ab, where the Lagrange multiplier µ is chosen such that
θ2b′A(A− µI)−2Ab = 1. At the minimum

min
x′x=1

g(x, θ) =

θ2[(b′Ab+ c)− 2b′A(A− µI)−1Ab+ b′A(A− µI)−1A(A− µI)−1Ab]

5.6.2 Multidimensional Unfolding

Now a data analysis example. In least-squares-squared metric unfolding
(LSSMU) we must minimize

σ(X, Y ) =
n∑

i=1

m∑
j=1

wij(δ2
ij − [x′

ixi + y′
jyj − 2x′

iyj])2.

over the n × p and m × p configuration matrices X and Y . This has been
typically handled by block decomposition. The (n+m)p unknowns are par-
titioned into a number of subsets. Block relaxation algorithms then cycle
through the subsets, minimizing over the parameters in the subset while
keeping all parameters fixed at their current values. One cycle through the
subsets is one iteration of the algorithm.

In ALSCAL (Takane, Young, and De Leeuw (1977))) coordinate descent is
used, which means that the blocks consist of a single coordinate. There
are (n+m)p blocks. Solving for the optimal coordinate, with all other fixed,
means minimizing a quartic, which in turn means finding the roots of a cubic.
The algorithm converges to a stationary point which is a global minimum
with respect to each coordinate separately. An alternative algorithm, pro-
posed by Browne (1987), uses the n + m points as blocks. Each substep is
again an easy unidimensional minimization. Their algorithm converges to a
stationary point which is a global minimum with respect to each point. Gen-
erally it is considered to be desirable to have fewer blocks, both to increase
the speed of convergence and to restrict the class of local minima we can
converge to.

Let us use our basic theorem to construct a four-block algorithm for LSSMU.
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Minimizing~(??) is the same as minimizing

σ(X, Y, α, β) =
n∑

i=1

m∑
j=1

wij(δ2
ij − [α2

i + β2
j − 2αiβjx

′
iyj])2

over α, β,X, and Y , where the configuration matrices X and Y are con-
strained by diag(XX ′) = I and diag(Y Y ′) = I.

The algorithm starts with values Θ(0) = (α(0), β(0), X(0), Y (0)) satisfying the
constraints. Suppose we have arrived at Θ(k). We then update

α(k+1) = argmin
α

σ(X(k), Y (k), α, β(k)), (5.1)

β(k+1) = argmin
β

σ(X(k), Y (k), α(k+1), β), (5.2)

X(k+1) = argmin
diag(XX′)=I

σ(X, Y (k), α(k+1), β(k+1)), (5.3)

Y (k+1) = argmin
diag(Y Y ′)=I

σ(X(k+1), Y, α(k+1), β(k+1)). (5.4)

This gives Θ(k+1). It is understood that in each of the four substeps of~(??)
we compute the global minimum, and if the global minimum happens to be
nonunique we select any of them. We also remark that, as with any block
relaxation method having more than two blocks, there are many variations
on this basic scheme. We can travel through the substeps in a different order,
we can change the order in each cycle, we can pass through the substeps in
random order, we can cycle through the first two substeps a number of times
before going to the third and fourth, and so on. Each of these strategies has
its own overall convergence rate, and further research would be needed to
determine what is best.

Let us look at the subproblems a bit more in detail to see how they can be
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best solved. Expanding~(??) and organizing terms by powers of α gives

σ(X, Y, α, β) =
n∑

i=1
α4

i

m∑
j=1

wij+

−
n∑

i=1
α3

i

m∑
j=1

wijβjcij+

+
n∑

i=1
α2

i

m∑
j=1

wij(4β2
j c

2
ij + 2β2

j − 2δ2
ij)+

−
n∑

i=1
α2

i

m∑
j=1

4wijβ
3
j cij+

+
n∑

i=1

m∑
j=1

wij(δ4
ij + β4

j + 4δ2
ijcij − 2δ2

ijβ
2
j ),

where cij = x′
iyj. This is a sum of n univariate quartic polynomials, which

can be minimized separately to give the global minimum over α. Obviously
the same applies to minimization over β.

For minimization over X and Y we define

rij =
δ2

ij − [α2
i + β2

j ]
2αiβj

,

wij = 4α2
iβ

2
jwij.

Then

σ(X, Y, α, β) =
n∑

i=1

m∑
j=1

wij[rij − x′
iyj]2.

Expanding and collecting terms gives

σ(X, Y, α, β) =
n∑

i=1
ψi(xi)

with
ψi(xi) = fi − 2x′

igi + x′
iHixi)



90CHAPTER 5. AUGMENTATION AND DECOMPOSITION METHODS

and

fi =
m∑

j=1
wijr

2
ij,

gi =
m∑

j=1
wijrijyj,

Hi =
m∑

j=1
wijyjy

′
j.

Again this is the sum of n separate functions ψi, quadratics in this case,
which can be minimized separately for each xi. By symmetry, we have the
same strategy to minimize over Y .
Minimizing over xi, under the constraint x′

ixi = 1, leads to the secular equa-
tion problem discussed in the Appendix. Since typically p is two or at most
three, the subproblems are very small indeed and can be solved efficiently.



Chapter 6

Majorization Methods

6.1 Introduction

The next step (history again) was to find systematic ways to do augmentation
(which is an art, remember). We start with examples.
An early occurrence of majorization, in the specific context of finding a suit-
able step size for descent methods, is in Ortega and Rheinboldt (1970b)).
They call this approach the Majorization Principle, which exists alongside
other step size principles such as the Curry-Altman Principle, the Goldstein
Principle, and the Minimization Principle.
Suppose we have a current solution x(k) and a descent direction p(k). Consider
the function

g(α) := f(x(k) − αp(k)).

Suppose we can find a function h such that g(α) ≤ h(α) for all 0 < α < α
and such that g(0) = h(0). Now set

α(k) := argmin
0≤α≤α

h(α).

Then the sandwich inequality says

g(α(k)) ≤ h(α(k)) ≤ h(0) = g(0),

and thus f(x(k) − α(k)p(k)) ≤ f(x(k)).

91
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Ortega and Rheinboldt point out that if the derivative of f is Hölder contin-
uous, i.e. if for some 0 < λ ≤ 1

∥Df(x)−Df(y)∥ ≤ γ∥x− y∥λ,

then we can choose

h(α) = h(0)− α⟨p(k),Df(x(k))⟩+ γ

1 + λ
(α∥p(k)∥)1+λ,

which implies

α(k) = 1
∥p(k)∥

[
⟨p(k),Df(x(k))⟩

γ∥p(k)∥

] 1
λ

.

6.2 Definitions

6.2.1 Majorization at a Point

Suppose f and g are real-valued functions on X ⊆ Rn. We say that g
majorizes f over X at y ∈ X if

• g(x) ≥ f(x) for all x ∈ X ,
• g(y) = f(y).

If the first condition can be replaced by

• g(x) > f(x) for all x ∈ X with x ̸= y,

we say that majorization at y ∈ X is strict.
Equivalently majorization is strict if the second condition can be replaced by

• g(x) = f(x) if and only if x = y.

Since we formulate all optimization problems we encounter as minimization
problems, we only use majorization, not minorization. But just for complete-
ness, if g majorizes f at y over X , then f minorizes g at y over X .
We will see plenty of examples as we go on, but for now a simple one suffices.
Figure 1 shows the logarithm on R+ strictly majorized at +1 by the linear
function g : x→ x− 1.
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Figure 1: Linear Majorizer of the Log at +1

Note that the definition of majorization at a point always has to take the
set X into account. If g majorizes f over X at y, then it may very well not
majorize over a larger set. But, of course, it does majorize f at y over any
subset of X containing y.

In most of our examples and applications X will be equal to R, R+, or Rn but
in some cases we consider majorization over an interval or, more generally,
a convex subset of Rn. If we do not explicitly mention the set on which g
majorizes f , then we implicitly mean the whole domain of f . But we’ll try
to be as explicit as possible, because our treatment, unlike some earlier ones,
does not just discuss majorization over the whole space where f is defined.

As an example, consider the cubic f : x → 1
3x

3 − 4x which is majorized at
+1 on the half-open interval (−∞, 4] by the quadratic g : x→ 4

3 − 7x+ 2x2.
This particular quadratic is constructed, by the way, by solving the equations
f(1) = g(1), f ′(1) = g′(1), and f(4) = g(4). On the other hand it is easy to
see that a non-trivial cubic f cannot be majorized at any y by a quadratic
g on the whole real line, because g − f , which is again a non-trivial cubic,
would have to be non-negative for all x, which is impossible.
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Figure 2: Quadratic Majorizer of a Cubic on an Interval
It follows directly from the definition that g majorizes f at y if and only if
g − f has a global minimum over X , equal to zero, at y. And majorization
is strict if this minimum is unique. Thus a necessary and sufficient condition
for majorization at y ∈ X is

min
x∈X

(g(x)− f(x)) = g(y)− f(y) = 0.

Since a global minimum is also a local minimum, it follows that if g majorizes
f at y ∈ X then g−f has a local minimum , equal to zero, over X at y. This
is a convenient necessary condition for majorization. A sufficient condition
for g to majorize f at y is that g−f is a convex function with a minimum at
y equal to zero. Because of convexity this minimum is then necessarily the
global minimum.
If g majorizes f at y ∈ X then the points y ∈ X where g(y) = f(y) are called
support points. If majorization is strict there is only one support point. There
can, however, be arbitrarily many.
Consider f : x→ x2 − 10 sin2(x) and g : x→ x2. Then g majorizes f on the
real line, with support points at all integer multiples of π. This is illustrated
in Figure 3.
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Figure 3: Quadratic Majorizer with an Infinite Number of Support Points
In fact if f : x→ max(x, 0) and g : x→ |x| then g majorizes f at all y ≤ 0,
and thus there even is a continuum of support points. And actually f itself
majorizes f at all y ∈ X .

6.2.2 Majorization on a Set

We can have different majorizations of f on X at different points y1, · · · , yn ∈
X . Now consider the situation in which we have a different majorization for
each point y ∈ X .
Suppose f is a real-valued function on X and g is a real-valued function on
X ⊗ X . We say that g is a majorization scheme for f on X if

• g(x, y) ≥ f(x) for all x, y ∈ X ,
• g(y, y) = f(y) for all y ∈ X .

Majorization is strict if the first condition can be replaced by

• g(x, y) > f(x) for all x, y ∈ X with x ̸= y.
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Or, equivalently, if the second condition can be replaced by

• g(x, y) = f(x) if and only if x = y.

We call g a majorization scheme for f on X , because g automatically gives
a majorization for f for every y ∈ X . Thus a majorization of f on X at
y is a real-valued function g on X , a majorization scheme for f on X is a
real-valued function on X ⊗ X .
Because g(x, y) ≥ g(x, x) = f(x) for all x, y ∈ X we see that

f(x) = min
y∈X

g(x, y)

for all x ∈ X . Thus g majorizes f if and only if f(x) = miny∈X g(x, y) and
the minimum is attained for y = x. Strict majorization means the minimum
is unique. It follows that the majorization relation between functions is a
special case of the augmentation relation.
As an example of a majorization scheme for f : x→ − log(1 + exp(−x)) we
use

g(x, y) = f(y) + f ′(y)(x− y) + 1
8(x− y)2.

Also define the function h by h(x, y) = f(x).
Function g is plotted in figure 6.1 in blue, function h is in red.
Note that the intersection of the graph of both g and h with the diagonal
vertical plane x = y is the set of (x, y, z) such that x = y and z = g(x, x) =
h(x, x) = f(x). This is the white line in the plot.
Graphs of the intersection of the graphs of g and h with the vertical
planes y = c parallel to the x-axes at y = −5,−2, 0, 2, 5 are in Ffigure
@ref(fig.interplanes). The red lines are the intersections with h, i.e. the func-
tion f , the blue lines are the quadratics majorizing f at y = −5,−2, 0, 2, 5.
Graphs of intersection of the graphs of g and h with the vertical planes x = c
parallel to the y-axes at x = −5,−2, 0, 2, 5 are in figure @ref{fig.logitother}.
They illustrate that miny g(x, y) = f(x). The horizontal red lines are the in-
tersections of the planes x = c with the graph of h at f(−5), f(−2), f(0), f(2),
and f(5).
The code to produce all three figures is in logitcouple.R.
Insert logitcouple.R Here

../code/logitcouple.R
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Figure 6.1: Majorization Scheme for log(1+exp(x))
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Figure 6.2: Intersections of g with y = c planes
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Figure 6.3: Intersections of g with x = c planes
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6.2.3 Majorization Algorithm

The basic idea of a majorization algorithm is simple: it is the augmentation
algorithm applied to the majorization function.

Suppose our current best approximation to the minimum of f is x(k), and we
have a g that majorizes f on X in x(k). If x(k) already minimizes g we stop,
otherwise we update x(k) to x(k+1) by minimizing g over X .

If we do not stop, we have the sandwich inequality

f(x(k+1)) ≤ g(x(k+1)) < g(x(k)) = f(x(k)),

and in the case of strict majorization even

f(x(k+1)) < g(x(k+1)) < g(x(k)) = f(x(k)).

We then select a new function g that majorizes f on X at x(k+1). Repeat-
ing these steps produces a decreasing sequence of function values, and the
usual compactness and continuity conditions guarantee convergence of both
sequences x(k) and f(x(k)).

Here is an artificial example, chosen because of its simplicity. Consider
f(x) = x4 − 10x2. Because x2 ≥ y2 + 2y(x − y) = 2yx − y2 we see that
g(x, y) = x4−20yx+10y2 is a suitable majorization function. The majoriza-
tion algorithm is x(k+1) = 3

√
5x(k).

The first iterations of the algorithm are illustrated in Figure 1. We start with
x(0) = 3, where f is −9. Then g(x, 3) is the blue function. It is minimized
at x(1) ≈ 2.4662, where g(x(1), 3) ≈ −20.9795, and f(x(1)) ≈ −23.8288. We
then majorize by using the green function g(x, x(1)), which has its minimum
at about 2.3103, equal to about −24.6430. The corresponding value of f at
this point is about −24.8861. Thus we are rapidly getting close to the local
minimum at

√
5 ≈ 2.2361, with value −25. The linear convergence rate at

the stationary point is 1
3 .
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Figure 1: Toy example, first iterations
Table 1 show the iterations to convergence, with an estimate of the iteration
radius in the last column.

## Iteration: 1 fold: -9.00000000 fnew: -23.82883884 xold: 3.00000000 xnew: 2.46621207 ratio: 0.00000000
## Iteration: 2 fold: -23.82883884 fnew: -24.88612919 xold: 2.46621207 xnew: 2.31029165 ratio: 0.32250955
## Iteration: 3 fold: -24.88612919 fnew: -24.98789057 xold: 2.31029165 xnew: 2.26054039 ratio: 0.32971167
## Iteration: 4 fold: -24.98789057 fnew: -24.99867394 xold: 2.26054039 xnew: 2.24419587 ratio: 0.33212463
## Iteration: 5 fold: -24.99867394 fnew: -24.99985337 xold: 2.24419587 xnew: 2.23877400 ratio: 0.33293027
## Iteration: 6 fold: -24.99985337 fnew: -24.99998373 xold: 2.23877400 xnew: 2.23696962 ratio: 0.33319896
## Iteration: 7 fold: -24.99998373 fnew: -24.99999819 xold: 2.23696962 xnew: 2.23636848 ratio: 0.33328854
## Iteration: 8 fold: -24.99999819 fnew: -24.99999980 xold: 2.23636848 xnew: 2.23616814 ratio: 0.33331840
## Iteration: 9 fold: -24.99999980 fnew: -24.99999998 xold: 2.23616814 xnew: 2.23610137 ratio: 0.33332836
## Iteration: 10 fold: -24.99999998 fnew: -25.00000000 xold: 2.23610137 xnew: 2.23607911 ratio: 0.33333167
## Iteration: 11 fold: -25.00000000 fnew: -25.00000000 xold: 2.23607911 xnew: 2.23607169 ratio: 0.33333278
## Iteration: 12 fold: -25.00000000 fnew: -25.00000000 xold: 2.23607169 xnew: 2.23606921 ratio: 0.33333315
## Iteration: 13 fold: -25.00000000 fnew: -25.00000000 xold: 2.23606921 xnew: 2.23606839 ratio: 0.33333327
## Iteration: 14 fold: -25.00000000 fnew: -25.00000000 xold: 2.23606839 xnew: 2.23606811 ratio: 0.33333331
## Iteration: 15 fold: -25.00000000 fnew: -25.00000000 xold: 2.23606811 xnew: 2.23606802 ratio: 0.33333333

Table 1: Toy example, iterations to convergence
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We also show the cobwebplot (see section 14.11.2) for the iterations, which
illustrates the decrease of the difference between subsequent iterates.
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6.2.4 Alternative Definitions

Suppose f and g are arbitrary real-valued functions on X . Define

S−(f, g) :={x ∈ X | f(x) ≤ g(x)},
S0(f, g) :={x ∈ X | f(x) = g(x)}.

Thus S0(f, g) ⊆ S−(f, g). Then if

x ∈ S0(f, g),
y ∈ argmin

x∈S−(f,g)
g(x),

we have
f(y) ≤ g(y) ≤ g(x) = f(x).

../background/cobweb.html
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6.3 Relatives

6.3.1 The Concave-Convex Procedure

The Concave-Convex Procedure (CCCP) was first proposed by Yuille and
Rangarajan (2003). Its global convergence was studied using the Zangwill
theory by Sriperumbudur and Lanckriet (2012), and its rate of convergence
using block relaxation theory by Yen et al. (2012). The CCCP was discussed
in a wider optimization context by Lipp and Boyd (2015).
The starting point of Yuille and Rangarajan, in the context of energy func-
tions for discrete dynamical systems, is the decomposition of a function f
with bounded Hessian into a sum of a convex and a concave function. As
we shall show in section 9.2.1 on differences of convex functions any function
on a compact set with continuous second derivatives can be decomposed in
this way. If f = u + v with u convex and v concave, then the CCCP is the
algorithm

Du(x(k+1)) = −Dv(x(k)).
Now, by tangential majorization, f(x) ≤ g(x, y) with

g(x, y) = u(x) + v(y) + (x− y)′Dv(y).

../linear/dc.html
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The function g is convex in x, and consequently the majorization algorithm
in this case is exactly the CCCP.

6.3.2 Generalized Weiszfeld Methods

We discuss Weiszfeld’s algorithm for the single facility location problem, or
equivalently for the spatial median problem, in section 7.3.2. But, in an im-
portant early article, Vosz and Eckhardt (1980) pointed out that Weiszfeld’s
algorithm is a member of a much more general class of algorithms, whch they
called Generalized Weiszfeld Methods.

The problem Voß and Eckhardt consider is to minimize a twice continuously
differentiable f over a polyhedron X ⊆ Rn, defined by a number of linear
inequalities. They assume that f is bounded from below on X and that the
sublevel sets {x | f(x) ≤ γ} have a empty of bounded intersection with X .
They define the quadratic approximation

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′A(y)(x− y)

for which they assume that g(x, y) ≥ f(x) for all x ∈ X . In addition the
spectral norm ∥A(y)∥ is must be bounded from above on X by A∞, and the
smallest eigenvalue of A(y) must be bounded from below on X by a positive
number γ0. Their algorithm is

x(k+1) = argmin
x∈X

g(x, x(k)).

This, of course, is a majorization algorithm. In fact, it is an example of the
quadratic mjaorization algorithms we discuss in detail in chapter 10. Voß
and Eckhardt proceed to prove global convergence, which actually follows
directly from Zangwill’s theory, and local linear convergence, which follows
from Ostrowski’s theorem.

../inequalities/location.md
../quadratic/README.html
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6.3.3 The EM Algorithm

6.3.4 The Lower-Bound Principle

6.3.5 Dinkelbach Majorization

Suppose f is defined on X and g on X⊗X. Then we say that g G-majorizes
f at y ∈ X if

f(x) ≤ g(x, y),
f(y) = g(y, y),

We say that g G-majorizes f on X if it majorizes f for each y ∈ X.
Suppose f is defined on X and h on X⊗X. Then we say that h H-majorizes
f at y ∈ X if

f(x)− f(y) ≤ h(x, y),
h(y, y) = 0.

Theorem: If h H-majorizes f at y, then g defined by g(x, y) = f(y)+h(x, y)
G-majorizes f at y. Conversely, if g G-majorizes f at y, then h defined by
h(x, y) = g(x, y)− f(y) H-majorizes f at y.
Suppose f is defined on X and h on X⊗X. Then we say that h D-majorizes
f at y ∈ X if

h(x, y) < 0⇒ f(x) < f(y),
h(y, y) = 0.

Theorem If h H-majorizes f at y, then h D-majorizes f at y.
The difference between D-majorization and H-majorization is that if
h(x, y) > 0 we can have f(x)− f(y) > h(x, y).
Quick note: D-majorization is also

g(x, y) = f(y) + h(x, y) < f(y) = g(y, y)⇒ f(x) < f(y)

If f(x) = a(x)/b(x), with b(x) > 0 for all x ∈ X, then h(x, y) = a(x) −
f(y)b(x) D-majorizes f(x) at y.
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6.4 Further Results

6.4.1 Rate of Convergence

Majorization is a special case of our results for augmentation previous theory,
because X = Y and because y(x) = x.
This implies that D2(x, x) = 0 for all x, and consequently D12 = −D22. Thus
M(x) = −D−1

11 D12.

Again, to some extent, finding a majorization function is an art. Many of the
classical inequalities can be used (Cauchy-Schwarz, Jensen, H"older, Young,
AM-GM, and so on).

6.4.2 Univariate and Separable Functions

Many of our examples are majorizations of a real-valued function f of a
single real variable over the real line R. This is partly for mathematical
convenience, because many results are simpler in the univariate case. And
partly for didactic reasons, because plots and tables are more easy to visualize
and interpret.
As pointed out by De Leeuw and Lange (2009) looking at the univariate
case is obviously restrictive, but not as restrictive as it seems. Many of the
functions in optimization and statistics are separable, which means they are
of the form

f(x) =
n∑

i=1
fi(xi),

and majorizing each of the univariate fi gives a majorization of f . Note that
if f(x) = ∏n

i=1 fi(x), where the fi are positive, can be turned into a separable
problem by taking logarithms.
In addition it is often possible to majorize a non-separable function by a
separable one. Suppose, for example, that

f(x) = 1
2

n∑
i=1

n∑
j=1

wijfi(xi)fj(xj),

where W = {wij} is positive semi-definite. Suppose we can find a diagonal
D such that W ≲ D then for any two vectors u and v in Rn
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u′Wu = (v + (u− v))′W (v + (u− v)) ≤
v′Wv + (u− v)′Wv + (u− v)′D(u− v) =

(u− z)′D(u− z) + v′(W −WD−1W )v,

where z ∆=(I −D−1W )v. Thus

f(x) ≤ 1
2

n∑
i=1

di(fi(x)− zi(y))2 + 1
2

n∑
i=1

n∑
j=1

hijfi(y)fj(y),

with H
∆=W −WD−1W. The majorizer we have constructed is separable.

6.4.3 Differentiable Functions

We first show that differentiable majorizations of differentiable functions
must have certain properties at the support point.
Theorem: Suppose f and g are differentiable at y. If g majorizes f at y,
then

• g(y) = f(y),
• g′(y) = f ′(y),

If f and g are twice differentiable at y, then in addition

• g′′(y) ≥ f ′′(y),

and if g majorizes f strictly

• g′′(y) > f ′′(y).

Proof: If g majorizes f at y then g − f has a minimum at y. Now use the
familiar necessary conditions for the minimum of a differentiable function,
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which say the derivative at the minimum is zero and the second derivative is
non-negative. QED

The conditions in the theorem are only necessary because they are local,
they only say something about the value of g and its derivatives at y. But
majorization is a global relation to make global statements we need conditions
like convexity. We already know that if g− f is convex with a minimum at y
equal to zero, then g majorizes f at y. For differentiable f and g this means
that if f − g is convex then g majorizes f at y if and only if f(y) = g(y) and
f ′(y) = g′(y). And for twice-differentiable f and g with f ′′(x) ≥ 0 for all x
again g majorizes f at y if and only if f(y) = g(y) and f ′(y) = g′(y).
In the case of majorization at a single y we have f ′(y) = g′(y) for differentiable
functions. If g majorizes f on Y ⊆ X then g(x, y) − f(x) ≥ 0 for all x ∈ X
and all y ∈ Y . Thus

0 = g(y, y)− f(y) = min
x∈X

g(x, y)− f(x)

for each y ∈ Y . In addition

f(x) = g(x, x) = min
y∈Y

g(x, y).

In the case of majorization at a single y we had f ′(y) = g′(y) for differentiable
functions. In general the function f defined by f(x) = miny∈Y g(x, y) is not
differentiable. If the partials D1g are continuous then the derivative at x in
the direction z satisfies

dfz(x) = min
y
{z′D1g(x, y) | f(x) = g(x, y)}.

In the case of strict majorization this gives

Df(x) = D1g(x, x).

Theorem ?? can be generalized in many directions if differentiability fails. If
f has a left and right derivatives in y, for instance, and g is differentiable,
then

f ′
R(y) ≤ g′(y) ≤ f ′

L(y).

If f is convex, then f ′
L(y) ≤ f ′

R(y), and f ′(y) must exist in order for a
differentiable g to majorize f at y. In this case g′(y) = f ′(y).
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For nonconvex f more general differential inclusions are possible using the
four Dini derivatives of f at y [see, for example, McShane, 1944, Chapter V].
Locally Lipschitz functions, Proximinal and Frechet and Clarke subgradients,
sandwich and squeeze theorems
One-sided Chebyshev. Find g ∈ G such that g ≥ f , g(y) = f(y) and
supx |g(x) − f(x)| is minimized. For instance G can be the convex func-
tions, or the polynomials of a certain degree, or piecewise linear functions or
splines.

6.4.4 Composition

Theorem: [Sum of functions] Suppose h is defined on X ⊗U and f(x) =∫
U h(x, u)dF (u). Suppose k is defined on X ⊗ X ⊗ U and satisfies

h(x, u) = k(x, x, u) = min
y∈X

k(x, y, u)

for all x ∈ X and u ∈ U . Then g defined by

g(x, y) =
∫

U
k(x, y, u)dF (u)

satisfies
f(x) = min

y∈X
g(x, y)

Proof: h(x, u) = k(x, x, u) ≤ k(x, y, u). Integrate to get f(x) = g(x, x) ≤
g(x, y). QED
Theorem: [Inf of functions] Suppose f = infu v(•, u) and let X(u) =
{x|f(x) = v(x, u)}. Suppose y ∈ X(u) and g majorizes v(•, u) at y. Then g
majorizes f at y.
Proof: g(x) ≥ v(x, u) ≥ infu v(x, u) = f(x), and because y ∈ X(u) also
g(y) = v(y, u) = f(y). QED
Observe the theorem is not true for sup, and also we cannot say that if
w(•, u) majorizes v(•, u) for all u at y, then g = infu w(•, u) majorizes f at
y.
Theorem: [Composition of functions] If g majorizes f at y and γ : R→
R is non-decreasing, then γ◦g majorizes γ◦f at y. If, in addition, γ majorizes
the non-decreasing η : R→ R at g(y), then γ ◦ g majorizes η ◦ f .
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Proof: g(x) ≥ f(x) and thus γ(g(x)) ≥ γ(f(x)). Also g(y) = f(y) and thus
γ(g(y)) = γ(f(y)). For the second part we have γ(g(x)) ≥ η(g(x)) ≥ η(f(x))
and γ(g(y)) = η(g(y)) = η(f(y)). QED
Theorem: Suppose f = mink fk and let Si be the set where f = fi. If
y ∈ Si and g majorizes fi at y, then g majorizes f at y.
Proof: First g(x) ≥ fi(x) ≥ mink fk(x) = f(x). Because y ∈ Si also
g(y) = fi(y) = f(y). QED
This implies that if f = mink fk has a quadratic majorizer at each y, if each
of the fk has a quadratic majorizer at each y.

6.4.5 Majorization Duality

Because g(x, y) ≥ g(x, x) = f(x) for all x, y ∈ X we have seen that

f(x) = min
y∈X

g(x, y)

for all x ∈ X . Thus

min
x∈X

f(x) = min
x∈X

min
y∈X

g(x, y) = min
y∈X

h(y).

where
h : y → min

x∈X
g(x, y).

Suppose, for example, that our majorization on X is of the form

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′A(y)(x− y),

with A(y) positive definite for all y. This can be rewritten as

g(x, y) = f(y)− 1
2(Df(y))′A−1(y)Df(y)+

+ (x− z(y))′A(y)(x− z(y)),

with z(y) ∆= y − A−1(y)Df(y), and thus

h(y) = min
x∈X

g(x, y) = f(y)− 1
2(Df(y))′(A(y))+Df(y)+

+ min
x∈X

(x− z(y))′A(y)(x− z(y)).
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6.4.6 Necessary Conditions by Majorization

Suppose g on X ⊗X majorizes f on X . We show that a necessary condition
for x̂ to be a minimizer of f on X is that x̂ minimizes the majorization
function g(•, x̂) on X .

Theorem: If
x̂ ∈ Arg min

x∈X
f(x),

then
x̂ ∈ Arg min

x∈X
g(x, x̂).

Proof: Suppose x ∈ X is such that g(x, x̂) < g(x̂, x̂). Then

f(x) ≤ g(x, x̂) < g(x̂, x̂) = f(x̂),

which contradicts that x̂ minimizes f . QED

As an example, suppose that we have a quadratic majorization of the form

f(x) ≤ f(y) + (x− y)′Df(y) + 1
2(x− y)′A(x− y),

with A positive definite. If x̂ minimizes f over X , then we must have

x̂ ∈ Arg min
x∈X

(x− ẑ)′A(x− ẑ),

with ẑ ∆= x̂−A−1Df(x̂). Thus x̂ must be the weighted least squares projection
of ẑ on X . If X is all of Rn then we must have x̂ = ẑ, which means Df(x̂) = 0.

For a concave function f on a bounded set we have g(x, y) = f(y) + (x −
y)′Df(y), and thus the necessary condition for a minimum is

x̂ ∈ Arg min
x∈X

x′Df(x̂).

6.4.7 Majorizing Constraints

Consider the nonlinear programming problem of minimizing f0 over x ∈ X
under the functional constraints fi(x) ≤ 0 for i = 1, · · · , n.
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Suppose gi majorizes fi on X . Consider the algorithm

x(k+1) ∈ argmin
x∈X

{g0(x, x(k)) | gi(x, x(k)) ≤ 0}.

Lipp and Boyd [2014] propose this algorthm for the case in which the fi

are DC (differences of convex functions), as a generalization of the Convex-
Concave procedure of II.1.3.2. We show the algorithm is stable. Remember
that x ∈ X is feasible if it satisfies the functional constraints.
Result: If x(k) is feasible, then x(k+1) is feasible and f0(x(k+1)) ≤ f0(x(k)).
Proof: By majorization, for i = 1, · · · , n we have

fi(x(k+1)) ≤ gi(x(k+1), x(k)) ≤ 0.

Second, the sandwich inequality says

f0(x(k+1)) ≤ g0(x(k+1), x(k)) ≤ g0(x(k), x(k)) = f0(x(k)).

QED

Note that it may not be necessary to majorize all functions fi. Or, in other
words, for some we can choose the trivial majorization gi(x, y) = fi(x).

6.4.8 Majorizing Value Functions

Suppose f(x) = maxy∈Y g(x, y) and g(x, y) = minz∈X h(x, y, z),
i.e. h(x, y, z) ≥ g(x, y) for all x, z ∈ X and y ∈ Y and h(x, y, x) = g(x, y) for
all x ∈ X and y ∈ Y . Then, by weak duality,

f(x) = max
y∈Y

min
z∈X

h(x, y, z) ≤ min
z∈X

max
y∈Y

h(x, y, z) = min
z∈X

k(x, z),

where
k(x, z) ∆= max

y∈Y
h(x, y, z).

Note that
k(x, x) = max

y∈Y
h(x, y, x) = max

y∈Y
g(x, y) = f(x),

which means that actually

f(x) = min
z∈X

k(x, z)
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and thus k majorizes f in z.

Note: See how the following fits in 03/07/15. Or does it ?

Suppose the problem we want to solve is minimizing g(x, y) over x ∈ X and
y ∈ Y . If both minimizing g(x, y) over x ∈ X for fixed y ∈ Y and minimizing
g(x, y) over y ∈ Y for fixed x ∈ X is easy, then we often use block-relaxation,
alternating the two conditional minimization problems until convergence.

But now suppose only one of the two problems, say minimizing g(x, y) over
y ∈ Y for fixed x ∈ X, is easy. Define

f(x) = min
y∈Y

g(x, y)

and let y(x) be any y ∈ Y such that f(x) = g(x, y(x)).

Suppose we have a majorizing function h(x, z) for f(x). Thus

f(x) ≤ h(x, z) ∀x, z ∈ X,
f(x) = h(x, x) ∀x ∈ X.

Suppose our current best solution for x is x̃, with corresponding ỹ = y(x̃).
Let x+ be any minimizer of h(x, x̃) over x ∈ X. Now

g(x+, y(x+)) = f(x+) ≤ h(x+, x̃) ≤ h(x̃, x̃) = f(x̃) = g(x̃, y(x̃))

which means that (x+, y(x+)) gives a lower loss function value than (x̃, y(x̃)).
Thus we have, under the usual conditions, a convergent algorithm.

Note: See how the following fits in 03/13/15. Or does it ?

Suppose g(x) = miny∈Y f(x, y) and f(x, y) = minz∈X h(x, z, y). Define
k(x, z) ∆= miny∈Y h(x, z, y). Then

g(x) = min
y∈Y

f(x, y) = min
y∈Y

min
z∈X

h(x, z, y) = min
z∈X

min
y∈Y

min
z∈X

h(x, z, y) = min
z∈X

k(x, z).

k(x, x) = min
y∈Y

h(x, x, y) = min
y∈Y

f(x, y) = g(x)

Not necessary that Y = X . Only h has to majorize f for k to majorize, f
can be anything. This may be in the composition section.
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6.5 Some Examples

6.5.1 The Reciprocal

Minimizing the function f(x) = ax− log(x), where a > 0 is a constant, over
x > 0 is trivial. The first and second derivatives of f are

f ′(x) = a− 1
x
,

and
f ′′(x) = 1

x2 .

We see from f ′′(x) > 0 that f is strictly convex on the positive reals. It has
its unique minimum for a−1/x = 0, i.e. for x = 1/a, and the minimum value
is 1 + log(a).
Thus iterative algorithms to minimize the function, which can also be thought
of as iterative algorithms to compute the reciprocal of a positive number a,
are of little interest in themselves. But it is of some interest to compare
various algorithms, such as different majorization methods, in terms of ro-
bustness, speed of convergence, and so on.
Here are plots of the function f for a = 1/3 and for a = 3/2.
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Figure 1: ax+log(x) for a = 1/3 (left) and a=3/2 (right)

Because − log(x) = log(1/x) the concavity of the logarithm shows that

log(1
x

) ≤ log(1
y

) + y

(
1
x
− 1
y

)
,

or

− log(x) ≤ − log(y) + y

x
− 1.

Thus

g(x, y) = ax− log(y) + y

x
− 1

majorizes f , and minimizing the majorizer gives the very simple algorithm

x(k+1) =
√
x(k)

a
.

The derivative of the update function h(x) ∆=
√
x/a at 1/a is 1/2. Thus our

majorization iterations have linear convergence, with ratio 1/2. If x(0) < 1/a
the algorithm generates an increasing sequence converging to 1/a. If x(0) >
1/a we have a decreasing sequence converging to 1/a. Because ax(k+1) =√
ax(k) we have the explicit expression

x(k) = a( 1
2k −1) (x(0)

)( 1
2k )

.

Here we show the majorization for a = 3/2 and y equal to 1/10, 1 and 3/2.
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Figure 2: Majorization of 3x/2+log(x) at y=1/10,1, and 3/2

6.5.2 Cubics and Quartics

Suppose f is a cubic, which is non-trivial in the sense that its third derivative
is non-zero. Thus f has no minimum or maximum, because it is unbounded
below and above. This immediately shows there can be no linear or quadratic
majorizer g of f , because if there was then g−f would be a non-trivial cubic,
which does not have a minimum.
For a quadratic g to majorize a non-trivial quartic f at y we must have

f(y) + f ′(y)(x− y) + 1
2f

′′(y)(x− y)2 + 1
6f

′′′(y)(x− y)3 + 1
24f

iv(x− y)4 ≤

f(y) + f ′(y)(x− y) + 1
2c(x− y)2,

for all x. Of course f iv(y) is a constant, independent of y, for a quartic. This
can be written as 1

2(x− y)2q(x) ≤ 0 for all x, where

q(x) ∆=(f ′′(y)− c) + 1
3f

′′′(y)(x− y) + 1
12f

iv(y)(x− y)2.
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If f iv > 0 no quadratic majorization exists. If f iv < 0 we complete the square
to

q(x) = 1
12f

iv

(
x− y + 2f

′′′(y)
f iv

)2

+
(
f ′′(y)− 1

3
(f ′′′(y))2

f iv
− c

)
,

and see we must have

c ≥ c(y) ∆= f ′′(y)− 1
3

(f ′′′(y))2

f iv
.

Example 1: In our first example we use the polynomial f(x) = 1 + 5x +
5x2−5x3−6x4, and we show quadratic majorizers using c = c(y) for y equal
to −.75,−.25,+.25, and +.75.

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

x

f(
x)

Figure 1: Quadratic Majorization of a Quartic
Note that the quadratic majorizer for y = .75 is concave, which means it
does not have a minimum and we cannot carry out a majorization step. All
four majorizers have two support points, one at y and the other at y−2 f ′′′(y)

f iv(y) ,
which is the solution of q(x) = 0 if c = c(y). The R code for drawing the
figures is in quarticCubicMe.R. Note the function quarticCubicMe does not
return anything, it is merely used for its graphical side effects.
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Insert quarticCubicMe.R Here
The majorization algorithm corresponding to our quadratic majorization is

x(k+1) = x(k) − f ′(x(k))
c(x(k)) .

If it converges to a stationary point at x with f ′(x) = 0 and f ′′(x) ≥ 0 then
the iteration radius is

κ(x) = 1− f ′′(x)
c(x) .

Note that in the quartic case both f ′′ and c are quadratics, so the convergence
rate λ is a ratio of two quadratics. If f ′′(x) > 0 and f ′′′(x) ̸= 0 then 0 <
λ(x) < 1. If f ′′′(x) = 0 then λ(x) = 0 and we have superlinear convergence.
If f ′′(x) = 0 and f ′′′(x) ̸= 0 we have λ(x) = 1 and convergence is sublinear.
Example 2: We illustrate this with the quartic

f(x) = +5
6x+ 3

4x
2 + 1

6x
3 − 1

24x
4

which has both f ′(−1) = 0 and f ′′(−1) = 0. Quadratic majorizers are shown
in Figure 2.

−2 0 2 4

0
5

10
15

x

f(
x)

../code/quarticCubicMe.R
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Figure 2: Quadratic Majorization of a Quartic at a Saddlepoint
The iterative majorization algorithm in itQuartic.R, which stops if we have
reached a solution to within 1e-10, has not converged after 100,000 iterations.

Iteration: 100000 xold: -0.99998667 xnew: -0.99998667 fold: -0.29166667 fnew: -0.29166667 lbd: 0.99998000
$x
[1] -0.9999867

$lbd
[1] 0.99998

Insert itQuartic.R Here
Example 3: The next quartic has f ′(1) = 0 and f ′′′(1) = 0. This implies
that f(1 + x) = f(1 − x) for all x, which in turn implies that quadratic
majorizers using c = c(y) have their minima or maxima at 1. We identify
the polynomial by requiring f(0) = 0, f ′′(1) = 1 and f iv(1) = 1. This gives

f(x) = −5
6x+ 1

4x
2 + 1

6x
3 − 1

24x
4.

Quadratic majorizers are in Figure 3.
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−
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../code/itQuartic.R
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Figure 3: Quadratic Majorization of a Symmetric Quartic

In this case the majorization algorithm converges to the solution x = 1 in a
single iteration, no matter where we start. This is true even if the quadratic
is concave, because then the update actually goes to the maximum of the
majorizing quadratic (which means that, strictly speaking, we do not make
a majorization step).

If we want to majorize a quartic f by a cubic

g(x) = f(y) + f ′(y)(x− y) + 1
2c(x− y)2 + 1

6d(x− y)3,

then we can use the same reasoning as before to come up with

c ≥ cd(y) ∆= f ′′(y)− 1
3

(f ′′′(y)− d)2

f iv
.

In each iteration we have to minimize the cubic g over x. This needs to
be qualified, of course, because the cubic does not have a minimum. So we
modify the rule to choosing the local minimum of the cubic, if there is one.
Differentiating the implicit function for the update x+ gives

Dx+(y) = 1− f ′′(y)
c+ d(x+(y)− y) ,

and thus at a fixed point x the iteration radius, using c = cd(y), it is

λ(x) = 1− f ′′(x)
cd(x) .

We have fast convergence if d is close to f ′′′(x), and superlinear convergence
if d = f ′′′(x).

Example 4: In Figure 4 we use the quartic 1+5x+5x2−5x3−6x4 again to
illustrate cubic majorization with d cleverly chosen to be f ′′′(x∞). The cubic
majorization functions are much closer than the quadratic ones in Figure 1.
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Figure 4: Cubic Majorization of a Quartic

Table 1 shows different iteration counts for different values of d. In this case
we have f ′′′(x) = 29.50256, where x = −0.4132122.

d iterations rate
0 11 0.16627
5 11 0.12093

10 10 0.08016
15 09 0.04598
20 08 0.02027
25 06 0.00462
30 04 0.00005

Table 1: Cubic Majorization of a Quartic
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6.5.3 Normal PDF and CDF

For a nice regular example we use the celebrated functions

ϕ(x) = 1√
2π
e−z2/2,

Φ(x) =
∫ x

−∞
ϕ(z) dz.

Of course Φ′(x) = ϕ(x). And consequently

Φ′′(x) = ϕ′(x) = −xϕ(x),
Φ′′′(x) = ϕ′′(x) = −(1− x2)ϕ(x),
Φiv(x) = ϕ′′′(x) = −x(x2 − 3)ϕ(x).

To obtain quadratic majorizers we must bound the second derivatives. We
can bound Φ′′(x) by setting its derivative equal to zero. We have Φ′′′(x) = 0
for x = ±1, and thus |Φ′′(x)| ≤ ϕ(1). In the same way ϕ′′′(x) = 0 for x = 0
and x = ±

√
3. At those values |ϕ′′(x)| ≤ 2ϕ(

√
3). More precisely, it follows

that

0 ≤ Φ′(x) = ϕ(x) ≤ ϕ(0),
−ϕ(1) ≤ Φ′′(x) = ϕ′(x) ≤ ϕ(1),
−ϕ(0) ≤ Φ′′′(x) = ϕ′′(x) ≤ 2ϕ(

√
3).

Thus we have the quadratic majorizers

Φ(x) ≤ Φ(y) + ϕ(y)(x− y) + 1
2ϕ(1)(x− y)2,

and
ϕ(x) ≤ ϕ(y)− yϕ(y)(x− y) + ϕ(

√
3)(x− y)2.

The majorizers are illustrated for both Φ and ϕ at the points y = 0 and
y = −3 in Figure 1.
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Figure 1: Quadratic Majorization of Normal PDF and CDF
The inequalities in this section may be useful in majorizing multivariate
functions involving ϕ and Φ. They are mainly intended, however, to illustrate
construction of quadratic majorizers in the smooth case.

6.5.4 Logistic PDF and CDF



Chapter 7

Majorization Inequalities

7.1 Introduction

7.2 The AM/GM Inequality

7.2.1 Absolute Values

Suppose the problem we have to solve is to minimize

f(x) =
n∑

i=1
wi|hi(x)|

over x ∈ X . Here hi(x) is supposed to be differentiable. In statistics it
typically is a residual, for instance hi(x) = yi − z′

ix. Suppose, for the time
being, that hi(x) ̸= 0. Then we have the majorization

n∑
i=1

wi|hi(x)| ≤ 1
2

n∑
i=1

wi

|hi(y)|(h
2
i (x) + h2

i (y)),

and we must minimize

g(x, y) :=
n∑

i=1

wi

|hi(y)|h
2
i (x),

which is a weighted least squares problem.

123
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The simplest case of this is the one-dimensional example is hi(x) = yi − x,
which means we want to compute the weighted median. The algorithm is
simply

x(k+1) =
∑n

i=1 ui(x(k))yi∑n
i=1 ui(x(k)) ,

where
ui(x) = wi

| yi − x |
.

We have assumed, so far, in this example that hi(y) ̸= 0. If hi(y) = 0 at some
point in the iterative process then the majorization function does not exist,
and we cannot compute the upgrade. One easy way out of this problem is
to minimize

fϵ(x) =
n∑

i=1
wi

√
h2

i (x) + ϵ2

for small values of ϵ. Clearly if ϵ1 > ϵ2 then

min
x
fϵ1(x) = fϵ1(x1) > fϵ2(x1) ≥ min

x
fϵ2(x).

It follows that
The function fϵ is differentiable. We find

Dfϵ(x) =
n∑

i=1
wi

hi(x)√
h2

i (x) + ϵ2
Dhi(x),

and

D2fϵ(x) =
n∑

i=1
wi

1√
h2

i (x) + ϵ2

{
ϵ2

h2
i (x) + ϵ2 (Dhi(x))2 + hi(x)D2hi(x)

}
.

With obvious modifications the same formulas apply if x is a vector of un-
knowns, for instance if h(x) = y − Zx.
By the implicit function theorem the function x(ϵ) defined by Dfϵ(x(ϵ)) = 0
is differentiable, with derivative

Dx(ϵ) = ϵ

∑n
i=1 wi [h2

i (x(ϵ))2 + ϵ2]−
3
2 hi(x(ϵ))Dhi(x(ϵ))

D2fϵ(x(ϵ))
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For the weighted median the iterates are still the same weighted averages,
but now with weights

ui(x, ϵ) = wi√
(yi − x)2 + ϵ2

.

Differentiating the algorithmic map gives the convergence ratio

κϵ(x) ∆=
∑n

i=1 ui(x, ϵ) (yi−x)2

(yi−x)2+ϵ2∑n
i=1 ui(x, ϵ)

.

Clearly

min
i

(yi − x)2

(yi − x)2 + ϵ2 ≤ κϵ(x) ≤ max
i

(yi − x)2

(yi − x)2 + ϵ2 ,

which implies κϵ(x) < 1. If yi ̸= x for all i, then limϵ→0 κϵ(x) = 1 and
convergence is asymptotically sublinear.

Insert mediJan.R Here

7.2.2 Gini Mean Difference

Alternatively, we can minimize the Gini Mean Difference of the fi(θ). Now

n∑
i=1

n∑
j=1
| fi(θ)− fj(θ) |≤

n∑
i=1

n∑
j=1

1
| fi(ξ)− fj(ξ) |

(fi(θ)− fj(θ))2 + terms,

which can be rewritten as

· · · =
n∑

i=1

n∑
j=1

wij(ξ)fi(θ)fj(θ) + terms,

minimization of which is a weighted least squares problem.

../code/mediJan.R
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7.2.3 Location Problems

The Fermat-Weber problem is to find a point x ∈ Rm such that the sum of
the Euclidean distances to m given points y1, · · · , ym is minimized. Thus our
loss function is

f(x) =
m∑

j=1
wjd(x, yj),

where the wj are positive weights. Other names are the single facility location
problem or the spatial median problem.
An early iterative algorithm to solve the Fermat-Weber problem was pro-
posed by Weiszfeld (1937). For a translation see Weiszfeld and Plastria
(2009).
Here we show how to use the arithmetic mean-geometric mean inequality for
majorization. Suppose our problem is to minimize

f(X) =
n∑

i=1

n∑
j=1

wijdij(X),

where the wij are non-negative weights, and the dij(X) are again Euclidean
distances. This is a location problem. To make it interesting, we suppose
that some of the points (facilities) are fixed, others are the variables we
have to minimize over. Observe that this is a convex, but non-differentiable,
optimization problem.
We use the AM-GM inequality in the form

dij(X)dij(Y ) ≤ 1
2(d2

ij(X) + d2
ij(Y )).

If dij(Y ) > 0 then

dij(X) ≤ 1
2
d2

ij(X) + d2
ij(Y )

dij(Y ) .

Using the notation from Example a.a we now find

ϕ(X) ≤ 1
2(tr X ′B(Y )X + tr Y ′B(Y )Y ),

which gives us a quadratic majorization.
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If X is partitioned into X1 and X2, with rows which are fixed and rows
which are to be determined (facilities which have to be located), and B is
partitioned correspondingly, then the algorithm we find is

X
(k+1)
2 = B22(X(k))−1B21(X(k))X1.

7.2.4 The Lasso and the Bridge

7.3 Polar Norms and the Cauchy-Schwarz In-
equality

7.3.1 Rayleigh Quotient

Rewrite for minimizing 02/22/15, by maximizing x’Bx over x’Ax=1.
We go back to maximizing the Rayleigh quotient

λ(x) = x′Ax

x′Bx
,

where we now assume that both A and B are positive definite. Maximizing
λ is equivalent to maximizing

√
x′Ax on the condition that

√
x′Bx = 1. By

Cauchy-Schwartz
√
x′Ax ≥ 1√

y′Ay
x′Ay,

and thus for the majorization we maximize x′Ax over x′Bx = 1. This defines
an algorithmic map which sets the update of x proportional to B−1Ax, i.e. we
have a shown global convergence of the power method to compute the largest
generalized eigenvalue.
We can also establish the linear convergence rate quite easily, using Ostrowski
(1966). For definiteness we normalize in each iteration, and set

A(ω) = B−1Aω

∥B−1Aω∥
.

At a point ω which has B−1Aω = λ1ω, and ω′ω = 1 we have

M(ω) = 1
λ1

(I − ωω′)B−1A.
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It follows that M has eigenvalues 0 and λs

λ1
, with λs the “remaining’ ’ eigen-

values of B−1A. Thus if λ1 is the largest eigenvalue, we find a linear rate of
ρ = λ1

λ2
.

There are several things in this analysis which may go wrong, and they are
all quite instructive.

7.3.2 The Majorization Method for MDS

The first is an algorithm for multidimensional scaling, developed by De Leeuw
(1977). We want to minimize

σ(X) = 1
2

m∑
i=1

m∑
j=1

wij(δij − dij(X))2,

with dij(X) again Euclidean distance, i.e.

dij(X) =
√

(xi − xj)′(xi − xj).Ň

We suppose weights wij and dissimilarities δij are symmetric and hollow (zero
diagonal), and satisfy

1
2

m∑
i=1

m∑
j=1

wijδ
2
ij = 1.

We now define the following objects

η2(X) ∆=
m∑

i=1

m∑
j=1

wijdij(X)2, (7.1)

ρ(X) ∆=
m∑

i=1

m∑
j=1

wijδijdij(X). (7.2)

Thus
σ(X) = 1− 2ρ(X) + 1

2η
2(X).

The next step is to use matrices. Let

vij =
−wij if i ̸= j,∑m

k ̸=i wik if i = j,
(7.3)

bij(X) =
−

wijδij

dij(X) if i ̸= j,∑m
k ̸=i

wikδik

dik(X) if i = j.
(7.4)
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Now
σ(X) = 1− trX ′B(X)X + 1

2trX ′V X.

By Cauchy-Schwarz,

dij(X) ≥ (xi − xj)′(yi − yj)
dij(Y ) ,

which implies
trX ′B(X)X ≥ trX ′B(Y )Y.

Now let
X = V +B(X)X.

This is called the Guttman-transform of a matrix X. Using this transform
we see that for all pairs of configurations (X, Y )

σ(X) ≤ 1− tr X ′B(Y )Y + 1
2tr X ′V X = (7.5)

= 1− tr XV Y + 1
2tr X ′V X = (7.6)

= 1− 1
2tr Y ′

V Y + 1
2tr (X − Y )′V (X − Y ), (7.7)

while for all configurations
X

we have
σ(X) = 1− 1

2tr X ′
V X + 1

2tr (X −X)′V (X −X).

7.4 Conjugates and Young’s Inequality

Example: Let 0 < r < 2, p = 2
r
, and q = 2

2−r
. Then the previous result,

applied to xr and y2−r, becomes

xry2−r ≤ r

2x
2 + 2− r

2 y2,

which provides us with a quadratic majorization for xr for all 0 < r < 2. We
have equality if and only if x = y.
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showMe <- function (b, r, up = 5) {
a <- seq (0, up, length = 100)
ar <- a ˆ r
plot (a, ar, type = "l", col = "RED",

ylab="f(a)", lwd = 2)
br <- (r * (a ˆ 2)) / 2 + (((2 - r) * (b ˆ 2))/ 2)
br <- br / (b ˆ (2 - r))
lines (a, br, col = "GREEN", lwd = 2)
abline (v = b, lwd = 2)

}

Here is an example with y = 2 and r = 1.5.
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One important application of these results is majorization of powers of Eu-
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clidean distances (
√
x′Ax)r by quadratic forms. We find, for 0 < r < 2,

(
√
x′Ax)r ≤ 1

(
√
y′Ay)(2−r)

{
r

2x
′Ax+ 2− r

2 y′Ay
}

7.4.1 Support Vector Machines
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Chapter 8

Using Convexity

8.1 Using Convexity

There are two major ways in which we use convexity in majorization.
First, we can use the definition of convex functions directly. Thus we rely on
the inequality

f(
n∑

i=1
wixi) ≥

n∑
i=1

wif(xi),

where the wi are non-negative weights adding up to one. This inequality
separates the variables, in the sense that it allows us to substitute a sum of
univariate functions for a multivariate one.
Second, we can use the results on the derivatives of convex functions. If f is
convex, then

f(x) ≥ f(y) + z′(x− y),

with z ∈ ∂f(y), the subgradient of f at y. Thus convex functions have a
linear minorizer. In the same way concave functions have a linear majorizer.
##Jensen’s Inequality
Jensen’s inequality is often formulated in probabilistic terms, using expected
values. It is a direct reformulation of the definition of a concave function.
Theorem: Suppose g is a concave function on S ⊂ Rn, and suppose π is a
weight function such that

∫
S π(x)dx = 1, and µ

∆=
∫

S xπ(x)dx is finite. Then

135
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∫
S π(x)g(x)dx ≤ g(µ), with equality if and only if

g

is linear a.e.
Proof: If g is concave, then g(x) ≤ g(µ) + (x − µ)′η(µ), where η(µ) is an
arbitrary element of the subgradient of g at µ. Multiplying both sides by
π(x), and integrating gives the required result. QED

8.1.1 Tomography

Suppose the function f we must minimize is defined by

f(x) = h(
n∑

i=1
wixi),

where h is a convex function of a single variable, and w is a vector of positive
numbers.
If y is another vector of n positive numbers we can write

f(x) = h

(
n∑

i=1

(
wiyi

w′y

)(
w′y

yi

xi

))
,

and if g is defined as

g(x, y) =
n∑

i=1

(
wiyi

w′y

)
h

(
w′y

yi

xi

)

then, by the definition of convexity, f(x) ≤ g(x, y). Also, clearly, f(x) =
g(x, x) and thus we have a majorization on (R+)n.
Alternatively, for any positive vector π with elements adding up to one,

f(x) = h

(
n∑

i=1
πi

(
wi

πi

(xi − yi)− w′y
))

,

and the majorization is g defined by

g(x, y) =
n∑

i=1
πih

(
wi

πi

(xi − yi)− w′y
)
.
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###Logs of Sums and Integrals
Suppose we want to minimize

f(x) = − log
∫

Z
p(x, z)dz

where p : X ⊗ Z → R+.
It is convenient to define

p(z | x) ∆= p(x, z)∫
Z p(x, z)dz

,

q(x, y) ∆=
∫

Z
p(z | y) log p(x, z)dz,

and
g(x, y) = f(y) + q(y, y)− q(x, y).

Theorem: For all x, y ∈ X we have f(x) ≤ g(x, y) with equality if and only
if p(x, z) = p(y, z) a.e. Consequently g majorizes f on X .
Proof: By Jensen’s inequality

log
∫

Z p(x, z)dz∫
Z p(y, z)dz

= log
∫

Z
p(z | y)p(x, z)

p(y, z)dz ≥

≥
∫

Z
p(z | y) log p(x, z)

p(y, z)dz =

=
∫

Z
p(z | y) log p(x, z)dz −

∫
Z
p(z | y) log p(y, z)dz.

Thus
−f(x) + f(y) ≥ q(x, y)− q(y, y)

But this exactly the statement of the theorem. QED

Maximizing the right-hand-side by block relaxation is the EM algorithm
(Dempster, Laird, and Rubin (1977)). Usually, of course, the EM algorithm
is presented in probabilistic terms using the concept of likelihood and expec-
tation. This has considerable heuristic value, but it detracts somewhat from
seeing the essential engine of the algorithm, which is the majorization.
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8.2 The EM Algorithm

The E-step of the EM algorithm, in our terminology, is the construction of
a new majorization function. We prefer a nonstochastic description of EM,
because maximizing integrals is obviously a more general problem.



Chapter 9

Tangential Majorization

9.1 Using the Tangent

9.1.1 Majorizing and Minorizing the Logarithm

The logarithm is concave. Consequently, for all positive x and y, we have
the linear majorizer

log x ≤ log y + 1
y

(x− y) = log y + x

y
− 1.

We can apply the same concavity to get a minorizer

log 1
x
≤ log 1

y
+ y( 1

x
− 1
y

),

which is

log x ≥ log y − y

x
+ 1.

These majorizers and minorizers of the logarithm are illustrated in Figure 1
for y = 1 and y = 5.

139
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Figure 1: Majorization and Minorization of Logarithm

More generally, we have

log x ≤ log y + 1
p

{(
x

y

)p

− 1
}

for all p > 0 and

log x ≥ log y + 1
p

{(
x

y

)p

− 1
}

for all p < 0. See Figure 2, where y = 5 and p = {−2,−1, 1, 2}.
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Figure 2: Majorization and Minorization of Logarithm

9.1.2 Aspects of Correlation Matrices

Suppose xj, · · · , xm are random variables, and Kj are convex cones of Borel-
measurable real-valued functions of xj with finite variance. The elements of
Kj are called transformations of the variable xj.

For instance, Kj can be the cone of monotone transformations, or the sub-
space of splines with given knots, or the subspace of quantifications of a
categorical variable

A transformation κ ∈ K is standardized if E(κ(x)) = 0 and E(κ2(x)) = 1.
Standardized transformations define a sphere Sj.

Now suppose f is a concave and differentiable function defined on the space
of all correlation matrices R between m random variables. Suppose we want
to minimize

g(κ1, · · · , κm) ∆= f(R(κ1(x1), · · · , κm(xm)))

over all transformations κj ∈ Kj ∩ Sj.
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Because f is concave

f(R) ≤ f(S) + tr ∇f(S)(R− S).

Collect the partials in the matrix G. A majorization algorithm can minimize
m∑

i=1

m∑
j=1

gij(S)E(κiκj),

over all standardized transformations, which we do with block relaxation
using m blocks. In each block we must maximize a linear function on a cone,
under a quadratic constraint, which is usually not hard to do.
This algorithm generalizes ACE, CA, and many other forms of MVA with OS.
It was proposed first by De Leeuw [1988a], with additional theretical results
in De Leeuw [1988b]. The function f can be based on multiple correlations,
eigenvalues, determinants, and so on.

9.1.3 Partially Observed Linear Systems

De Leeuw (2004) discusses the problem of finding an approximate solution to
the homogeneous linear system AB = 0 when there are cone and orthonor-
mality restrictions on the columns of A and when some elements of B are
restricted to known values, most commonly to zero. Think of the columns of
A as variables or sets of variables, and think of B as regression coefficients
or weights.
The loss function used by De Leeuw (2004) is

f(R) ∆= min
B∈B

trB′RB, (1)

with R
∆=A′A and with B coding the constraints on B. Note that the com-

putation of the optimal B in (1) is a least squares problem, and even with
linear inequality constraints on B it is still a straightforward quadratic pro-
gramming problem.
The function f in (1) is the pointwise minimum of linear functions in R, and
thus it is a concave function of R. This means we are in the “aspects of
correlation matrices” framework discussed in the previous section.
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In particular we define

B(R) ∆= i{B̂ | tr B̂′RB̂ = min
B∈B

tr B′RB},

then the subgradient of f at R is

∂f(R) = conv(BB′ | B ∈ B(R)).

The subgradient inequality now says that for all correlation matrices R and
S we have f(R) ≤ tr ∇R for all ∇ ∈ ∂f(S).
The constraints on A discussed in De Leeuw (2004) make it possible to fit a
wide variety of multivariate analysis techniques. Columns of A, or variables,
are partitioned into blocks. Some blocks contain only a single variable, such
variables are called single. Some blocks are constrained to be orthoblocks,
which means that the variabes in the block are required to be orthonormal.
Single variables may be cone-constrained, which means the corresponding
column of A is constrained to be in a cone in Rn. And orthoblocks may be
subspace-constrained, which means all columns must be in the same sub-
space.
We mention some illustrative special cases here. Common factor analysis of
a data matrix Y means finding an approximate solution to the system

[
Y | U | E

]  I
−Γ
−∆

 = 0

with U ′U = I, E ′E = I, U ′E = 0, and ∆ diagonal. The common factor
scores are in U , the unique factor scores in E, the factor loadings in Γ and
the uniquenesses in ∆. This example can be generalized to cover structural
equation models
Homeogeneity analysis Gifi (1990) is the linear system

[
X | Q1 | · · · | Qm

]


I I I · · · I
−Γ1 0 0 · · · 0

0 −Γ2 0 · · · 0
0 0 −Γ3 · · · 0
... ... ... . . . ...
0 0 0 · · · −Γm


= 0
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where X is and orthoblock of object scores, while the Qj are orthoblocks
in the subspaces defined by the indicator matrices (or B-spline bases) of
variable j. For single variables Qj only has a single column, which can be
cone-constrained. For multiple correspondence analysis X and all Qj have
the same number of columns. For nonlinear principal component analysis all
variables are single and the Γj are 1× p.
In both examples the majorization algorithm is actually an alternating least
squares algorithm. In the factor analysis example the loss functon is

σ(Y, U,Γ, E,∆) = ∥Y − UΓ− E∆∥2,

and in homogeneity analysis it is

σ(X,Q1 · · · , Qm,Γ1, · · · ,Γj) =
m∑

j=1
∥X −QjΓj∥2.

9.1.4 Gpower

** Rewrite for minimizing a concave function 02/21/15 **
Consider the problem of maximizing a convex function f on a compact set
X. The function is not necessarily differentiable, the constraint set is not
necessarily convex. Define

f ⋆ ∆= max
x∈X

f(x).

For all x, y and z ∈ ∂f(y) we have the subgradient inequality

f(x) ≥ f(y) + z′(x− y).

Thus the majorization algorithm is

x(k+1) ∈ Arg max
x∈X

z′x,

where z is any element of ∂f(x(k)).
Define

δ(y) ∆= max
x∈X

z′(x− y)
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where z ∈ ∂f(y). Then δ(y) ≥ 0 and δ(y) vanishes only when z is in the
normal cone to conv(X ) at y.

f(x(k+1)) ≥ f(x(k)) + δ(x(k)).

It follows that

f(x(k+1))− f(x(0)) =
k∑

i=0
(f(x(i+1))− f(x(i))) ≥

k∑
i=0

δ(x(i)),

and
Sk

∆=
k∑

i=0
δ(x(i)) ≤ f ⋆ − f(x(0)). (1)

Thus the partial sums Sk define an increasing sequence, which is bounded
above and consequently converges. This implies its terms converge to zero.
i.e.

lim
k→∞

δ(x(k)) = 0.

If
δk

∆= min
0≤i≤k

δ(x(i)),

then, from (1),

δk ≤
f ∗ − f(x(0))

k + 1 .

9.2 Broadening the Scope

9.2.1 Differences of Convex Functions

For d.c. functions (differences of convex functions) such as ϕ = α−β we can
write ϕ(ω) ≤ α(ω) − β(ξ) − η′(ω − ξ), with η ∈ ∂β(ξ). This gives a convex
majorizer. Interesting, because basically all twice differentiable functions are
d.c.
** Add: convexification 02/21/15 **
Suppose f(x) = 1

4x
4 − 1

2x
2. If we look for a majorization then our first

thought is to majorize the first term, because the second is already nicely
quadratic. But in this case we proceed the other way around.
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In fact, let’s consider the more general case f(x) = 1
4x

4 − h(x), where h
is convex and differentiable. Note f is indeed the difference of two convex
functions. We see that f ′(x) = x3 − h′(x) and f ′′(x) = 3x2 − h′′(x).
Using tangential majorization for h gives

g(x, y) = 1
4x

4 − h(y)− h′(y)(x− y).

Clearly g is convex in x for every y, and since D1g(x, y) = x3−h′(y) we have

x(k+1) = 3
√
h′(x(k)).

The iteration radius at a fixed point turns out to be

κ(x) = h′′(x)
f ′′(x) + h′′(x) = 1

3
h′′(x)
x2 .

For h(x) = 1
2x

2 we have h′(x) = x. Convergence is to ±1, and thus, using
l’Hôpital’s rule,

κ(1) = lim
x→1

3
√
x− 1
x− 1 = 1

3 .

For h(x) = |x| we have h′(x) = ±1 if x ̸= 0, and thus x(k+1) = ±1. The
algorithm finishes in a single step, with the correct solution.

9.2.2 More DC

9.2.2.1 Peaky

f(x, y) = 1
2x

2y2

∇f(x, y) =
[
xy2

yx2

]

∇2f(x, y) =
[
y2 2xy

2xy x2

]
Eigenvalues

λ2 − λ(x2 + y2)− 3x2y2 = 0
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λ1,2 = 1
2(x2 + y2)± 1

2
√

(x2 + y2)2 + 12x2y2

#### Monkey Saddle
f(x, y) = 1

6x
3 − 1

2xy
2

∇f(x, y) = 1
2

[
x2 − y2

−2xy

]

∇2f(x, y) =
[
x −y
−y −x

]

λ1 + λ2 = 0 λ1λ2 = −(x2 + y2) λ1 =
√
x2 + y2 λ2 = −

√
x2 + y2 eigenvalues[

y | x− λ
]

ssq y2 + (x− λ)2 = 2λ(λ− x) thus

[∇2f(x, y)]+ = 1
2

[
y2

λ−x
−y

−y (λ− x)

]

9.2.3 Convexifiable Functions

9.2.4 Piecewise Linear Majorization



148 CHAPTER 9. TANGENTIAL MAJORIZATION



Chapter 10

Quadratic Majorization

10.1 Introduction

As we said, it is desirable that the subproblems in which we minimize the
majorization function are simple. One way to guarantee this is to try to find
a convex quadratic majorizer. We mostly limit ourselves to convex quadratic
majorizers because on Rn concave ones have no minima and are of little use
for algorithmic purposes. Of course on compact sets minimizers of concave
quadratics do exist, and may be useful in some circumstances.
A quadratic g majorizes f at y on Rn if g(y) = f(y) and g(x) ≥ f(x) for all
x. If we write it in the form

g(x) = f(y) + (x− y)′b+ 1
2(x− y)′A(x− y)

then g(y) = f(y). For differentiable f we have in addition b = Df(y) and for
twice-differentiable f we have A ≳ Df 2(y). If we limit ourselves to convex
quadratic majorizers, we must also have A ≳ 0.
We mention some simple properties of quadratic majorizers on Rn.

1. If a quadratic g majorizes a twice-differentiable convex function f at y,
then g is a convex quadratic. This follows from g′′(y) ≥ f ′′(y) ≥ 0.

2. If a concave quadratic g majorizes a twice-differentiable function f at
y, then f is concave at y. This follows from 0 ≥ g′′(y) ≥ f ′′(y).

149
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3. Quadratic majorizers are not necessarily convex. In fact, they can even
be concave. Take f(x) = −x2 and g(x) = −x2 + 1

2(x− y)2.

4. For some functions quadratic majorizers may not exist. Suppose, for
example, that f is a cubic. If g is quadratic and majorizes f , then we
must have d = g − f ≥ 0. But d = g − f is a cubic, and thus d < 0 for
at least one value of x.

5. Quadratic majorizers may exist almost everywhere, but not everywhere.
Suppose, for example, that f(x) = |x|. Then f has a quadratic ma-
jorizer at each y except for y = 0. If y ̸= 0 we can use, following Heiser
(1986), the arithmetic mean-geometric mean inequality in the form√

x2y2 ≤ 1
2(x2 + y2),

and find
|x| ≤ 1

2|y|x
2 + 1

2 |y|.

If g majorizes |x| at 0, then we must have ax2 + bx ≥ |x| for all x ̸= 0,
and thus a|x| + bsign(x) ≥ 1 for all x ̸= 0. But for |x| < 1+|b|

a
and

sign(x) = −sign(b), we have a|x|+ b sign(x) < 1.

##Existence of Quadratic Majorizers
We first study the univariate case, following De Leeuw and Lange (2009). If
a quadratic g majorizes a differentiable f over X at y then we must have

g(x, y) = f(y) + f ′(y)(x− y) + 1
2a(y)(x− y)2 ≥ f(x)

for all x ∈ X . Define

δ(x, y) := f(x)− f(y)− f ′(y)(x− y)
1
2(x− y)2

with, for continuity, δ(y, y) = f ′′(y). Then we must have

a(y) ≥ sup
x∈X

δ(x, y),

and consequently a quadratic majorizer exists if and only if

a⋆(y) := sup
x∈X

δ(x, y) <∞.
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By the mean value theorem there is some z between x and y such that
δ(x, y) = f ′′(z). Thus if f ′′ is bounded on X a quadratic majorizer exists.
And if f ′′ is unbounded on X a quadratic majorizer does not exist.
From Taylor’s theorem with integral form of the remainder

δ(x, y) = 2
∫ 1

0
λf ′′(λy + (1− λ)x)dλ,

which gives, by differentiating under the integral sign,

D1δ(x, y) = 2
∫ 1

0
λ(1− λ)f ′′′(λy + (1− λ)x)dλ.

We now generalize some of these results to the multivariate case. If a
quadratic g majorizes a differentiable f at y then we must have

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′A(x− y) ≥ f(x)

for all x. This can be rewritten as the infinite system of linear inequalities in
the elements of A

(x− y)′A(x− y) ≥ 2b(x, y), (10.1)
with

b(x, y) := f(x)− f(y)− (x− y)′Df(y).
If A satisfies the inequalities (1), then clearly any B ≳ A also satifies them,
and the set of all matrices satisfying (10.1) is a closed convex set A(y).
Quadratic majorizers at y exist if and only if A(y) is non-empty. Moreover
if B ≳ D2f(x) for all x then B ∈ A(y) for all y. Thus uniform boundedness
of the second derivatives is sufficient for quadratic majorizers to exist. Note
that if f is concave then b(x, y) ≤ 0 for all x, and thus any A ≳ 0, including
A = 0, satisfies (10.1).
Although A(y) is convex and closed, it is generally not a simple object. We
can give a simple necessary and sufficient condition for it to be non-empty.
Choose an arbitrary positive definite V . Define

δV (x, y) := b(x, y)
1
2(x− y)′V (x− y) ,

and
βV (y) := sup

x
δV (x, y).
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Suppose βV (y) <∞. Take A = βV (y)V . Then for all x we have

(x− y)′A(x− y) = βV (y)(x− y)′V (x− y) ≥ 2b(x, y)

and thus A is a solution of (10.1). In fact, any A ≳ βV (y)V is a solution.
Conversely suppose βV (y) = ∞ and A is a solution to (10.1), with largest
eigenvalue λmax. Then there is a x such that δV (x, y) > λmax, and thus
2b(x, y) > λmax(x−y)′V (x−y), and (x−y)′A(x−y) > λmax(x−y)′V (x−y),
a contradiction. It follows that βV (y) < ∞ is necessary and sufficient for
(10.1) to be solvable and for f to have a quadratic majorization at y.
Nothing in this argument assumes that A is positive semidefinite or that
βV (y) ≥ 0. In fact, for concave f we have βV (y) ≤ 0. Also, of course, there
is nothing that implies that the sup is actually attained at some z. Note that
the condition βV (y) < ∞ is independent of V , although the value βV (y), if
finite, depends on both V and y.

We do know, from Taylor’s Theorem (see section III.14.2.3), that if f is twice
continuously differentiable at y then

δV (x, y) = 2
(x− y)′

{∫ 1
0 (1− τ)D2f(x+ τ(y − x))dτ

}
(x− y)

(x− y)′V (x− y) .

It follows that

βV (y) ≥ lim sup
x→y

δV (x, y) = λmax(V −1D2f(y)).

Also, because of the concavity of the minimum eigenvalue,

δV (x, y) ≥ λmin

(
2
∫ 1

0
(1− τ)D2f(x+ τ(y − x))dτ

)
≥ min

0≤τ≤1
λmin

(
D2f(x+ τ(y − x))

)
,

and thus quadratic majorizations do not exist for any y if λmin (D2f(x)) is
unbounded.
Example: As an example, consider f defined by f(x) = ∑n

i=1 log(1 +
exp(r′

ix)). The function is convex, and as we have shown D2f(x) ≤ 1
4R

′R.
Let’s look at the case in which x has only two elements (as in simple logistic
regression). We first study a simple subset of A(y), those matrices which are
positive definite and have equal diagonal elements. Thus

A = β

[
1 ρ
ρ 1

]
,
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with β > 0 and −1 < ρ < +1. Simply choose a ρ and then numerically
compute the corresponding βρ(y). This will give a convex region that is within
A(y).
More generally we can parametrize A by using

A = β

[
α γ
γ 1− α

]
,

with β > 0, 0 < α < 1, and γ2 < α(1 − α). The constraints on α and γ
define the interior of a circle in the plane with center (1

2 , 0) and radius 1
2 . For

each element in the circle we can compute the corresponding βV (y), which
will give a complete description of A(y).
##Convergence
Suppose a is such that

g(x, y) = f(y) + f ′(y)(x− y) + 1
2a(x− y)2 (10.2)

majorizes f(x) for all y. The majorization algorithm is simply

x(k+1) = x(k) − 1
a
f ′(x(k)),

i.e. it is a gradient algorithm with constant step size. From Ostrowski’s
Theorem the linear convergence rate is

κ(x∞) = 1− f ′′(x∞)
a

. (10.3)

Note that if g in (10.2) majorizes f , then any g of the same form with a
larger a also majorizes f . But (10.3) shows a smaller a will generally lead to
faster convergence.
For all k we have

f(x(k+1)) ≤ g(x(k+1), x(k)) = f(x(k))− 1
2

(f ′(x(k)))2

a
.

Adding these inequalities gives

f(x(k+1))− f(x(0)) =
k∑

i=0
(f(x(i+1))− f(x(i)) ≤ − 1

2a

k∑
i=0

(f ′(x(i)))2,
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Figure 10.1: Set A(y) for logistic example
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and thus, with f⋆ = min f(x),

1
2a

k∑
i=0

(f ′(x(i)))2 ≤ f(x(0))− f⋆. (10.4)

The left hand side of (10.4) is an increasing sequence which is bounded above,
and consequently converges. This implies

lim
k→∞

f ′(x(k)) = 0

Generalize to more variables, generalize to constraints.
##Bounding Second Derivatives
The first result, which has been widely applied, applies to functions with a
continuous and uniformly bounded second derivative Böhning and Lindsay
(1988).
Theorem: If f is twice differentiable and there is an a > 0 such that
f ′′(x) ≤ a for all x, then for each y the convex quadratic function

g(x) = f(y) + f ′(y)(x− y) + 1
2a(x− y)2.

majorizes f at y.
Proof: Use Taylor’s theorem in the form

f(x) = f(y) + f ′(y)(x− y) + 1
2f

′′(ξ)(x− y)2,

with ξ on the line connecting x and y. Because f ′′(ξ) ≤ a, this implies
f(x) ≤ g(x), where g is defined above. QED

This result is very useful, but it has some limitations. In the first place
we would like a similar result for functions that are not everywhere twice
differentiable, or even those that are not everywhere differentiable. Second,
the bound does take into account that we only need to bound the second
derivative on the interval between x and y and not on the whole line. This
may result in a bound which is not sharp. In particular we shall see below
that substantial improvements can result from a non-uniform bound a(y)
that depends on the support point y.
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If D2f(x) ≲ D for all x ∈ X , then

ϕ(ω) ≤ ϕ(ξ) + (ω − ξ)′∇ϕ(ξ) + 1
2(ω − ξ)′D(ω − ξ).

Let η(ξ) = ξ −D−1∇ϕ(ξ), then

ϕ(ω) ≤ ϕ(ξ)− 1
2∇ϕ(ξ)′D−1∇ϕ(ξ) + 1

2(ω − η(ξ))′D(ω − η(ξ)).

Thus here we have quadratic majorizers.
###Normal Density and Distribution
For a nice regular example we use the celebrated functions

ϕ(x) = 1√
2π
e−z2/2,

Φ(x) =
∫ x

−∞
ϕ(z) dz.

Then

Φ′(x) = ϕ(x),
Φ′′(x) = ϕ′(x) = −xϕ(x),
Φ′′′(x) = ϕ′′(x) = −(1− x2)ϕ(x),
Φ′′′′(x) = ϕ′′′(x) = −x(x2 − 3)ϕ(x).

To obtain quadratic majorizers we must bound the second derivatives. We
can bound Φ′′(x) by setting its derivative equal to zero. We have Φ′′′(x) = 0
for x = ±1, and thus |Φ′′(x)| ≤ ϕ(1). In the same way ϕ′′′(x) = 0 for x = 0
and x = ±

√
3. At those values |ϕ′′(x)| ≤ 2ϕ(

√
3). More precisely, it follows

that

0 ≤ Φ′(x) = ϕ(x) ≤ ϕ(0),
−ϕ(1) ≤ Φ′′(x) = ϕ′(x) ≤ ϕ(1),
−ϕ(0) ≤ Φ′′′(x) = ϕ′′(x) ≤ 2ϕ(

√
3).

Thus we have the quadratic majorizers

Φ(x) ≤ Φ(y) + ϕ(y)(x− y) + 1
2ϕ(1)(x− y)2,
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and

ϕ(x) ≤ ϕ(y)− yϕ(y)(x− y) + ϕ(
√

3)(x− y)2.

The majorizers are illustrated for both Φ and ϕ at the points y = 0 and
y = −3 in Figures 1 and 2. The inequalities in this section may be useful
in majorizing multivariate functions involving ϕ and Φ. They are mainly
intended, however, to illustrate construction of quadratic majorizers in the
smooth case.}
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Figure 1: Quadratic Majorization of Normal Distribution
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Figure 2: Quadratic Majorization of Normal Density

The drawings are made by the code in normal.R.

Insert normal.R here

10.1.1 Nondiagonal Weights in Least Squares

An even simpler example of quadratic majorization of a quadratic function
is the following. Suppose we want to solve the problem of minimizing

ϕ(ω) = (y − ω)′W (y − ω),

over ω ∈ Ω, where Ω is the cone of isotonic vectors. This problem can be
solved by general quadratic programming techniques (compare, for example,
Lawson and Hanson (1974)), but it is easier in many respects to use iterated
monotone regression.

Suppose we can find a diagonal D such that W ≲ D. A simple choice would
be D = λ+I, with λ+ the largest eigenvalue of W, but sometimes other
choices may be more appropriate.

../code/normal.R
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This idea can be generalized. Suppose we want to minimize

f(x) =
n∑

i=1

m∑
j=1

wij(yij − hij(x))2

Then, using

yij − hij(x) = (yij − hij(x̃)) + (hij(x̃)− hij(x))

we find

f(x) = f(x̃)+2
n∑

i=1

m∑
j=1

wij(yij−hij(x̃))(hij(x̃)−hij(x))+
n∑

i=1

m∑
j=1

wij(hij(x̃)−hij(x))2.

Now suppose we can find ai ≥ 0 and bj ≥ 0 such that wij ≤ aibj for all i, j.
Then

n∑
i=1

m∑
j=1

wij(hij(x̃)− hij(x))2 ≤
n∑

i=1

m∑
j=1

aibj(hij(x̃)− hij(x))2,

and
f(x) ≤ f(x̃) +

n∑
i=1

m∑
j=1

aibj(ỹij − hij(x))2−

ỹij = wij

aibj

yij + (1− wij

aibj

)hij(x̃)

###Quadratic on a Sphere
Suppose we want to minimize

f(x) = x′Ax+ 2b′x+ c

over x satisfying x′Dx = 1, with D positive definite. In addition, we require
x ∈ K, with K a convex cone. This problem is important in several optimal
scaling problems. It can be solved by using the modified eigenvalue methods
of section III.1.9.7, or by the decomposition method of I.6.5.1, but here we
give a simple majorization method.
Find λ such that D− 1

2AD− 1
2 ≲ λI. Then

x′Ax ≤ y′Ay + 2(x− y)′Ay + λ(x− y)′D(x− y)

http://jandeleeuw.gitbooks.io/bras3/content/background/qcircle.html
http://jandeleeuw.gitbooks.io/bras1/content/augmentationmethods/quadsphere.html
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and thus

g(x, y) := c+ y′Ay + 2(x− y)′Ay + 2b′x+ λ(x− y)′D(x− y)

majorizes f .
Minimizing g over x′Dx = 1 and x ∈ K amounts to minimizing

h(x) := (x− z)′D(x− z)

with
z := −D−1((A− λD)y + b)

over x ∈ K and then normalizing the solution such that x′Dx = 1.
The function quadSphere solves the problem from this section. Note that
the cone can be the whole space, in which case we minimize the quadratic
on the ellipsoid x′Dx = 1, and we can have b = 0, in which case we com-
pute the generalized eigenvector corresponding with the smallest generalized
eigenvalue of the pair (A,D). Also note that A can be indefinite.
Insert quadSphere.R Here

10.1.2 Gifi Goes Logistic

10.1.3 A Matrix Example

Kiers (1990) considers the problem of minimizing a function of the form

ϕ(X) = c+ tr AX +
m∑

j=1
tr BjXCjX

′,

over all n×p matrices X, possibly with restrictions. He shows that this covers
a large number of matrix problems commonly considered in psychometrics.

10.1.4 Gauss-Newton Majorization

The least squares loss function was defined here. It has the form

f(x) = 1
2

m∑
j=1

m∑
ℓ=1

wjℓgj(x)gℓ(x),

../code/quadSphere.R
../alternatingleastsquares/introduction.html


10.1. INTRODUCTION 161

where W is an m×m positive semi-definite matrix of weights, and we mini-
mize f over x ∈ X .
Now

Df(x) =
m∑

j=1

m∑
ℓ=1

wjℓgj(x)Dgℓ(x),

and
D2f(x) =

m∑
j=1

m∑
ℓ=1

wjℓ

{
gj(x)D2gℓ(x) +Dgj(x)(Dgℓ(x))′

}
.

The structure of the Hessian suggest to define

A(x) ∆=
m∑

j=1

m∑
ℓ=1

wjℓgj(x)D2gℓ(x),

B(x) ∆=
m∑

j=1

m∑
ℓ=1

wjℓDgj(x)(Dgℓ(x))′.

We have D2f(x) = A(x) +B(x). Note that B(x) is positive semi-definite for
all x.
In the classical Gauss-Newton method we make the approximation

f(x) ≈ f(y) + (x− y)′Df(y) + 1
2(x− y)′B(y)(x− y),

and the corresponding iterative algorithm is
x(k+1) = x(k) −B−1(x(k))Df(x(k)).

If the algorithm converges to x, and the gj(x) are small, then the least squares
loss function will be small, and A(x) will be small as well. Since the iteration
matrix is

M(x) = I −B−1(x)D2f(x) = −B−1(x)A(x),
we can expect rapid convergence. But convergence is not guaranteed, and
consequently we need safeguards. Majorization provides one such safeguard.
If we can find γ(y) such that

sup
0≤λ≤1

z′A(y + λz)z ≤ γ(y)z′z

Note: Use Nesterov’s Gauss-Newton paper 03/13/15

10.1.5 Marginal Functions
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Chapter 11

Using Higher Derivatives

11.1 Introduction

11.2 Mean Value Majorization

Suppose f is differentiable in an open set X containing both x and y and the
line connecting them. We can use the mean value theorem in the inequality
form

f(x) ≤ f(y) + sup
0≤λ≤1

(x− y)′Df(y + λ(x− y))

Define, for fixed x, y

h(λ) ∆=(x− y)′Df(y + λ(x− y))

The maximum of h is attained at either λ = 0, or λ = 1, or at a point in the
interior of the unit interval where the derivative with respect to λ vanishes.
Now

Dh(λ) = (x− y)′D2f(y + λ(x− y))(x− y).
Thus for concave f we see that h is decreasing, and we recover our previous
result

f(x) ≤ f(y) + (x− y)′Df(y).
For convex f , for which h is increasing, we find

f(x) ≤ f(y) + (x− y)′Df(x).

163
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For the univariate cubic f(x) = a+ bx+ 1
2cx

2 + 1
6dx

3 we have

Df(x) = b+ cx+ 1
2dx

2,

and thus we must compute sup0≤λ≤1 h(λ) where

h(λ) ∆= z(b+ c(y + λz) + 1
2d(y + λz)2),

where z ∆=x − y. If dz3 > 0 the quadratic h is convex, and the maximum is
attained at one of the endpoints, i.e.

sup
0≤λ≤1

h(λ) = max{z(b+ cy + 1
2dy

2), z(b+ cx+ 1
2dx

2)}

cz + 1
2dz(x+ y) > 0

11.3 Taylor Majorization

11.3.1 Second Order

We can take this one step further. Obviously

f(x) ≤ f(y) + (x− y)′∇f(y) + 1
2 sup

0≤λ≤1
(x− y)′∇2f(y + λ(x− y))(x− y).

The main problem with these approaches based on the mean value theorem is
that the majorizing function may not be simple. Nevertheless the approach
can also be used to arrive at bounds which are computationally convenient.
For a univariate cubic f(x) = a+ bx+ 1

2cx
2 + 1

6dx
3 we find the majorization

f(x) ≤ f(y) + f ′(y)(x− y) + 1
2(x− y)2 max

0≤λ≤1
(c+ d(x+ λ(y − x))) =

= f(y) + f ′(y)(x− y) + 1
2(x− y)2

c+ dmax(x, y) if d ≥ 0,
c+ dmin(x, y) if d ≤ 0,
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For the exponent

exp(x) ≤ exp(y) + exp(y)(x− y) + 1
2(x− y)2 sup

0≤λ≤1
exp(y + λ(x− y)) =

= exp(y) + exp(y)(x− y) + 1
2(x− y)2 exp(max(x, y))

For the folium with f(x) = x3
1 + x3

2 − 3x1x2 we have

D2f(x) =
[
6x1 −3
−3 6x2

]
.

Thus a simple majorizer is given by (incorrect 03/03/15)

g(x, y) = f(y) + (x− y)′Df(y) + max(x1, x2)(x− y)′V (x− y),

with
V =

[
6 −3
−3 6

]
.

NB: see probit section for f ′′(x) decreasing. 03/03/15

11.3.2 Higher Order

From Taylor’s theorem with Lagrange form of the remainder discussed in
[A:Taylor] it follows that

f(x) ≤ gp(x, y) + 1
(p+ 1)! sup

0≤λ≤1
< Dp+1f(x+ λ(y − x)), (x− y)p+1 >,

where gp is the p−degree Taylor polynomial at y.

If all elements of the array in 1
(p+1)!D

p+1f(x + λ(y − x)) are less than κ in
absolute value for all x, y and λ, then this implies

f(x) ≤ gp(x, y) + κ

{
n∑

i=1
|xi − yi|

}p+1

../background/taylor.html
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We can also use the Frobenius norm and Cauchy-Schwartz to obtain

f(x) ≤ gp(x, y) + κ(x, y)∥x− y∥p+1,

where
κ(x, y) ∆= 1

(p+ 1)! sup
0≤λ≤1

∥Dp+1f(x+ λ(y − x))∥.

Of course it remains to be seen if these formulas actually lead to useful
majorization algorithms. For higher p they will undoubtedly have fast con-
vergence, but the optimizations in each iteration involve higher order multi-
variate polynomials and look pretty daunting.

11.4 Nesterov Majorization

Suppose f is a function with third derivatives that are bounded in the sense
that

⟨D3f(x), (x− y)3⟩ ≤ K3∥x− y∥3. (1)
It is sufficient for this that the Hessian is Lipschitz continuous with Lipschitz
constant K3. Majorization based on (1) was first discussed in an important
article by Nesterov and Polyak (2006)
Under these conditions we have the majorizer

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′D2f(y)(x− y) + 1

6K3∥x− y∥3.

The term ∥x− y∥3 is convex in x, but the majorizer g itself is generally not
convex, although it is convex whenever f is. Majorizer g has continuous first
derivatives

D1g(x, y) = Df(y) +D2f(y)(x− y) + 1
2K3∥x− y∥(x− y),

and for x ̸= y the second derivative is

D11g(x, y) = D2f(y) + 1
2K3∥x− y∥

(
I + (x− y)(x− y)′

(x− y)′(x− y)

)
.

It follows that

D2f(y) + 1
2K3∥x− y∥ ≲ D11g(x, y) ≲ D2f(y) +K3∥x− y∥,
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and thus, by the squeeze theorem,

lim
x→y
D11g(x, y) = D2f(y).

The majorization algorithm is, as usual,

x(k+1) = argmin
x

g(x, x(k)),

and the majorizer is minimized at a point where D1g(x, x(k)) = 0. We write
the stationary equation as(

D2f(y) + 1
2K3∥x− y∥I

)
(x− y) = −Df(y).

We write this as two equations, using what is effectively a form of decompo-
sition. (

D2f(y) + 1
2K3δI

)
(x− y) = −Df(y), (2a)

δ = ∥x− y∥. (2b)

Let D2f(y) = KΛK ′ be an eigen decomposition, and define g ∆=−K ′Df(y)
and z = K ′(x− y). Then solving(

Λ + 1
2K3δI

)
z = g

for z and using (2b) gives the secular equation in δ

δ2 =
n∑

i=1

g2
i

(λi + 1
2K3δ)2

The Cartesian folium is

f(x, y) = x3 + y3 − 3xy

Thus

f(x+ u, y + v) = f(x, y) + 3au+ 3bv + 3xu2 − 3uv + 3yv2 + u3 + v3.
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with

a
∆=x2 − y,

b
∆= y2 − x.

If
h(u, v) ∆= (u3 + v3) 2

3

u2 + v2

then

max
u,v

h(u, v) = max
u2+v2=1

(u3 + v3) 2
3 = max

θ
(sin3(θ) + cos3(θ)) 2

3 = 1,

and thus
u3 + v3 ≤ (u2 + v2) 3

2 .

This gives the majorization we are looking for

g(x+ u, y + v) = f(x, y) + 3au+ 3bv + 3xu2 − 3uv + 3yv2 + (u2 + v2) 3
2

The derivatives are

D1g(u, v) = 3a+ 6xu− 3v + 3λu,
D2g(u, v) = 3b+ 6yv − 3v + 3λv.

with λ
∆=
√
u2 + v2. Thus[

2x+ λ −1
−1 2y + λ

] [
u
v

]
=
[
−a
−b

]
,

or [
u
v

]
= − 1

(2x+ λ)(2y + λ)− 1

[
2y + λ 1

1 2x+ λ

] [
a
b

]
.

Thus we must have

λ2 = u2 + v2 = ((2y + λ)a+ b)2 + ((2x+ λ)b+ a)2

((2x+ λ)(2y + λ)− 1)2

f(x) = 1
6

n∑
i=1

x3
i + 1

2x
′Ax
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f(x) = f(y) + (x− y)′Df(y) + 1
2(x− y)′D2f(y)(x− y) + 1

6

n∑
i=1

(xi − yi)3.

h(z) ∆=
∑n

i=1 z
3
i

(z′z) 3
2

max
z
h(z) = max

z′z=1

n∑
i=1

z3
i = 1.

Thus

g(x) = f(y) + (x− y)′Df(y) + 1
2(x− y)′D2f(y)(x− y) + 1

6{(x− y)′(x− y)} 3
2

majorizes f at y. Now

Dg(x) = Df(y) +D2f(y)(x− y) + 1
2λ(x)(x− y)

and
D2g(x) = D2f(y) + 1

2λ(x)I + 1
2

1
λ(x)(x− y)(x− y)′

where λ(x) =
√

(x− y)′(x− y).
Suppose f is a multivariate quartic with bounds on the third and fourth
derivatives. Thus

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′D2f(y)(x− y)+

+ 1
6K3∥x− y∥3 + 1

24K4∥x− y∥4 (11.1)

We minimize g over x, as usual. Thus we must solve[
D2f(y) + 1

2K3∥x− y∥I + 1
6K4∥x− y∥2I

]
(x− y) = −Df(y).

Expand this to the two equations[
D2f(y) + 1

2K3δI + 1
6K4δ

2I
]

(x− y) = −Df(y),

∥x− y∥ = δ.

##Examples
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11.4.1 Revisiting the Reciprocal

Here we come back to the function f : x→ ax− log x.
We start with a new majorization of the logarithm. In other contexts the
logarithm, which is concave, has been majorized by a linear function. Since
our f uses the negative logarithm, which is convex, that will not work in our
case. By Taylor

log(x) = log(y) + 1
y

(x− y)− 1
2

1
z2 (x− y)2,

where z is between x and y. Thus if we define

h(x, y) ∆= log(y) + 1
y

(x− y)− 1
2


(x−y)2

x2 if x ≤ y,
(x−y)2

y2 otherwise.

then, for all x > 0 and y > 0,

log(x) ≥ h(x, y),

and thus, with g(x, y) = ax− h(x, y), we have f(x) ≤ g(x, y). with equality
if and only if x = y.
Now g, as a function of x, is differentiable on the positive reals for all y. In
fact

D1g(x, y) = a− 1
y

+


y
x3 (x− y) if x ≤ y,
1
y2 (x− y) otherwise.

Let us find the solutions of D1g(x, y) = 0. First check if

a− 1
y

+ 1
y2 (x− y) = 0

has a root x ≥ y. The unique root is x = 2y− ay2. Thus if 2y− ay2 ≥ y, i.e.
if y ≤ 1

a
, this gives a solution to D1g(x, y) = 0. Note that the update in this

case is the same update as Newton’s update for the reciprocal.
Matters are a bit more complicated for finding a solution of

a− 1
y

+ y

x3 (x− y) = 0.
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with x ≤ y. The equation can be written as the cubic equation in x

(a− 1
y

)x3 + yx− y2 = 0.

If y > 1
a

then the cubic has only one real root. Because if there are two, then
by Rolle the derivative should vanish somewhere on the interval between
them, but the derivative is always positive. Since the cubic is negative for
x = 0 and positive for x = y, the unique root is between zero and y, and
thus satisfies D1g(x, y) = 0.

11.4.2 Logit

The logistic distribution

Ψ(x) = 1
1 + exp(−x)

increases from zero to one on the real line. As we have seen before, the
function

f(x) = x− log Ψ(x) = log(1 + exp(x))
is strictly convex. This follows directly from

f ′(x) = Ψ(x),
f ′′(x) = Ψ(x)(1−Ψ(x)),

because the first derivative is increasing and the second derivative is positive.
Theorem: The r-th derivative f (r)(x) is a polynomial in Ψ(x) of degree r.
Consequently for all r there are two finite real numbers mr < Mr such that
mr ≤ f (r)(x) ≤Mr for all x.
Proof: We know that f ′(x) = Ψ(x), and thus the result is true for r = 1.
Now proceed by induction. If f (r)(x) = Pr(Ψ(x)) for some polynomial Pr of
degree r, then

f (r+1)(x) = P ′
r(Ψ(x))Ψ(x)(1−Ψ(x)),

which is indeed a polynomial in Ψ(x) of degree r + 1. In addition

sup
x
f (r)(x) = max

0≤s≤1
Pr(s),

inf
x
f (r)(x) = min

0≤s≤1
Pr(s),
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and the quantities on the right-hand side are clearly finite. QED

We illustrate the theorem by computing some higher derivatives

f (3)(x) = Ψ(x)(1−Ψ(x))(1− 2Ψ(x)),

f (4)(x) = Ψ(x)(1−Ψ(x))(1− 6Ψ(x) + 6Ψ2(x)),

f (5)(x) = Ψ(x)(1−Ψ(x))(1− 2Ψ(x))(1− 12Ψ(x) + 12Ψ2(x))

which implies

− 1
18
√

3 ≤ f (3)(x) ≤ + 1
18
√

3,

−1
8 ≤ f (4)(x) ≤ 1

24

The derivatives of orders 2 to 5 are in Figure 1.
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Figure 1: Derivatives of the Log-logistic
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And here is some R code for drawing the figure.
Insert logDers.R Here
We now look more closely at the polynomials Pr. From the proof of the we
see that for r > 1 we have Pr(0) = Pr(1) = 0. Because P2(s) = P2(1− s) we
see that actually Pr(s) = Pr(1− s) for all even r and Pr(s) = −Pr(1− s) for
all odd r > 1. This implies that Pr(1

2) = 0 for all odd r > 1.
We can go further than this and derive an explicit formula for the polyno-
mials. The difference/differential equation we have to solve is Pr+1(x) =
x(1− x)P ′

r(x), where P1(x) = 1− x. Its general solution is

Pr(x) =
r∑

j=1
(−1)j−1(j − 1)!S(j, r)xj

where the S(j, r) are the Stirling numbers of the second kind (the number of
ways of partitioning r elements into j non-empty subsets).
The code in logitPom.R computes the polynomials Pr. With logitPomRecursive(n)
we compute all polynomials up to order n, their roots, and their maximum
and minimum values. With logitPomDirect(n) we do the same, using the
formula with Stirling numbers.
Insert logitPom.R Here
Maybe useful 03/02/15

− log(1−Ψ(x)) = − log(1− 1
1 + exp(−x)) = x+ log(1 + exp(−x))

x+ log(1 + exp(−x)) =
∞∑

s=1

(Ψ(x))s

s

###Probit

../code/logDers.R
../code/logitPom.R
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Chapter 12

Sharp Majorization

12.1 Introduction

12.2 Comparing Majorizations

The set of all real-valued functionsMY (f) that majorize f on Y is convex.

If we orderMY (f) by g ≤Y h if g(y) ≤ h(y) for all y ∈ Y , then ⟨MY (f),≤Y ⟩
is a lattice, because if g and h majorize f on Y , then so do the pointwise
maximum and minimum of g and h.

In fact the lattice ⟨MY (f),≤Y ⟩ is inf-complete, because the pointwise infi-
mum of a set of majorizing functions again majorizes. Clearly f itself is the
minimal element of the lattice. The lattice is not sup-complete, although it
is if we consider the set of extended real valued functions which can take the
value +∞.

** The following needs to be repaired – only true for majorization at a point
03/28/15 **

Note, however, that the pointwise maximum of a finite number of majorizing
functions does majorize. If f(x) ≤ gi(x, y) and f(x) = gi(x, x) for all i =
1, · · · , n then f(x) = maxn

i=1 gi(x, x) and f(x) ≤ maxn
i=1 gi(x, y). But if I is

infinite, then supi∈I gi(x, y) can be infinite as well, and in that case it is not a
majorization function. In contrast it is always true that f(x) ≤ infi∈I gi(x, y).

175
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We can actually give an even stronger result than inf-completeness. Suppose
gi(x, yi) − f(x) ≥ 0 for all i = 1, · · · , n and for all x ∈ X , and gi(yi, yi) −
f(yi) = 0 for all i = 1, · · · , n. Thus gi majorizes f at yi. Now let

h(x) =
n

min
i=1

(gi(x, yi)− f(x))

then h(x) ≥ 0 for all x ∈ X and h(yi) = 0 for all i = 1, · · · , n. Thus
f(x) + h(x) = minn

i=1 gi(x, yi) majorizes f at y1, · · · , yn.

As an example, consider the function f : x → x4 on [−1,+1]. On that
interval we have f ′′(x) ≤ 12 and thus if −1 ≤ y ≤ +1 we have the quadratic
majorizer

g(x, y) = y4 + 4y3(x− y) + 6(x− y)2.

Now take the yi to be the 11 points −1.0,−0.8, · · · , 0.8, 1.0 and take h(x) to
be the minimum of the g(x, yi).

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

x^
4

Figure 1: Piecewise Quadratic Majorization at Multiple Points of a Quartic

Of course min−1≤y≤+1 g(x, y) = f(x) which means we can make the majoriza-
tion as sharp as we want by increasing the number of support points.
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12.3 Sharp Quadratic Majorization

A quadratic function

g(x) = c+ b(x− y) + 1
2a(x− y)2

majorizes f in y if and only if c = f(y), b = f ′(y), and

a ≥ A(y) ∆= sup
x ̸=y

δ(x|y),

where
δ(x|y) ∆= f(x)− f(y)− f ′(y)(x− y)

1
2(x− y)2 .

We find the best quadratic majorization of f in y by choosing a = A(y).

To study the relation between f and its quadratic majorizers more in depth,
we define ϕ : R3 ⇒ R and δ : R3 ⇒ R by

ϕ(x, y, a) ∆= f(y) + f ′(y)(x− y) + 1
2a(x− y)2

and δ(x, y, a) ∆= f(x) − ϕ(x, y, a). We also define slices of these functions,
using bullets. Thus, for example, ϕ(•, y, a) is a function of a single variable,
with y and a fixed at unique values.

Now ϕ(•, y, a) ≳ f(x) if and only if δ(x, y, a) ≤ 0 for all x, which is true if
and only if δ⋆(y, a) = 0, where

δ⋆(y, a) ∆= sup
x
δ(x, y, a).

Note that δ(y, y, a) = 0, and thus generally δ⋆(y, a) ≥ 0.

Because δ(x, y, •) is linear in a, we see that δ⋆(y, •) is convex. In other words,

A(y) ∆={a | δ⋆(y, a) ≤ 0}

is an interval, which may be empty. Now ϕ(•, y, a) ≳y f(x) if and only if
a ∈ A(y). If A(y) = ∅ then no quadratic majorization exists.
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Since a ∈ A(y) implies b ∈ A(y) for all b ≥ a, we see that A(y) is either
empty, or an interval of the form [a⋆(y),+∞) or (a⋆(y),+∞), with

a⋆(y) ∆= inf
a
A(y).

If A(y) = ∅ we set a⋆(y) = +∞. The majorization function ϕ(•, y, a⋆(y)) is
called the sharpest quadratic majorization of f at y (De Leeuw and Lange
2009).
Now

δ′(x) = f ′(x)− f ′(y)− a(x− y),
and

δ′′(x) = f ′′(x)− a.
We see that δ is concave if a ≥ supx f

′′(x). Moreover δ is increasing if δ′ ≥ 0,
i.e. if

f ′(x)− f ′(y)
x− y

≥ a if x > y

≤ a if x < y

for all x.
Thus if δ has a maximum at x̂ we must have

a = f ′(x̂)− f ′(y)
x̂− y

,

as well as
a ≥ f ′′(x̂).

At the maximum

δ(x̂) = f(x̂)− f(y)− 1
2(f ′(x̂) + f ′(y)).

###Existence
As we have seen in section II.5.5.2 quadratic majorizers exist if βV (y) <∞.
Although βV (y) <∞ is independent of V , the numerical value of βV (y) does
depend on V , and of course on y.
We say that a sharp quadratic majorizer exists if βV (y) = maxx δV (x, y),
i.e. if the supremum is attained. We the define the sharp quadratic majorizer
of f at y as g with

g(x, y) = f(y) + (x− y)′Df(y) + 1
2βV (y)(x− y)′V (x− y)
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The corresponding majorization algorithm is

x(k+1) = x(k) − 1
βV (x(k))V

−1Df(xk).

If f is convex we can generalize the tangential majorization algorithm of De
Leeuw and Lange (2009), section 6, to compute β. For convex f

b(x) ≥ f(z) + (x− z)′Df(z)− f(y)− (x− y)′Df(y),

and thus
b(x) ≥ u′d+ c

1
2u

′u
, (3)

with

u := x− y,
d := Df(z)−Df(y),
c := f(z)− f(y) + (y − z)′Df(z).

If the derivative of the minorizer on the right hand side of (3) vanishes we
have u proportional to d, say u = λd. It remains to maximize over λ. The
maximum exists because convexity implies c ≤ 0 and it is attained for λ =
−2 c

d′d
. Thus tangential majorization gives the algorithm

x(k+1) = y − 2 f(x(k))− f(y) + (y − x(k))′Df(x(k))
(Df(x(k))−Df(y))′(Df(x(k))−Df(y))(Df(x(k))−Df(y))

Insert exist.R Here
We can compute the generalization βV with basically the same tangential
majorization algorithm.

x(k+1) = y−2 f(x(k))− f(y) + (y − x(k))′Df(x(k))
(Df(x(k))−Df(y))′V −1(Df(x(k))−Df(y))V

−1(Df(x(k))−Df(y))

Quadratic majorization with A = βV V updates x with

x(k+1) = x(k) − 1
βV (x(k))V

−1Df(xk),

../code/exist.R
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which has an iteration matrix at a solution x equal to

M(x) = I − 1
λ+(V −1D2f(x))V

−1D2f(x),

and an iteration radius

κ(x) = 1− λ2(V −1D2f(x))
λ1(V −1D2f(x)) ,

where λ1 ≥ λ2 are the two largest eigenvalues of V −1D2f(x).
As an example, consider f defined by f(x) = ∑n

i=1 log(1 + exp(r′
ix)). The

function is convex, and as we have shown D2f(x) ≤ 1
4R

′R.

###Optimality with Two Support Points
Building on earlier work by Groenen, Giaquinto, and Kiers (2003), Van
Ruitenburg (2005) proves that a quadratic function g majorizing a differ-
entiable function f at two points must be a sharp quadratic majorizer. We
summarize his argument here.
Lemma 1: Suppose two quadratic functions g1 ̸= g2 both majorize the
differentiable function f at y. Then either g1 strictly majorizes g2 at y or g1
strictly majorizes g2 at y.
Proof: We have

g1(x) = f(y) + f ′(y)(x− y) + 1
2a1(x− y)2, (1a)

g2(x) = f(y) + f ′(y)(x− y) + 1
2a2(x− y)2, (1b)

with a1 ̸= a2. Subtracting (1a) and (1b) proves the lemma. QED

Lemma 2: Suppose the quadratic function g1 majorizes a differentiable
function f at y and z1 ̸= y and that the quadratic function g2 majorizes f
at y and z2 ̸= y. Then g1 = g2.
Proof: Suppose g1 ̸= g2. Since both g1 and g2 majorize f at y, Lemma
1 applies. If g2 strictly majorizes g1 at y, then g1(z2) < g2(z2) = f(z2),
and g1 does not majorize f . If g1 strictly majorizes g2 at y, then similarly
g2(z1) < g1(z1) = f(z1), and g2 does not majorize f . Unless g1 = g2, we
reach a contradiction. QED
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We now come to Van Ruitenburg’s main result.

Theorem 1: Suppose a quadratic function g1 majorizes a differentiable
function f at y and at z ̸= y, and suppose g2 ̸= g1 majorizes f at y. Then
g2 strictly majorizes g1 at y.

Proof: Suppose g1 strictly majorizes g2. Then g2(z) < g1(z) = f(z) and
thus g2 does not majorize f . The result now follows from Lemma 1. QED

12.3.1 Even and Odd Functions

If f is even then

δ(−y, y, a) = +2yf ′(y)− 2ay2,

D1δ(−y, y, a) = −2f ′(y) + 2ay,
D11δ(−y, y, a) = f ′′(y)− a.

If a = f ′(y)/y then both δ(−y, y, a) = 0 and D1δ(−y, y, a) = 0.

f(x)− f(y)− f ′(y)(x− y)− 1
2
f ′(y)
y

(x− y)2 ≤ 0 ∀x

If f satisfies the differential inequality

f ′′(x) ≤ f ′(x)
x

∀x

then δ(x, y, f ′(y)/y) is

Assuming that f(x) is even, i.e. f(x) = f(−x) for all x, simplifies the con-
struction of quadratic majorizers. If an even quadratic g satisfies g(y) = f(y)
and g′(y) = f ′(y), then it also satisfies g(−y) = f(−y) and g′(−y) = f ′(−y).
If in addition g majorizes f at either y or −y, then it majorizes f at both y
and −y, and Theorem ?? implies that it is the best possible majorization at
both points. This means we only need an extra condition to guarantee that
g majorizes f . The next theorem, essentially proved in the references Groe-
nen, Giaquinto, and Kiers (2003), Jaakkola and Jordan (2000), Hunter and
Li (2005), by other techniques, highlights an important sufficient condition.
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Theorem: Suppose f(x) is an even, differentiable function on R such that
the ratio f ′(x)/x is decreasing on (0,∞). Then the even quadratic

g(x) = f ′(y)
2y (x2 − y2) + f(y)

is the best majorizer of f(x) at the point y.

Proof: It is obvious that g(x) is even and satisfies the tangency conditions
g(y) = f(y) and g′(y) = f ′(y). For the case 0 ≤ x ≤ y, we have

f(y)− f(x) =
∫ y

x
f ′(z) dz

=
∫ y

x

f ′(z)
z

z dz

≥ f ′(y)
y

∫ y

x
z dz

= f ′(y)
y

1
2(y2 − x2)

= f(y)− g(x),

where the inequality comes from the assumption that f ′(x)/x is decreasing.
It follows that g(x) ≥ f(x). The case 0 ≤ y ≤ x is proved in similar fashion,
and all other cases reduce to these two cases given that f(x) and g(x) are
even. QED

There is an condition equivalent to the sufficient condition of Theorem ??
that is sometimes easier to check.

Theorem: The ratio f ′(x)/x is decreasing on (0,∞) if and only f(
√
x) is

concave. The set of functions satisfying this condition is a closed under the
formation of (a) positive multiples, (b) convex combinations, (c) limits, and
(d) composition with a concave increasing function g(x).

Proof: Suppose f(
√
x) is concave in x and x > y. Then the two inequalities

f(
√
x) ≤ f(√y) +

f ′(√y)
2√y (x− y)

f(√y) ≤ f(
√
x) + f ′(

√
x)

2
√
x

(y − x)
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are valid. Adding these, subtracting the common sum f(
√
x) + f(√y) from

both sides, and rearranging give

f ′(
√
x)

2
√
x

(x− y) ≤
f ′(√y)
2√y (x− y).

Dividing by (x− y)/2 yields the desired result

f ′(
√
x)√
x

≤
f ′(√y)
√
y

.

Conversely, suppose the ratio is decreasing and x > y. Then the mean value
expansion

f(
√
x) = f(√y) + f ′(

√
z)

2
√
z

(x− y)

for z ∈ (y, x) leads to the concavity inequality.

f(
√
x) ≤ f(√y) +

f ′(√y)
2√y (x− y).

The asserted closure properties are all easy to check. QED

As examples of property (d) of Theorem ??, note that the functions g(x) =
ln x and g(x) =

√
x are concave and increasing. Hence, if f(

√
x) is concave,

then ln f(
√
x) and f(

√
x)1/2 are concave as well.

12.4 Sharp Piecewise Linear

Suppose f is a real function of a real variable. For each x ̸= y define

δf (x, y) := f(x)− f(y)
x− y

.

If f is differentiable at y we set δf (y, y) = f ′(y). Also define

δf (y) := inf
x>y

δf (x, y),

δf (y) := sup
x<y

δf (x, y).
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Of course δf (y) could be −∞ and/or δf (y) could be +∞, and we will take
these possibilities into account.
Note that if f is differentiable at y and δf (x, y) is increasing in x then δf (y) =
δf (y) = f ′(y). If δf (x, y) is decreasing in x then δf (y) = limx→+∞ δf (x, y)
and δf (y) = limx→−∞ δf (x, y).
If x > y then δf (x, y) ≥ δf (y) and thus

f(x) ≥ f(y) + δf (y)(x− y).

If x < y then δf (x, y) ≤ δf (y) and thus also

f(x) ≥ f(y) + δf (y)(x− y).

This means that if we define the extended real valued function

h(x, y) :=


f(y) + δf (y)(x− y) if x < y,

f(y) + δf (y)(x− y) if x > y,

f(y) if x = y,

then f(x) ≥ h(x, y) for all x and y and we have a minorization function
consisting of two line segments.
If f(x) = |x| then δf (x, 0) = sign(x). Thus δf (0) = 1 and δf (0) = −1. It
follows that h(x, 0) = |x|, as expected.
If f(x) = ax2 + bx + c then δf (x, y) = a(x + y) + b. Thus if a > 0 we
have δf (y) = δf (y) = a and h(x, y) = f(y) + a(x − y). If a < 0 we have
δf (y) = −∞ and δf (y) = +∞.
If f(x) = ax3 + bx2 + cx + d, with a ̸= 0, then δf (x, y) = ax2 + (ay + b)x +
(ay2 + by+ c). Suppose a > 0. Then δf (y) = +∞. The minimum of δf (x, y)
over x is attained at −(ay + b)/2a, and thus

δf (y) =
f ′(y) if y ≥ − b

3a
,

minx δf (x, y) if y < − b
3a
.

If a < 0 we find, in the same way, that δf (y) = −∞ and that

δf (y) =
f ′(y) if y ≤ − b

3a
,

maxx δf (x, y) if y > − b
3a
.
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Consider the quartic f(x) = ax4 + bx3 + cx2 + dx+ e, with a ̸= 0. We have

δf (x, y) = ax3 + (ay + b)x2 + (ay2 + by + c)x+ (ay3 + by2 + cy + d).

Also the derivative of δf with respect to x is is the quadratic

δ′
f (x, y) = 3ax2 + 2(ay + b)x+ (ay2 + by + c).

First suppose a < 0. This case turns out to be uninteresting, because δf (y) =
−∞ and δf (y) = +∞. So assume a > 0. If δ′

f (x, y) has no real roots (or two
equal real roots), as a function of x for fixed y, then δ′

f (x, y) ≥ 0 for all x
and δf (x, y) is increasing in x, and δf (y) = δf (y) = f ′(y).

If δ′
f (x, y) has two real roots, then δf (x, y) has a local maximum at the

smallest root, say x1, and a local minimum at the largest root, say x2.
There is also a x0 < x1 with δf (x0, y) = δf (x2, y) and an x3 > x2 such
that δf (x3, y) = δf (x1, y). Now

δf (y) =


f ′(y) if y ≥ x0,

δf (x2, y) if x0 ≤ y ≤ x2,

f ′(y) if y ≥ x2.

Of course in the same way

δf (y) =


f ′(y) if y ≤ x1,

δf (x1, y) if x1 ≤ y ≤ x3,

f ′(y) if y ≥ x3.

A simple numerical example sets a = 1, c = −4, and b = d = e = 0. Thus
f(x) = x4 − 4x2. Moreover δf (x, 0) = x3 − 4x, and δ′

f (x, 0) = 3x2 − 4. The
roots of the quadratic are x1 = −2

3

√
3 and x2 = +2

3

√
3. Also x0 = −4

3

√
3

and x2 = +4
3

√
3. Thus δf (0) = −3.079201 and δf (0) = +3.079201. Using

these values we can plot the broken-line minorization of f(x) = x4 − 4x2 at
y = 0. Compare this with the sharp quadratic minorization at y = 0, which
is the function g(x) = −4x2.
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12.5 Examples

12.5.1 The cosine

The function f : x→ cos(x) provides a simple example of majorization, also
used by Lange (2016). We work out some additional details. Start with

cos(x) = cos(y)−sin(y)(x−y)−1
2 cos(y)(x−y)2+1

6 sin(y)(x−y)3+ 1
24 cos(y)(x−y)4+...

(1)
Since f ′′(x) = cos(x) ≤ 1 we see that

g(x, y) := cos(y)− sin(y)(x− y) + 1
2(x− y)2

provides a uniform quadratic majorizer. Thus the iteration map

A(x) = x+ sin(x)

provides a uniform quadratic majorization algorithm.
Now

A(x)− π
x− π

= 1− sin(x− π)
x− π

,

and for 0 < x < 2π we have 0 < 1 − sin(x−π)
x−π

< 1, and thus the algorithm
converges to π. As Lange (2016) points out the algorithm has a cubic rate of
convergence, because

A(π + x)− π = x+ sin(π + x) = 1
6x

3 + o(x3),

and thus
lim
x→0

A(π + x)− π
x3 = 1

6 .

As a consequence of cubic convergence, there is not much that can be done to
improve the algorithm (which is of very limited practical usefulness anyway).
Of course we could use the more precise majorizations

cos(x) ≤ cos(y)− sin(y)(x− y)− 1
2 cos(y)(x− y)2 + 1

6 |x− y|
3,

cos(x) ≤ cos(y)− sin(y)(x− y)− 1
2 cos(y)(x− y)2 + 1

6 sin(y)(x− y)3 + 1
24(x− y)4,



12.5. EXAMPLES 187

but they mostly increase the amount of computation in an iteration and do
not improve much. The quadratic majorization at y = 2 has its minimum
at 2.1974, the cubic majorization at 2.9952, and the quartic majorization at
2.9270. The three majorizations at y = 2 are shown in Figure 1.
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As a curiosity, we could also consider the sharp quadratic majorization

g(x, y) = cos(y)− sin(y)(x− y) + 1
2

sin(y)
π − y

(x− y)2

which has support points at x = y and x = 2π− y. Because of symmetry the
correspondng majorization algorithm converges to x = π in a single step in
this case. In Figure 2 we show the uniform and sharp quadratic majorizations
for y = 2.
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12.5.2 The Rasch Model

The Rasch model for item analysis says that that the probability that person
i gives a correct response to item j is

πij = exp(θi + ϵj)
1 + exp(θi + ϵj)

.

The likelihood is
L =

n∏
i=1

m∏
j=1

π
yij

ij (1− πij)1−yij ,

which means that the negative log-likelihood has the form

L =
n∑

i=1

m∑
j=1

log[1 + exp(θi + ϵj)]−
n∑

i=1
yi⋆θi +

m∑
j=1

y⋆jϵj.

Now consider g(x) = log(1+ex), which we can write as g(x) = log(1−π(x)).
We find

g′(x) = ex

1 + ex
= π(x),

g′′(x) = ex

(1 + ex)2 = π(x)(1− π(x)),
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thus 0 ≤ g′′(x) ≤ 1
4 , which shows we can apply quadratic majorization in this

case.
We leave the details of the majorization, which are just “completing the
square’ ’ as usual, to the reader. The algorithm forms the matrix H with
elements

hij = (θi + ϵj)− 2(πij + yij),

and it updates the parameter estimates by computing row and column aver-
ages of this matrix.
###Logits

12.5.3 Probits

We define the normal density

ϕ(x) = 1√
2π

exp(−1
2x

2),

and the normal distribution function

Φ(x) =
∫ x

−∞
ϕ(z)dz

in the usual way. In addition we define

f(x) = − log Φ(x).

Clearly

f ′(x) = −ϕ(x)
Φ(x)

f ′′(x) = xϕ(x)
Φ(x) +

[
ϕ(x)
Φ(x)

]2

.

We can get more insight into these derivatives by rewriting them as condi-
tional expectations. If u = ϕ(z) then du = −zϕ(z)dz and thus

∫ x

−∞
zϕ(z)dz = −

∫ ϕ(x)

0
du = −ϕ(x),
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which implies

f ′(x) =
∫ x

−∞ zϕ(z)dz∫ x
−∞ ϕ(z)dz = E(z|z < x).

This shows that f ′(x) < 0 and thus f is decreasing.
Now in the same way we can define u = zϕ(z) and use du = (1− z2)ϕ(z) to
derive ∫ x

−∞
(1− z2)ϕ(z)dz =

∫ xϕ(x)

0
du = xϕ(x),

which implies
1− E(z2|z < x) = xϕ(x)

Φ(x) ,

and thus

f ′′(x) = 1− [E(z2|z < x) + E(z|z < x)] = 1−V(z|z < x).

This shows that 0 < f ′′(x) < 1, and thus f is convex and has a bounded
second derivative. Moreover f ′′(x) is decreasing, which implies that f ′ is
concave. Also

lim
x→−∞

f ′′(x) = 1,

lim
x→+∞

f ′′(x) = 0.

A function g majorizes our function f in a point y if g(x) ≥ f(x) for all x
and g(y) = f(y). A quadratic function

g(x) = c+ b(x− y) + 1
2a(x− y)2

majorizes f in y if and only if c = f(y), b = f ′(y), and

a ≥ A(y) = sup
x ̸=y

δ(x|y),

where
δ(x|y) = f(x)− f(y)− f ′(y)(x− y)

1
2(x− y)2 .

We find the best quadratic majorization of f in y by choosing a = A(y).
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Since δ(x|y = f ′′(z) for some z between x and y, we see that δ(x|y) < 1 for
all x. On the other hand

lim
x→−∞

δ(x, y) = 1,

and consequently A(y) = 1 for all y. Thus the best quadratic majorization
is actually the uniform quadratic majorization

g(x) = f(y) + f ′(y)(x− y) + 1
2(x− y)2.
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Chapter 13

Local and Localized
Majorization

13.1 Introduction

13.1.1 Majorization in a Neighborhood

Consider the cubic f(x) = 2x− x2 + 1
6x

3. It is an increasing function on the
real line, with a root at x = 0, and a saddle point at x = 2.
We know that cubics do not have quadratic majorizers, but we can try to
find a quadratic

g(x, y) = f(y) + f ′(y)(x− y) + 1
2a(x− y)2

such that g(x, y) ≥ f(x) for all x ≥ 2 and such that

y − f ′(y)
a
≥ 2

if y ≥ 2.
The condition g(x, y) ≥ f(x) for all x ≥ 2 is

a ≥ f ′′(y) + 1
3f

′′′(y)(2− y),

193



194 CHAPTER 13. LOCAL AND LOCALIZED MAJORIZATION

which is in our case
a ≥ 2

3(y − 2).

We have
y − f ′(y)

a
≥ 2

for
a ≥ 1

2(y − 2).

If |Dijf(x)| ≤ K for all i, j and x then

z′D2f(x)z ≤
n∑

i=1

n∑
i=1

K|zi||zj] = K(
n∑

i=1
|zi|)2 ≤ n2Kz′z

This can be extended easily to higher order partials

< Dp(x), z ⊗ · · · ⊗ z >≤ K(
n∑

i=1
|zi|)p ≤ np(z′z)p

Minimize f : x→ x4 on [−1,+1], where f ′′(x) ≤ 12, and thus if−1 ≤ x ≤ +1
and −1 ≤ y ≤ +1

f(x) ≤ g(x, y) = y4 + 4y3(x− y) + 6(x− y)2.

The majorizer is minimized at x = y− 1
3y

3. Thus the majorization algorithm
is

x(k+1) = x(k) − 1
3(x(k))3,

which converges monotonically to zero if started with −1 ≤ x(0) ≤ +1.
Because

lim
k→∞

x(k+1)

x(k) = 1

convergence is sublinear.

13.1.2 Cartesian Folium

If we minimize
f(x, y) = x3 + y3 − 3xy
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on the rectangle defined by 0 ≤ x ≤ K and 0 ≤ y ≤ K then we can apply
quadratic majorization

x3 ≤ x3
0 + 3x2

0(x− x0) + 3K(x− x0)2,

y3 ≤ y3
0 + 3y2

0(y − y0) + 3K(y − y0)2,

and thus the algorithmic map is

A(x, y) = 1
2K

[
−x2 + 2Kx+ y
−y2 + 2Ky + x

]
.

The linear convergence rate is 1− 1
2K

.

13.1.3 Univariate Cubics

Suppose the problem is to minimize the cubic

f(x) = α + βx+ 1
2γx

2 + 1
6δx

3

with δ ̸= 0. Since the cubic has no majorizers, we will find a local majorizer
on the interval [A,B].
From f ′′(x) = γ + δx we see that

K(A,B) ∆= max
A≤z≤B

f ′′(z) = γ +
δB if δ > 0,
δA if δ < 0.

and thus, if y ∈ [A,B],

f(x) ≤ f(y) + f ′(y)(x− y) + 1
2K(A,B)(x− y)2

over A ≤ x ≤ B.
If K(A,B) > 0 the majorizing quadratic has a minimum at

x = y −
β + γy + 1

2δy
2

K(A,B)

This minimum can, of course, be outside the interval [A,B], in which case
the minimum of the quadratic is attained at one of the end-points. The
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minimum of the quadratic can be in the interval, but the function value at
the minimum of the quadratic can be larger than the function value at one of
the end-points. In that case, again, the majorization algorithm chooses one
of the end-points. If K(A,B) ≤ 0 the majorizer does not have a minimum
and thus the minimum on the interval is attained at either A or B. Code in
R is in the file cubicBound.R.
Insert cubicBound.R Here
If the iterations stay in the interior of the interval they converge to a local
minimum at x̂ with rate

κ = 1− γ + δx̂

K(A,B)

Consider, for example, the cubic f(x) = 1
3x

3 − 1
2x

2 + cx, where 0 ≤ c ≤ 1
4 .

The function has a local maximum at 1
2 −

1
2
√

1− 4c and a local minimum
at 1

2 + 1
2
√

1− 4c. Both are in the unit interval. The majorization algorithm,
using K(0, 1) = 1, has the update rule

x(k+1) = −(x(k))2 + 2x(k) − c.

If started in the interval (1
2−

1
2
√

1− 4c, 1
2 + 1

2
√

1− 4c) the algorithm converges
monotonically to the local minimum at 1

2 + 1
2
√

1− 4c with rate κ = 1 −√
1− 4c, which is close to zero if c is close to zero and close to one if c is

close to 1
4 . Here are two runs, the first one is fast, with c = .001, the second

one is slow, with c = .249.

> cubicBound(c(0,.001,-.5,1/3),0,1)
Iteration: 1 fold: -0.08283333 fnew: -0.13968825 xold: 0.50000000 xnew: 0.74900000
Iteration: 2 fold: -0.13968825 fnew: -0.16376999 xold: 0.74900000 xnew: 0.93599900
Iteration: 3 fold: -0.16376999 fnew: -0.16565882 xold: 0.93599900 xnew: 0.99490387
Iteration: 4 fold: -0.16565882 fnew: -0.16566717 xold: 0.99490387 xnew: 0.99897403
Iteration: 5 fold: -0.16566717 fnew: -0.16566717 xold: 0.99897403 xnew: 0.99899895
Iteration: 6 fold: -0.16566717 fnew: -0.16566717 xold: 0.99899895 xnew: 0.99899900
$itel
[1] 6

$f
[1] -0.1656672

../code/cubicBound.R
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$x
[1] 0.998999

> cubicBound(c(0,.249,-.5,1/3),0,1)
Iteration: 1 fold: 0.04116667 fnew: 0.04116567 xold: 0.50000000 xnew: 0.50100000
Iteration: 2 fold: 0.04116567 fnew: 0.04116467 xold: 0.50100000 xnew: 0.50199900
Iteration: 3 fold: 0.04116467 fnew: 0.04116368 xold: 0.50199900 xnew: 0.50299500
Iteration: 4 fold: 0.04116368 fnew: 0.04116270 xold: 0.50299500 xnew: 0.50398603
Iteration: 5 fold: 0.04116270 fnew: 0.04116174 xold: 0.50398603 xnew: 0.50497015
...
...
Iteration: 89 fold: 0.04114559 fnew: 0.04114559 xold: 0.53141255 xnew: 0.53142580
Iteration: 90 fold: 0.04114559 fnew: 0.04114559 xold: 0.53142580 xnew: 0.53143822
Iteration: 91 fold: 0.04114559 fnew: 0.04114559 xold: 0.53143822 xnew: 0.53144986
Iteration: 92 fold: 0.04114559 fnew: 0.04114559 xold: 0.53144986 xnew: 0.53146077
Iteration: 93 fold: 0.04114559 fnew: 0.04114559 xold: 0.53146077 xnew: 0.53147099
Iteration: 94 fold: 0.04114559 fnew: 0.04114559 xold: 0.53147099 xnew: 0.53148056
$itel
[1] 94

$f
[1] 0.04114559

$x
[1] 0.5314806

We can also make cobweb plots for these two runs. They are in the figures
below.

13.1.4 Majorization on the Sphere

The problem of minimizing f over a closed set X can be formulated as

inf
r≥0

min
x∈X ∩Sr

f(x),

where Sr
∆={x | x′x = r}. The set X ∩ Sr is compact so the inner minimum

fr = minx∈X ∩Sr f(x) is attained for continuous f .
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Figure 13.1: Cobweb Plot for c=0.001
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Figure 13.2: Cobweb Plot for c=0.249
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If f is continuously differentiable on the ball Tr
∆={x | x′x ≤ r} then

hr(y) ∆= max
z∈Tr

max
0≤λ≤1

z′D2f(y + λz))z

is well-defined. If x, y ∈ Sr then y + λ(x− y) ∈ Tr for all 0 ≤ λ ≤ 1. So

f(x) ≤ f(y) + (x− y)′Df(y) + hr(y)(r − x′y),

and we have a linear majorization on Sr. The corresponding majorization
algorithm is

x(k+1) = Pr(x(k) − 1
hr(x(k))Df(x(k))),

with Pr projection on the sphere Sr.
S-majorization by a quadratic. The sublevel set for

g(x, y) = f(y) + (x− y)′b+ 1
2(x− y)′A(x− y)

with A positive definite is the ellipse

L(y) = {x | (x− z(y))′A(x− z(y)) ≤ b′A−1b},

with z
∆= y − A−1b. Thus for S-majorization we need to choosed A and b in

such a way that g majorizes f on L(y). The problem is simplified, of course,
if we choose b = Df(y).

13.1.5 Majorization on a Hyperrectangle

Here we discuss the work of Mönnigmann (2011) and others.

13.2 Proximal Point Majorization

We usually write f(x) ≤ g(x, y) for the key property of the majorizing func-
tion. One can also write f(x) ≤ f(x) + d(x, y) with d(x, y) := g(x, y)− f(x)
Thus d(x, y) is non-negative, and d(x, x) = 0, i.e. d(x, y) is distance-like.
Bregman
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f(x) ≤ f(x) + λ∥x− y∥2

x(k+1) = argmin
x

f(x) + λk∥x− x(k)∥2

The majorization algorithm updates by the rule

x(k+1) ∈ argmax
x

f(x) + d(x, x(k))

This shows majorization algorithms are generalized proximal point algo-
rithms (for which there is a lot of theory). In the EM context this is used by
Stephane Chretien, Alfred Hero, Paul Tseng and others to study algorithms.
In fact, they often study

x(k+1) ∈ argmax
x

f(x) + λkd(x, x(k))

with λk a sequence of non-negative numbers.

13.3 Sub-level Majorization

Stability of the majorization algorithm is guaranteed by the sandwich in-
equality, which says that

f(x(k+1)) ≤ g(x(k+1), x(k)) ≤ g(x(k), x(k)) = f(x(k)).

The first inequality in the chain comes from the majorization condition
f(x) ≤ g(x, y) for all x, y ∈ X. There is, however, a weaker condition
which still implies the same inequality.

Suppose that we merely require that the majorization function g satisfies

g(x, y) ≤ g(y, y)⇒ f(x) ≤ g(x, y).

Then we still have g(x(k+1), x(k)) ≤ g(x(k), x(k)) = f(x(k)), and as a conse-
quence also f(x(k+1)) ≤ g(x(k+1), x(k)). The sandwich inequality still applies.
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The weaker localized majorization condition, which we will call sublevel ma-
jorization (or simply S-majorization) from now on, says that g majorizes f
on the sublevel set

L(y) ∆={x ∈ X | g(x, y) ≤ g(y, y) = f(y)},

while for x ̸∈ L(y) we can have f(x) > g(x, y). In other words, g(x, y)−f(x)
must have a global minimum equal to zero on L(y) at y.
S-majorization is easy to visualize for a univariate quadratic majorizer

g(x, y) = f(y) + f ′(y)(x− y) + 1
2a(x− y)2,

which has g(x, y) ≤ f(y) if x is in the interval with end-points y and y− 2f ′(y)
a

.
For quadratic S-majorization of a cubic f , for example, we must have

a ≥ f ′′(y) + 1
3f

′′′(y)(x− y)

at both end-points of the interval I(y), which means we must have both
a ≥ f ′′(y) and

a2 − af ′′(y) + 2
3f

′′′(y)f ′(y) ≥ 0. (1)

If the quadratic (1) has no real roots, or two equal real roots, then it is
always non-negative, and we have sub-level majorization of the cubic at y if
a ≥ f ′′(y). Now suppose the quadratic (1) has two different real roots, say
p(y) < q(y). We have p(y) + q(y) = f ′′(y). Thus if p(y) and q(y) are non-
negative, then 0 ≤ p(y) ≤ q(y) ≤ f ′′(y), and we have sub-level majorization
for a ≥ f ′′(y). If p ≤ 0 and q ≥ 0 then q = f ′′(y) − p ≥ f ′′(y) and thus
a ≥ q(y). If both p(y) ≤ 0 and q(y) ≤ 0 then f ′′(y) ≤ p(y) < q(y) ≤ 0, and
thus a(y) = 0 and sub-level majorization is linear.
Near a local minimum, where f ′′(y) ≥ 0 and f ′(y) is close to zero, the two
roots of the quadratic are approximately q = f ′′(y)− 2

3f
′(y) and p = 2

3f
′(y).

note: 030615 Add the example from the paper and the reference
Quadratic sub-level majorization in the multivariate case. We have

g(x, y) = f(y) + (x− y)′Df(y) + 1
2(x− y)′A(x− y)
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for some A which we assume to be positive definite for now. Then g(x, y) ≤
f(y) if and only if

(x− z)′A(x− z) ≤ (Df(y))′A−1Df(y),

with z = y−A−1Df(y). For given y and A this means x must be in an ellipse
centered at z, but note that if A changes then shape, radius, and center of
the ellipse change.
If A = aH with H fixed, then we have the more manageable inequality

1
a2 ≥

(x− z)′H(x− z)
(Df(y))′HDf(y)

13.4 Dinkelbach Majorization

In S-majorization we make sure the sandwich inequality remains true by
requiring that

g(x, y) ≤ g(y, y) = f(y)⇒ f(x) ≤ g(x, y).

An alternative requirement, that also leads to a sandwich inequality, is

g(x, y) ≤ g(y, y) = f(y)⇒ f(x) ≤ f(y),

or, in iteration terms, If g(x(k+1), x(k)) ≤ g(x(k), x(k)) then f(x(k+1)) ≤ f(x(k)).
Suppose f is a real-valued function on X and g is a real-valued function on
X ⊗ X . We say that g Dinkelbach majorizes f on X if * if g(x, y) ≤ g(y, y)
then f(x) ≤ f(y) for all x, y ∈ X , * g(y, y) = f(y) for all y ∈ X .
Dinkelbach Majorization is strict if the first condition can be replaced by *
if g(x, y) < g(y, y) then f(x) < f(y) for all x, y ∈ X .
The D here stands for Dinkelbach, who proposed a forerunner of D ma-
jorization in a classic fractional programming article Dinkelbach (1967). In
S-majorization we require that g majorizes f on the sublevel set

L(y) = {x ∈ X | g(x, y) ≤ g(y, y)}.

In D-majorization we require that f attains its maximum on the sublevel set
L(y) at y.
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Suppose f is a fractional function of the form

f(x) = a(x)
b(x) ,

with b(x) > 0 for x ∈ X . Then

g(x, y) = f(y) + a(x)− f(y)b(x)

D-majorizes f on X .
Clearly

g(y, y) = f(y) + a(y)− a(y)
b(y) b(y) = f(y).

Moreover g(x, y) ≤ g(y, y) can be written as

f(y) + a(x)− f(y)b(x) ≤ f(y)

which implies f(x) ≤ f(y).
Suppose

g(x, y) = f(y) + f ′(y)(x− y) + 1
2a(x− y)2,

with a > 0. Now g(x, y) ≤ f(y) if and only if

(x− y)(f ′(y) + 1
2a(x− y)) ≤ 0,

Or x must be in the interval between y and y − 2f ′(y)
a

. For a cubic

f(x) = f(y) + f ′(y)(x− y) + 1
2f

′′(y)(x− y)2 + 1
6f

′′′(x− y)3

we require that

(x− y)(f ′(y) + 1
2f

′′(y)(x− y) + 1
6f

′′′(x− y)2) ≤ 0

for all x in the interval between y and y − 2f ′(y)
a

.
Suppose f is increasing and differentiable. We have f ′(y) ≥ 0 for all y. Thus
for any

x ∈ [y − 2f ′(y)
a

, y]
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we have x ≤ y and consequently f(x) ≤ f(y). In other words: an increasing
function is Dinkelbach majorized by any convex quadratic.

Consider f with f(x) = 1
4x

4 and let us majorize at y = 1 by a convex
quadratic g which has both g(1) = f(1) = 1

4 and g′(1) = f ′(1) = 1. It follows
that

g(x) = ax2 + (1− 2a)x+ (a− 3
4)

for some a ≥ 0. Note that if we would also require that g′′(1) ≥ h′′(1) then
we need a ≥ 3

2 .

If we compute h = g − f we find

h(x) = −1
4(x− 1)2(x2 + 2x+ (3− 4a)).

Majorization at y would mean h(x) ≥ 0 for all x, which is clearly impossible
because h(x) will be negative for x very large and x very small.

We have h(x) ≥ 0 if and only if q(x) ∆=x2 +2x+(3−4a) ≤ 0.The quadratic q
can only be non-positive if it has two real roots, which happens if a ≥ 1

2 , and
then q is non-positive between its two real roots, which are −1 −

√
4a− 2

and −1 +
√

4a− 2.

The sublevel set L(1) = {x | g(x) ≤ 1
4} is the interval [a−1

a
, 1]. For S-

majorization we need h(x) ≥ 0 for all x ∈ L(1), which means that interval
[a−1

a
, 1] must be a subset of interval [−1 −

√
4a− 2,−1 +

√
4a− 2]. Thus

we must have 1 ≤ −1 +
√

4a− 2 as well as a−1
a
≥ −1 −

√
4a− 2. The first

inequality gives a ≥ 3
2 , the second one a ≥ 1

2 . Thus we have S-majorization at
y = 1 if and only if a ≥ 3

2 . Figure 1 shows the S-majorization with a = 3/2,
first globally, and then in closeup with L(1) = [1

3 , 1] on the horizontal axis.
Note that the S-majorizer is certainly not a majorizer. Also note that a = 3/2
actually makes g′′(1) = f ′′(1), which means the quadratic S-majorizer is the
quadratic approximation used in Newton’s method.
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Figure 1: S-majorization at y = 1 for a = 1.5.
For D-majorization we need f(x) ≤ f(1) = 1

4 for all x ∈ L(1) which is the
case if a−1

a
≥ −1, i.e. g D-majorizes f at y = 1 if and only if a ≥ 1

2 . In
figure 2 we see that a D-majorizer can actually be a minorizer ! Of course
the S-majorization in figure 1 is also a D-majorization.
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Figure 2: D-majorization at y = 1 for a = 0.5.
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Chapter 14

Background

14.1 Introduction

14.2 Analysis

###SemiContinuities

The lower limit or limit inferior of a sequence {xi} is defined as

lim inf
i→∞

xi = lim
i→∞

[
inf
k≥i

xk

]
= sup

i≥0

[
inf
k≥i

xk

]
.

Alternatively, the limit inferior is the smallest cluster point or subsequential
limit

lim inf
i→∞

xi = min{y | xiν → y}.

In the same way

lim sup
i→∞

xi = lim
i→∞

[
sup
k≥i

xk

]
= inf

i≥0

[
sup
k≥i

xk

]
.

We always have

inf
i
xi ≤ lim inf

i→∞
xi ≤ lim sup

i→∞
xi ≤ sup

i
xi.

209
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Also if lim infi→∞ xi = lim supi→∞ xi then

lim
i→∞

xi = lim inf
i→∞

xi = lim sup
i→∞

xi.

The lower limit or limit inferior of a function at a point x is defined as

lim inf
x→x

f(x) = sup
δ>0

[
inf

x∈B(x,δ)
f(x)

]
,

where
B(x, δ) ∆={x | ∥x− x∥ ≤ δ}.

Alternatively

lim
i→∞

xi = lim inf
x→x

f(x) = min{y | xi → x and f(xi)→ y}.

In the same way

lim sup
x→x

f(x) = inf
δ>0

[
sup

x∈B(x,δ)
f(x)

]
,

A function is lower semi-continuous at x if

lim inf
x→x

f(x) ≥ f(x)

Since we always have lim infx→x f(x) ≤ f(x) we can also define lower semi-
continuity as

lim inf
x→x

f(x) = f(x).

A function is upper semi-continuous at x if

lim sup
x→x

f(x) = f(x).

We have
lim inf

x→x
f(x) ≤ lim sup

x→x
f(x).

A function is continuous at x if and only if it is both lower semicontinuous
and upper semicontinous, i.e. if

f(x) = lim
x→x

f(x) = lim inf
x→x

f(x) = lim sup
x→x

f(x).
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###Directional Derivatives
The notation and terminology are by no means standard. We generally follow
Demyanov (2010).
The lower Dini directional derivative of f at x in the direction z is

δ−f(x, z) ∆= lim inf
α↓0

f(x+ αz)− f(x)
α

= sup
δ>0

inf
0<α<δ

f(x+ αz)− f(x)
α

.

and the corresponding upper Dini directional derivative is

δ+f(x, z) ∆= lim sup
α↓0

f(x+ αz)− f(x)
α

= inf
δ>0

sup
0<α<δ

f(x+ αz)− f(x)
α

,

If
δf(x, z) = lim

α↓0

f(x+ αz)− f(x)
α

exists, i.e. if δ+f(x, z) = δ−f(x, z), then it we simply write δf(x, z) for the
Dini directional derivative of f at x in the direction z.@penot_13 calls this
the radial derivative and Schirotzek (2007) calls it the directional Gateaux
derivative. If δf(x, z) exists f is Dini directionally differentiable at x in
the direction z, and if δf(x, z) exists at x for all z we say that f is Dini
directionally differentiable at x. Delfour (2012) calls f semidifferentiable at
x.
In a similar way we can define the Hadamard lower and upper directional
derivatives. They are

d−f(x, z) ∆= lim inf
α↓0
u→z

f(x+ αu)− f(x)
α

= sup
δ>0

inf
u∈B(z,δ)
α∈(0,δ)

f(x+ αu)− f(x)
α

,

and

d+f(x, z) ∆= lim sup
α↓0
u→z

f(x+ αu)− f(x)
α

= inf
δ>0

sup
u∈B(z,δ)
α∈(0,δ)

f(x+ αu)− f(x)
α

,

The Hadamard directional derivative df(x, z) exists if both d+f(x, z) and
d−f(x, z) exist and are equal. In that case f is Hadamard directionally
differentiable at x in the direction z, and if df(x, z) exists at x for all z
we say that f is Hadamard directionally differentiable at x.
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Generally we have

d−f(x, z) ≤ δ−f(x, z) ≤ δ+f(x, z) ≤ d+f(x, z)

The classical directional derivative of f at x in the direction g is

∆f(x, z) ∆= lim
α→0

f(x+ αz)− f(x)
α

.

Note that for the absolute value function at zero we have δf(0, 1) = df(0, 1) =
1, while ∆f(0, 1) = limα→0 sign(α) does not exist. The classical directional
derivative is not particularly useful in the context of optimization problems.

14.2.1 Differentiability and Derivatives

The function f is Gateaux differentiable at x if and only if the Dini directional
derivative δf(x, z) exists for all z and is linear in z. Thus δf(x, z) = G(x)z
The function f is Hadamard differentiable at x if the Hadamard directional
derivative df(x, z) exists for all z and is linear in z.
Function f is locally Lipschitz at z if there is a ball B(z, δ) and a γ > 0 such
that ∥f(x)− f(y)| ≤ γ∥x− y∥ for all x, y ∈ B(z, δ).
If f is locally Lipschitz and Gateaux differentiable then it is Hadamard dif-
ferentiable.
If the Gateaux derivative of f is continuous then f is Frechet differentiable.
Define Frechet differentiable
The function f is Hadamard differentiable if and only if it is Frechet differ-
entiable.
Gradient, Jacobian
###Taylor’s Theorem
Suppose f : X → R is p+ 1 times continuously differentiable in the open set
X ⊆ Rn. Define, for all 0 ≤ s ≤ p,

hs(x, y) ∆= 1
s!⟨D

sf(y), (x− y)s⟩,
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as the inner product of the s-dimensional array of partial derivatives Dsf(y)
and the s-dimensional outer power of x−y. Both arrays are super-symmetric,
and have dimension ns. By convention h0(x, y) = f(y).
Also define the Taylor Polynomials

gp(x, y) ∆=
p∑

s=0
hs(x, y)

and the remainder
rp(x, y) ∆= f(x)− gp(x, y).

Assume X contains the line segment with endpoints x and y. Then La-
grange’s form of the remainder says there is a 0 ≤ λ ≤ 1 such that

rp(x, y) = 1
(p+ 1)!⟨D

p+1f(x+ λ(y − x)), (x− y)p+1⟩,

and the integral form of the remainder says

rp(x, y) = 1
p!

∫ 1

0
(1− λ)p⟨Dp+1f(x+ λ(y − x)), (x− y)p⟩dλ.

14.2.2 Implicit Functions

The classical implicit function theorem is discussed in all analysis books. I am
particularly fond of Spivak (1965). The history of the theorem, and many of
its variations, is discussed in Krantz and Parks (2003) and a comprenhensive
modern treatment, using the tools of convex and variational analysis, is in
Dontchev and Rockafellar (2014).
Suppose f : Rn ⊗ Rm 7→ Rm is continuously differentiable in an open set
containing (x, y) where f(x, y) = 0. Define the m×m matrix

A(x, y) ∆=D2f(x, y)

and suppose that A(x, y) is non-singular. Then there is an open set X con-
taining x and an open set Y containing y such that for every x ∈ X there is
a unique y(x) ∈ Y with f(x, y(x)) = 0.
The function y : Rn 7→ Rm is differentiable. If we differentiate f(x, y(x)) = 0
we find

D1f(x, y(x)) +D2(x, f(x))Dy(x),
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and thus

Dy(x) = −[D2f(x, y(x))]−1D1f(x, y(x)).

As an example consider the eigenvalue problem

A(x)y = λy,

y′y = 1

where A is a function of a real parameter x. Then

[
A(x)− λI −x

x′ 0

] [
Dy(x)
Dλ(x)

]
=
[
−DA(x)x

0

]
,

which works out to

Dλ(x) = y(x)′DA(x)y(x),
Dy(x) = −(A(x)− λ(x)I)+DA(x)y(x).

14.2.3 Necessary and Sufficient Conditions for a Min-
imum

Directional derivatives can be used to provide simple necessary or sufficient
conditions for a minimum (Floudas (2009), propositions 8 and 9).

Result: If x is a local minimizer of f then δ−f(x, z) ≥ 0 and d−f(x, z) ≥ 0
for all directions z. If d−f(x, z) > 0 for all z ̸= 0 then f has a strict local
minimum at x.

The special case of a quadratic deserves some separate study, because the
quadratic model is so prevalent in optimization. So let us look at f(x) = c+
b′x+ 1

2x
′Ax, with A symmetric. Use the eigen-decomposition A = KΛK ′ to

change variables to x̃ ∆=K ′x, also using b̃ ∆=K ′b. Then f(x̃) = c+ b̃′x̃+ 1
2 x̃

′Λx̃,
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which we can write as

f(x̃) = c− 1
2

∑
i∈I+∪I−

b̃2
i

λi

+ 1
2
∑
i∈I+

|λi|(x̃i + b̃i

λi

)2+

− 1
2
∑
i∈I−

|λi|(x̃i + b̃i

λi

)2+

+
∑
i∈I0

b̃ix̃i.

Here

I+
∆={i | λi > 0},

I−
∆={i | λi < 0},

I0
∆={i | λi = 0}.

* If I− is non-empty we have infx f(x) = −∞. * If I− is empty, then f
attains its minimum if and only if b̃i = 0 for all i ∈ I0. Otherwise again
infx f(x) = −∞.
If the minimum is attained, then

min
x
f(x) = c− 1

2b
′A+b,

with A+ the Moore-Penrose inverse. And the minimum is attained if and
only if A is positive semi-definite and (I − A+A)b = 0.

14.3 Point-to-set Maps

###Continuities

14.3.1 Marginal Functions and Solution Maps

Suppose f : Rn ⊗ Rn → R and g(x) = miny f(x, y). Suppose the minimum
is attained at a unique y(x), where D2f(x, y(x)) = 0. Then obviously g(x) =
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f(x, y(x)). Differentiating g gives

Dg(x) = D1f(x, y(x)) +D2f(x, y(x))Dy(x) = D1f(x, y(x)). (1)

To differentiate the solution map we need second derivatives of f . Differen-
tiating the implicit definition D2f(x, y(x)) = 0 gives

D21f(x, y(x)) +D22f(x, y(x))Dy(x) = 0,

or
Dy(x) = −[D22f(x, y(x))]−1D21f(x, y(x)). (2)

Now combine both (1) and (2) to obtain

D2g(x) = D11f(x, y(x))−D12f(x, y(x))[D22f(x, y(x))]−1D21f(x, y(x)). (3)

We see that if D2f(x, y(x)) ≳ 0 then 0 ≲ D2g(x) ≲ D11f(x, y(x)).
Now consider minimization problem with constraints. Suppose h1, · · · , hp

are twice continuously differentiable functions on Rm, and suppose

Y = {y ∈ Rm | h1(y) = · · · = hp(y) = 0}.

Define
g(x) ∆= min

y∈Y
f(x, y),

and
y(x) ∆= argmin

y∈Y
f(x, y),

where again we assume the minimizer is unique and satisfies

D2f(x, y(x))−
p∑

s=1
λs(x)Dhs(y(x)) = 0,

hs(y(x)) = 0.

Differentiate again, and define

A(x) ∆=D22f(x, y(x)),

Hs(x) ∆=D2hs(y(x)),

E(x) ∆=−D21f(x, y(x)),

B(x) ∆=DH(y(x)),
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and
C(x) ∆=A(x)−

p∑
s=1

λsHs(x).

Then [
C(x) −B(x)
B′(x) 0

] [
Dy(x)
Dλ(x)

]
=
[
E(x)

0

]
,

which leads to

Dy(x) =
{
I −B(x)

[
B′(x)C−1(x)B(x)

]−1
B′(x)

}
C−1(x)E(x),

Dλ(x) =
[
B′(x)C−1(x)B(x)

]−1
B′(x)C−1(x)E(x).

There is an alternative way of arriving at basically the same result. Suppose
the manifold G(x) = 0 is parametrized locally as x = F (w). Then

y(z) = Arg min
w

f(F (w), z),

and G(F (w)) = 0, i.e. DG(F (w))DF (w) = 0. Let h(w, z) = f(F (w), z).
Then

Dy(z) = −[D11f(F (w(z)), z)]−1D12h(F (w(z)), z).
D11f(F (w(z)), z) = D1fD2Fi + (DF )′D11DF

###Solution Maps
##Basic Inequalities

14.3.2 Jensen’s Inequality

14.3.3 The AM-GM Inequality

The Arithmetic-Geometric Mean Inequality is simple, but quite useful for
majorization. For completeness, we give the statement and proof here.
Theorem: If x ≥ 0 and y ≥ 0 then √xy ≤ 1

2(x + y), with equality if and
only if x = y.

Proof: Expand (
√
x−√y)2 ≥ 0, and collect terms. QED

Corollary: | xy |≤ 1
2(x2 + y2)
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Proof: Just a simple rewrite of the theorem. QED

###Polar Norms and the Cauchy-Schwarz Inequality
Theorem: Suppose x, y ∈ Rn. Then (x′y)2 ≤ x′x.y′y, with equality if and
only if x and y are proportional.
Proof: The result is trivially true if either x or y is zero. Thus we suppose
both are non-zero. We have h(λ) ∆=(x− λy)′(x− λy) ≥ 0 for all λ. Thus

min
λ
h(λ) = x′x− (x′y)2

y′y
≥ 0,

which is the required result. QED

14.3.4 Young’s Inequality

The AM-GM inequality is a very special cases of Young’s inequality. We de-
rive it in a general form, using the coupling functions introduced by Moreau.
Suppose f is a real-valued function on X and g is a real-valued function on
X ×Y , called the coupling function. Here X and Y are arbitrary. Define the
g-conjugate of f by

f ◦
g (y) ∆= sup

x∈X
{g(x, y)− f(x)}

Then g(x, y) − f(x) ≤ f ◦
g (y) and thus g(x, y) ≤ f(x) + f ◦

g (y), which is
the generalized Young’s inequality. We can also write this in the form that
directly suggests minorization

f(x) ≥ f ◦
g (y) + g(x, y).

The classical coupling function is g(x, y) = xy with both x and y in the
positive reals. If we take f(x) = 1

p
xp, with p > 1, then

f ◦
g (y) = sup

x
{xy − 1

p
xp}.

The sup is attained for x = y
1

p−1 , from which we find f ◦
g (y) = 1

q
yq, with

q
∆= p

p−1 .
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Thus if p, q > 1 such that
1
p

+ 1
q

= 1.

Then for all x, y > 0 we have

xy ≤ xp

p
+ yq

q
,

with equality if and only if y = xp−1.

14.4 Fixed Point Problems and Methods

As we have emphasized before, the algorithms discussed in this books are
all special cases of block relation methods. But block relation methods are
often appropriately analyzed as fixed point methods, which define an even
wider class of iterative methods. Thus we will not discuss actual fixed point
algorithms that are not block relation methods, but we will use general results
on fixed point methods to analyze block relaxation methods.
A (stationary, one-step) fixed point method on X ⊆ Rn is defined as a map
A : X → X . Depending on the context we refer to A as the update map or
algorithmic map. Iterative sequences are generated by starting with x(0) ∈ X
and then setting

x(k) = A(x(k−1)) = Ak(x(0)).
for k = 1, 2, · · ·. Such a sequence is also called the Picard sequence generated
by the map.
If the sequence x(k) converges to, say, x∞, and if A is continuous, then x∞ =
A(x∞), and thus x∞ is a fixed point of A on X . The set of all x ∈ X such
that x = A(x) is called the fixed point set of A on X , and is written as FX .
The literature on fixed point methods is truly gigantic. There are textbooks,
conferences, and dedicated journals. A nice and compact treatment, mostly
on existence theorems for fixed points, is Smart (1974). An excellent modern
overview, concentrating on metrical fixed point theory and iterative compu-
tation, is Berinde (2007).
The first key result in fixed point theory is the Brouwer Fixed Point Theorem,
which says that for compact convex X and continuous A there is at least one
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x ∈ FX (A). The second is the Banach Fixed Point Theorem, which says
that if X is a non-empty complete metric space and A is a contraction,
i.e. d(A(x), A(y)) < κ d(x, y) for some 0 ≤ κ < 1, then the Picard sequence
x(k) converges from any starting point x(0) to the unique fixed point of A in
X .
Much of the fixed point literature is concerned with relaxing the contraction
assumption and choosing more general spaces on which the various mappings
are defined. I shall discuss some of the generalizations that we will use later
in this book.
First, we can generalize to point-to-set maps A : X → 2X , where 2X is the
power set of X , i.e. the set of all subsets. Point-to-set maps are also called
correspondences or multivalued maps. The Picard sequence is now defined by
x(k) ∈ A(x(k−1)) and we have a fixed point x ∈ FX (A) if and only if x ∈ A(x).
The generalization of the Brouwer Fixed Point Theorem is the Kakutani Fixed
Point Theorem. It assumes that X is non-empty, compact and convex and
that A(x) is non-empty and convex for each x ∈ X . In addition, the map
A must be closed or upper semi-continuous on X , i.e. whenever xn → x∞
and yn ∈ A(xn) and yn → y∞ we have y∞ ∈ A(x∞). Under these conditions
Kakutani’s Theorem asserts the existence of a fixed point.
Our discussion of the global convergence of block relaxation algorithms, in a
later chapter, will be framed using fixed points of point-to-set maps, assuming
the closedness of maps.
In another generalization of iterative algorithms we get rid of the one-step
and the stationary assumptions. The iterative sequence is

x(k) ∈ Ak(x(0), x(1), · · · , x(k−1)).

Thus the iterations have perfect memory, and the update map can change
in each iteration. In an ℓ-step method, memory is less than perfect, because
the update is a function of only the previous ℓ elements in the sequence.
Formally, for k ≥ ℓ,

x(k) ∈ Ak(x(k−l), · · · , x(k−1)),

with some special provisions for k < ℓ.
Any ℓ-step method on X can be rewritten as a one-step method on

X ⊗ X ⊗ · · · ⊗ X︸ ︷︷ ︸
ℓ times

.
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This makes it possible to limit our discussion to one-step methods. In fact, we
will mostly discuss block-relaxation methods which are stationary one-step
fixed point methods.

For non-stationary methods it is somewhat more complicated to define fixed
points. In that case it is natural to define a set S ⊆ X of desirable points
or targets, which for stationary algorithms will generally, but not necessarily,
coincide with the fixed points of A. The questions we will then have to answer
are if and under what conditions our algorithms converge to desirable points,
and if they converge how fast the convergence will take place.

14.4.1 Subsequential Limits

##Convex Functions

##Composition

14.4.2 Differentiable Convex Functions

If a function f attains its minimum on a convex set X at x, and f is differ-
entiable at x, then (x− y)′Df(x) ≥ 0 for all y ∈ X .

If f attains its minimum on [a, b] at a, and f is differentiable at a, then
f ′(a) ≥ 0. Or, more precisely, if f is differentiable from the right at a and
f ′

R(a) ≥ 0.

Suppose X = {x | x′x ≤ 1} is the unit ball and a differentiable f attains its
a minimum at x with x′x = 1. Then (x − y)′Df(x) ≥ 0 for all y ∈ X . This
is true if and only if

min
y∈X

(x− y)′Df(x) = x′Df(x)−max
y∈X

y′DF (x) =

= x′Df(x)− ∥Df(x)∥ = 0.

By Cauchy-Schwartz this means that Df(x) = λx, with λ = x′Df(x) =
∥Df(x)∥.

As an aside, if a differentiable function f attains its minimum on the unit
sphere {x | x′x = 1} at x then f(x/∥x∥|) attains is minimum over Rn at x.
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Setting the derivative equal to zero shows that we must haveDf(x)(I−xx′) =
0, which again translates to Df(x) = λx, with λ = x′Df(x) = ∥Df(x)∥.
##Zangwill Theory

14.4.3 Algorithms as Point-to-set Maps

The theory studies iterative algorithms with the following properties. An
algorithm works in a space Ω. It consists of a triple (A, ψ,P), with A a
mapping of Ω into the set of nonempty subsets of Ω, with ψ a real-valued
function on Ω, and with P a subset of Ω. We call A the algorithmic map or
the update, ψ the evaluation function and P the desirable points.
The algorithm works as follows.

1. start at an arbitrary ω(0) ∈ Ω,
2. if ω(k) ∈ P , then we stop,
3. otherwise we construct the successor by the rule ω(k+1) ∈ A(ωk).

We study properties of the sequences ω(k) generated by the algorithm, in
particular their convergence.

14.4.4 Convergence of Function Values

For this method we have our first (rather trivial) convergence theorem.
Theorem: If * Ω is compact, * ψ is jointly continuous on Ω,
then

• The sequence {ψ(k)} converges to, say, ψ∞,
• the sequence {ω(k)} has at least one convergent subsequence,
• if ω∞ is an accumulation point of {ω(k)}, then ψ(ω∞) = ψ∞.

Proof: Compactness and continuity imply that ψ is bounded below on Ω,
and the minima in each of the substeps exist. This means that {ψ(k)} is
nonincreasing and bounded below, and thus convergent. Existence of con-
vergent subsequences is guaranteed by Bolzano-Weierstrass, and if we have
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a subsequence {ω(k)}k∈K converging to ω∞ then by continuity {ψ(ω(k))}k∈K
converges to ψ(ω∞). But all subsequences of a convergent sequence converge
to the same point, and thus ψ(ω∞) = ψ∞. QED

Remark: The assumptions in the theorem can be relaxed. Continuity is
not necessary. Think of the function ψ(x) = ∑p

s=1 sign(xs), which clearly is
minimized in a single cycle. Typically, however, statistical problems exhibit
continuity, so it may not be worthwhile to actually relax the assumption.
Compactness is more interesting. If we define the level sets

Ω0
∆={ω ∈ Ω | ψ(ω) ≤ ψ(0)},

then obviously it is sufficient to assume that Ω0 is compact. The same thing
is true for the even weaker assumption that the iterates ω(k) are in a compact
set.
We do not assume the sets Ωs are connected, i.e. they could be discrete. For
instance, we could minimize ∥Xβ−y−δ∥2 over β and δ, under the constraint
that the elements of δ take only two different unspecified values. This is not
difficult to do with block-relaxation, but generally problems with discrete
characteristics present us with special problems and complications. Thus, in
most instances, we have connected sets in mind. For discrete components, the
usual topology of Rs may not be the most natural one to study convergence.
In several problems in statistics the sets Ωs can be infinite-dimensional. This
is true, for instance, in much of semi-parametric and non-parametric statis-
tics. We mostly ignore the complications arising from infinite dimensionality
(again, of a topological nature), because in actual computations we work
with finite-dimensional approximations anyway.
Theorem ?? is very general, but the conclusions are quite weak. We have
convergence of the function values, but about the sequence {ω(k)} we only
know that it has one or more accumulation points, and that all accumulation
points have the same function value. We have not established other desirable
properties of these accumulation points.
In order to prove global convergence (i.e. convergence from any initial point)
we use the general theory developed initially by Zangwill (1969) (and later
by Polak (1969), R. R. Meyer (1976), G. G. L. Meyer (1975), and others).
The best introduction and overview is perhaps the volume edited by Huard
((Ed) (1979)).
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14.4.5 Convergence of Solutions

Theorem: [Zangwill]

• If A is uniformly compact on Ω, i.e. there is a compact Ω0 ⊆ Ω such
that A(ω) ⊆ Ω0 for all ω ∈ Ω,

• If A is upper-semicontinuous or closed on Ω−P , i.e. if ξi ∈ A(ωi) and
ξi → ξ and ωi → ω then ξ ∈ A(ω),

• If A is strictly monotonic on Ω−P , i.e. ξ ∈ A(ω) implies ψ(ξ) < ψ(ω) if
ω is not a desirable point. then all accumulation points of the sequence
{ω(k)} generated by the algorithm are desirable points.

Proof: Compactness implies that {ω(k)} has a convergent subsequence. Sup-
pose its index-set is K = {k1, k2, · · · } and that it converges to ωK. Since
{ψ(ω(k))} converges to, say ψ∞, we see that also

{ψ(ω(k1)), ψ(ω(k2)), · · · } → ψ∞.

Now consider {ω(k1+1), ω(k2+1), · · · }, which must again have a convergent sub-
sequence. Suppose its index-set is L = {ℓ1 + 1, ℓ2 + 1, · · · } and that it con-
verges to ωL. Then ψ(ωK) = ψ(ωL) = ψ∞.

Assume ωK is not a fixed point. Now

{ω(ℓ1), ω(ℓ2), · · · } → ωK

and
{ω(ℓ1+1), ω(ℓ2+1), · · · } → ωL,

with ω(ℓj+1) ∈ A(ω(ℓj+1). Thus, by usc, ωL ∈ A(ωK). If ωK is not a fixed point,
then strict monotonicity gives gives ψ(ωL) < ψ(ωK), which contradicts our
earlier ψ(ωK) = ψ(ωL). QED

The concept of closedness of a map can be illustrated with the following
picture, showing a map which is not closed at at least one point.
We have already seen another example: Powell’s coordinate descent example
shows that the algorithm map is not closed at six of the edges of the cube
{±1,±1,±1}.
It is easy to see that desirable points are generalized fixed points, in the sense
that ω ∈ P is equivalent to that ω ∈ A(ω). According to Zangwill’s theorem
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Figure 14.1: The map is not closed
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each accumulation point is a generalized fixed point. This, however, does not
prove convergence, because there can be many accumulation points. If we
redefine fixed points as points such that A(ω) = {ω}, then we can strengthen
the theorem [Meyer, 1976].
Theorem: [Meyer] Suppose the conditions of Zangwill’s theorem are satis-
fied for the stronger definition of a fixed point, i.e. ξ ∈ A(ω) implies ψ(ξ) <
ψ(ω) if ω is not a fixed point, then in addition to what we had before {ω(k)}
is asymptotically regular, i.e. ∥ω(k) − ω(k+1)∥ → 0.
Proof: Use the notation in the proof of Zangwill’s theorem. Suppose
∥ω(ℓi+1) − ω(ℓi)∥ > δ > 0. Then ∥ωL − ωK∥ ≥ δ. But ωK is a fixed point (in
the strong sense) and thus ωL ∈ A(ωK) = {ωK}, a contradiction. QED
Theorem: [Ostrowski] If the bounded sequence Ω = {ω(k)} satisfies ∥ω(k)−
ω(k+1)∥ → 0, then the derived set Ω′ is either a point or a continuum.
Proof: We follow Ostrowski [1966, pages 203–204]. A continuum is a closed
set, which is not the union of two or more disjoint closed sets. Of course the
derived set is closed. Suppose it is the union of the disjoint closed sets C1
and C2, which are a distance of at least p apart. We can choose k0 such that
∥ω(k) − ω(k+1)∥ ≤ p

3 for all k ≥ k0. QED
Only if the derived set is a single point, we have actual convergence. Thus
Meyer’s theorem still does not prove actual convergence, but it is close enough
for all practical purposes. Observe boundedness is essential in Theorem ??,
otherwise the derived set may be empty, think of the series ∑ 1

k
.

14.5 Rates of Convergence

The basic result we use is due to Perron and Ostrowski (1966).
Theorem: * If the iterative algorithm x(k+1) = A(x(k)), converges to x∞, *
and A is differentiable at x∞, * and 0 < ρ = ∥DA(ω∞)∥ < 1,
then the algorithm is linearly convergent with rate ρ.
Proof:
QED
The norm in the theorem is the spectral norm, i.e. the modulus of the max-
imum eigenvalue. Let us call the derivative of A the iteration matrix and
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write it as M. In general block relaxation methods have linear convergence,
and the linear convergence can be quite slow. In cases where the accumula-
tion points are a continuum we have sublinear rates. The same things can
be true if the local minimum is not strict, or if we are converging to a saddle
point.
Generalization to non-differentiable maps.
Points of attraction and repulsion.
Superlinear etc

14.5.1 Over- and Under-Relaxation

14.5.2 Acceleration of Convergence of Fixed Point
Methods

14.6 Matrix Algebra

14.6.1 Eigenvalues and Eigenvectors of Symmetric
Matrices

In this section we give a fairly complete introduction to eigenvalue problems
and generalized eigenvalue problems. We use a constructive variational ap-
proach, basically using the Rayleigh quotient and deflation. This works best
for positive semi-definite matrices, but after dealing with those we discuss
several generalizations.
Suppose A is a positive semi-definite matrix of order n. Consider the problem
of maximizing the quadratic form f(x) = x′Ax on the sphere x′x = 1. At the
maximum, which is always attained, we have Ax = λx, with λ a Lagrange
multiplier, as well as x′x = 1. It follows that λ = f(x). Note that the
maximum is not necessarily attained at a unique value. Also the maximum
is zero if and only if A is zero.
Any pair (x, λ) such that Ax = λx and x′x = 1 is called an eigen-pair of A.
The members of pair are the eigenvector x and the corresponding eigenvalue
λ.
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Result 1: Suppose (x1, λ1) and (x2, λ2) are two eigen-pairs, with λ1 ̸= λ2.
Then premultiplying both sides of Ax2 = λ2x2 by x′

1 gives λ1x
′
1x2 = λ2x

′
1x2,

and thus x′
1x2 = 0. This shows that A cannot have more than n distinct

eigenvalues. If there were p > n distinct eigenvalues, then the n × p matrix
X, which has the corresponding eigenvectors as columns, would have column-
rank p and row-rank n, which is impossible. In words: one cannot have more
than n orthonormal vectors in n−dimensional space. Suppose the distinct
values are λ̃1 > · · · > λ̃s, with s = 1, · · · , p. Thus each of the eigenvalues λi

is equal to one of the λ̃s.

Result 2: If (x1, λ) and (x2, λ) are two eigen-pairs with the same eigenvalue
λ then any linear combination αx1 + βx2, suitably normalized, is also an
eigenvector with eigenvalue λ. Thus the eigenvectors corresponding with an
eigenvalue λ form a linear subspace of Rn, with dimension, say, 1 ≤ ns ≤ n.
This subspace can be given an orthonormal basis in an n × ns matrix Xs.
The number ns is the multiplicity of λ̃s, and by implication of the eigenvalue
λi equal to λ̃s.

Of course these results are only useful if eigen-pairs exist. We have shown
that at least one eigen-pair exists, the one corresponding to the maximum of
f on the sphere. We now give a procedure to compute additonal eigen-pairs.

Consider the following algorithm for generating a sequence A(k) of matrices.
We start with k = 1 and A(1) = A. 1. Test: If A(k) = 0 stop. 2. Maximize:
Computes the maximum of x′A(k)x over x′x = 1. Suppose this is attained at
an eigen-pair (x(k), λ(k)). If the maximizer is not unique, select an arbitrary
one. 3. Orthogonalize: Replace x(k) by x(k) − ∑k−1

ℓ=1 ((x(ℓ))′x(k))x(ℓ). 4.
Deflate: Set A(k+1) = A(k) − λ(k)x(k)(x(k))′, 5. Update: Go back to step 1
with k replaced by k + 1.

If k = 1 then in step (2) we compute the largest eigenvalue of A and a corre-
sponding eigenvector. In that case there is no step (3). Step (4) constructs
A(2) by deflation, which basically removes the contribution of the largest
eigenvalue and corresponding eigenvector. If x is an eigenvector of A with
eigenvalue λ < λ(1), then

A(2)x = Ax− λ(1)x(1)(x(1))′x = Ax = λx

by result (1) above. Also, of course, A(2)x(1) = 0, so x(1) is an eigenvector
of A(2) with eigenvalue 0. If x ̸= x(1) is an eigenvector of A with eigenvalue
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λ = λ(1), then by result (2) we can choose x such that x′x(1) = 0, and thus

A(2)x = Ax− λx(1)(x(1))′x = λ(I − x(1)(x(1))′)x = λx.

We see that A(2) has the same eigenvectors as A, with the same multiplicities,
except for λ(1), which now has its old multiplicity −1, and zero, which now
has its old multiplicity +1. Now if x(2) is the eigenvector corresponding with
λ(2), the largest eigenvalue of A(2), then by result (1) x(2) is automatically
orthogonal to x(1), which is an eigenvalue of A(2) with eigenvalue zero. Thus
step (3) is not ever necessary, although it will lead to more precise numerical
computation.
Following the steps of the algorithm we see thatit defines p orthonormal
matrices Xs, which moreover satisfy X ′

sXt = 0 for s ̸= t, and with ∑p
s=1 ns =

rank(A). Also

A =
p∑

s=1
λ̃sPs, (1a)

where Ps is the projector XsX
′
s. This is the eigen decomposition or the

spectral decomposition of a positive semi-definite A.
Our algorithm stops when A(k) = 0, which is the same as ∑p

s=1 ns = rank(A).
If rank(A) < n then the minimum eigenvalue is zero, and has multiplicity
n− rank(A). Ps = I − P1 − · · · − Ps−1 = XsX

′
s is the orthogonal projector

of the null-space of A, with rank(Q) = tr(Q) = n − rank(A). Using the
square orthonormal

X =
[
X1 · · · Xs

]
we can write the eigen decomposition in the form

A = XΛX ′, (1b)

where the last n − rank(A) diagonal elements of Λ are zero. Equation (1b)
can also be written as

X ′AX = Λ, (1c)
which says that the eigenvectors diagonalize A and that A is orthonormally
similar to the diagonal matrix of eigenvalues,
We have shown that the largest eigenvalue and corresponding eigenvector
exist, but we have not indicated , at least in this section, how to compute
them. Conceptually the power method is the most obvious way. It is a
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tangential minorization method, using the inquality x′Ax ≥ y′Ay+2y′A(x−
y), which means that the iteration function is

x(k+1) = Ax(k)

∥Ax(k)∥
.

See the Rayleigh Quotient section for further details.

We now discuss a first easy generalization. If A is real and symmetric but not
necessarily positive semi-definite then we can apply our previous results to the
matrix A+ kI, with k ≥ mini λi. Or we can apply it to A2 = XΛ2X ′. Or we
can modify the algorithm if we run into an A(k) ̸= 0 with maximum eigenvalue
equal to zero. If this happens we switch to finding the smallest eigenvalues,
which will be negative. No matter how we modify the constructive procedure,
we will still find an eigen decomposition of the same form (1a) and (1b) as
in the positive semi-definite case.

The second generalization, also easy, are generalized eigenvalues of a pair
of real symmetric matrices (A,B). We now maximize f(x) = x′Ax over
x satisfying x′Bx = 1. In data analysis, and the optimization problems
associated with it, we almost invariably assume that B is positive definite.
In fact we might as well make the weaker assumption that B is positive
semi-definite, and Ax = 0 for all x such that Bx = 0. Suppose

B =
[
K K⊥

] [Λ2 0
0 0

] [
K ′

K ′
⊥

]

is an eigen decomposition of B. Change variables by writing X as x =
KΛ−1u+K⊥v. Then x′Bx = u′u and x′Ax = u′Λ−1K ′AKΛ−1u. We can find
the generalized eigenvalues and eigenvectors from the ordinary eigen decom-
position of Λ−1K ′AKΛ−1. This defines the u(s) in x(s) = KΛ−1u(s) + K⊥v,
and the choice of v is completely arbitrary.

Now suppose L is the square orthonormal matrix of eigenvectors diagonal-
izing Λ−1K ′AKΛ−1, with Γ the corresponding eigenvalues, and S ∆=KΛ−1L.
Then S ′AS = Γ and S ′BS = I. Thus S diagonalizes both A and B. For
the more general case, in which we do not assume that Ax = 0 for all x with
Bx = 0, we refer to De Leeuw (1982).

../inequalities/rayleigh.html
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14.6.2 Singular Values and Singular Vectors

Suppose A12 is an n1 × n2 matrix, A11 is an n1 × n1 symmetric matrix, and
A22 is an n2 × n2 symmetric matrix. Define

f(x1, x2) = x′
1A12x2√

x′
1A11x1

√
x′

2A22x2
.

Consider the problem of finding the maximum, the minimum, and other
stationary values of f .
In order to make the problem well-defined and interesting we suppose that
the symmetric partitioned matrix

A
∆= =

[
A11 A12
A21 A22

]

is positive semi-definite. This has some desirable consequences.
Proposition: Suppose the symmetric partitioned matrix

A
∆= =

[
A11 A12
A21 A22

]

is positive semi-definite. Then * both A11 and A22 are positive semi-definite,
* for all x1 with A11x1 = 0 we have A21x1 = 0, * for all x2 with A22x2 = 0
we have A12x2 = 0.
Proof: The first assertion is trivial. To prove the last two, consider the
convex quadratic form

q(x2) = x′
1A11x1 + 2x′

1A12x2 + x′
2A22x2

as a function of x2 for fixed x1. It is bounded below by zero, and thus attains
its minimum. At this minimum, which is attained at some x̂2, the derivative
vanishes and we have A22x̂2 = −A21x1 and thus q(x̂2) = x′

1A11x1 − x̂′
2A22x̂2.

If A11x1 = 0 then q(x̂2) ≤ 0. But q(x̂2) ≥ 0 because the quadratic form is
positive semi-definite. Thus if A11x1 = 0 we must have q(x̂2) = 0, which is
true if and only if A22x̂2 = −A21x1 = 0. QED
Now suppose

A11 =
[
K1 K1

] [Λ2
1 0

0 0

] [
K ′

1
K

′
1

]
,
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and
A22 =

[
K2 K2

] [Λ2
2 0

0 0

] [
K ′

2
K

′
2

]
are the eigen-decompositions of A11 and A22. The r1 × r1 matrix Λ2

1 and
the r2 × r2 matrix Λ2

2 have positive diagonal elements, and r1 and r2 are the
ranks of A11 and A22.
Define new variables

x1 = K1Λ−1
1 u1 +K1v1, (1a)

x2 = K2Λ−1
2 u2 +K2v2. (1b)

Then
f(x1, x2) = u′

1Λ−1
1 K ′

1A12K2Λ−1
2 u2√

u′
1u1

√
u′

2u2
,

which does not depend on v1 and v2 at all. Thus we can just consider f as
a function of u1 and u2, study its stationary values, and then translate back
to x1 and x2 using (1a) and (1b), choosing v1 and v2 completely arbitrary.

Define H ∆= Λ−1
1 K ′

1A12K2Λ−1
2 . The stationary equations we have to solve are

Hu2 = ρu1,

H ′u1 = ρu2,

where ρ is a Lagrange multiplier, and we identify u1 and u2 by u′
1u1 = u′

2u2 =
1. It follows that

HH ′u1 = ρ2u1,

H ′Hu2 = ρ2u2,

and also ρ = f(u1, u2).

14.6.3 Canonical Correlation

Suppose A1 is an n×m1 matrix and A2 is an n×m2 matrix. The cosine of
the angle between two linear combinations A1x1 and A2x2 is

f(x1, x2) = x′
1A

′
1A2x2√

x′
1A

′
1A1x1

√
x′

2A
′
2A2x2

.
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Consider the problem of finding the maximum, the minimum, and possible
other stationary values of f .

are two matrices of dimensions, respectiSpecifically there exists a non-
singular K of order n1 and a non-singular L of order n2 such that

K ′A′
1A1K = I1,

L′A′
2A2L = I2,

K ′A′
1A2L = D.

Here I1 and I2 are diagonal, with the n1 and n2 leading diagonal elements
equal to one and all other elements zero. D is a matrix with the non-zero
canonical correlations in non-increasing order along the diagonal and zeroes
everywhere else.

http://en.wikipedia.org/wiki/Principal_angles http://meyer.math.ncsu.
edu/Meyer/PS_Files/AnglesBetweenCompSubspaces.pdf

###Eigenvalues and Eigenvectors of Asymmetric Matrices

If A is a square but asymmetric real matrix the eigenvector-eigenvalue situa-
tion becomes quite different from the symmetric case. We gave a variational
treatment of the symmetric case, using the connection between eigenvalue
problems and quadratic forms (or ellipses and other conic sections, if you
have a geometric mind).That connection, howver, is lost in the asymmetric
case, and there is no obvious variational problem associated with eigenvalues
and eigenvectors.

Let us first define eigenvalues and eigenvectors in the asymmetric case. As
before, an eigen-pair (x, λ) is a solution to the equation Ax = λx with x ̸= 0.
This can also be written as (A−λI)x = 0, which shows that the eigenvalues
are the solutions of the equation πA(λ) = det(A−λI) = 0. Now the function
πA is the characteristic polynomial of A. It is a polynomial of degree n, and
by the fundamental theorem of algebra there are n real and complex roots,
counting multiplicities. Thus A has n eigenvalues, as before, although some
of them can be complex

A first indication that something may be wrong, or least fundamentally dif-
ferent, is the matrix

A =
[
0 1
0 0

]
.

http://en.wikipedia.org/wiki/Principal_angles
http://meyer.math.ncsu.edu/Meyer/PS_Files/AnglesBetweenCompSubspaces.pdf
http://meyer.math.ncsu.edu/Meyer/PS_Files/AnglesBetweenCompSubspaces.pdf
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The characteristic equation πA(λ) = λ2 = 0 has the root λ = 0, with multi-
plicity 2. Thus an eigenvector should satisfy[

0 1
0 0

] [
x1
x2

]
=
[
0
0

]
,

which merely says x2 = 0. Thus A does not have two linearly independent,
let alone orthogonal, eigenvectors.
A second problem is illustrated by the anti-symmetric matrix

A =
[

0 1
−1 0

]

for which the characteristic polynomial is πA(λ) = λ2 + 1. The characteristic
equations has the two complex roots +

√
−1 and −

√
−1. The corresponding

eigenvectors are the columns of[
1 1√
−1 −

√
−1

]
.

Thus both eigenvalues and eigenvectors may be complex. In fact if we take
complex conjugates on both sides of Ax = λx, and remember that A is real,
we see that Ax = Ax = λx. Thus (x, λ) is an eigen-pair if and only if (x, λ)
is. If A is real and of odd order it always has at least one real eigenvalue. If
an eigenvalue λ is real and of multiplicity m, then there are m corresponding
real and linearly independent eigenvectors. They are simply a basis for the
null space of A− λI.
A third problem, which by definition did not come up in the symmetric case,
is that we now have an eigen problem for both A and its transpose A′. Since
for all λ we have det(A− λI) = det(A′ − λI) it follows that A and A′ have
the same eigenvalues. We say that (x, λ) is a right eigen-pair of A if Ax = λx,
and (y, λ) is a left eigen-pair of A if y′A = λy′, which is of course the same
as A′y = λy.
A matrix A is diagonalizable if there exists a non-singular X such that
X−1AX = Λ, with Λ diagonal. Instead of the spectral decomposition of sym-
metric matrices we have the decomposition A = XΛX−1 or X−1AX = Λ. A
matrix that is not diagonalizable is called defective.
Result: A matrix A is diagonalizable if and only if it has n linearly in-
dependent right eigenvectors if and only if it has n linearly independent
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left eigenvectors. We show this for right eigenvectors. Collect them in the
columns of a matrix X. Thus AX = XΛ, with X non-singular. This implies
X−1A = ΛX−1, and thus the rows of Y = X−1 are n linearly indepen-
dent left eigenvalues. Also X−1AX = Λ. Conversely if X−1AX = Λ then
AX = XΛ and A′X−1 = X−1Λ, so we have linearly independent left and
right eigenvectors.

Result: If the n eigenvalues λj of A are all diferent then the eigenvectors xj

are linearly independent. We show this by contradiction. Select a maximally
linearly independent subset from the xj. Suppose there are p < m, so the
eigenvectors are linearly dependent. Without loss of generality the maximally
linearly independent subset can be taken as the first p. Then for all j > p
there exist αjs such that

xj =
p∑

s=1
αjsxs. (1)

Premultiply (1) with λj to get

λjxj =
p∑

s=1
αjsλjxs. (2)

Premultiply (1) by A to get

λjxj =
p∑

s=1
αjsλsxs. (3)

Subtract (2) from (3) to get

p∑
s=1

αjs(λs − λj)xs = 0,

which implies that αjs(λs−λj) = 0, because the xs are linearly independent.
Since the eigenvalues are unequal, this implies ajs = 0 and thus xj = 0 for
all j > p, contradicting that the xj are eigenvectors. Thus p = m and the xj

are linearly independent.

Note 030615 Add small amount on defective matrices. Add stuff on char-
acteristic and minimal polynomials. Take about using the SVD instead.
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14.6.4 Modified Eigenvalue Problems

Suppose we know an eigen decomposition B = KΦK ′ of a real symmetric
matrix B of order n, and we want to find an eigen decomposition of the
rank-one modification A = B + γcc′, where γ ̸= 0. The problem was first
discussed systematically by Golub (1973). Also see Bunch, Nielsen, and
Sorensen (1978) for a more detailed treatment and implmentation.
Eigen-pairs of A must satisfy

(B + γcc′)x = λx.

Change variables to y = K ′x and define d ∆=K ′c. For the time being suppose
all elements of d are non-zero and all elements of Φ are different, with ϕ1 >
· · · > ϕn.
We must solve

(Φ + γdd′)y = λy,

which we can also write as

(Φ− λI)y = −γ(d′y)d.

Suppose (y, λ) is a solution with d′y = 0. Then (Φ − λI)y = 0 and because
all ϕk are different y must be a vector with a single element, say yk, not equal
to zero. But then d′y = ykdk, which is non-zero. Thus d′y is non-zero at a
solution, and because eigenvectors are determined up to a scalar factor we
may as well require e′y = 1.
Now solve

(Φ− λI)y = −γd,
d′y = 1.

At a solution we must have λ ̸= ϕi, because otherwise di would be zero. Thus

yi = −γ di

ϕi − λ
,

and we can find λ by solving

1 + γ
n∑

i=1

d2
i

ϕi − λ
= 0.
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If we define
f(λ) =

n∑
i=1

d2
i

ϕi − λ
,

then we must solve f(λ) = − 1
γ
. Let’s first look at a particular f .
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Figure 1: Linear Secular Equation
We have f ′(λ) > 0 for all λ, and

lim
λ→−∞

f(λ) = lim
λ→+∞

f(λ) = 0.

There are vertical asymptotes at all ϕi, and between ϕi and ϕi+1 the function
increases from −∞ to +∞. For λ < ϕn the function increases from 0 to +∞
and for λ > ϕ1 it increases from −∞ to 0. Thus the equation f(λ) = −1/γ
has one solution in each of the n− 1 open intervals between the ϕi. If γ < 0
it has an additional solution smaller than ϕn and if γ > 0 it has a solution
larger than ϕ1. If γ < 0 then

λn < ϕn < λn−1 < · · · < ϕ2 < λ1 < ϕ1,

and if γ > 0 then

ϕn < λn < ϕn−1 · · · < ϕ2 < λ2 < ϕ1 < λ1.
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Finding the actual eigenvalues in their intervals can be done with any root-
finding method. Of course some will be better than other for solving this
particular problem. See Melman Melman (1995), Melman (1997), and Mel-
man (1998) for suggestions and comparisons.
We still have to deal with the assumptions that the elements of d are non-
zero and that all ϕi are different. Suppose p elements of di are zero, without
loss of generality it can be the last p. Partition Φ and d accordingly. Then
we need to solve the modified eigen-problem for[

Φ1 + γd1d
′
1 0

0 Φ2

]
.

But this is a direct sum of smaller matrices and the eigenvalues problems for
Φ2 and Φ1 + γd1d

′
1 can be solved separately.

If not all ϕi are different we can partitioning the matrix into blocks corre-
sponding with the, say, p different eigenvalues.

ϕ1I + γd1d
′
1 γd1d

′
2 · · · γd1d

′
p

γd2d
′
1 ϕ2I + γd2d

′
2 · · · γd2d

′
p

... ... . . . ...
γdpd

′
1 γdpd

′
2 · · · ϕpI + dpd

′
p

 .
Now use the p matrices Ls which are square orthonormal of order ns, and
have their first column equal to ds/∥ds∥. Form the direct sum of the Ls and
compute L′

s(Φ + γdd′)Ls. This gives
ϕ1I + γ∥d1∥2e1e

′
1 γ∥d1∥∥d2∥e1e

′
2 · · · γ∥d1∥∥dp∥e1e

′
p

γ∥d2∥∥d1∥e2e
′
1 ϕ2I + γ∥d2∥2e2e

′
2 · · · γ∥d2∥∥dp∥e2e

′
p

... ... . . . ...
γ∥dp∥∥d1∥epe

′
1 γ∥dp∥∥d2∥epe

′
2 · · · ϕpI + γ∥dp∥2epe

′
p


with the es unit vectors, i.e. vectors that are zero except for element s that
is one.
A row and column permutation makes the matrix a direct sum of the p
diagonal matrices ϕsI of order ns − 1 and the p× p matrix

ϕ1 + γ∥d1∥2 γ∥d1∥∥d2∥ · · · γ∥d1∥∥dp∥
γ∥d2∥∥d1∥e2e

′
1 ϕ2 + γ∥d2∥2 · · · γ∥d2∥∥dp∥

... ... . . . ...
γ∥dp∥∥d1∥epe

′
1 γ∥dp∥∥d2∥ · · · ϕp + γ∥dp∥2
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This last matrix satisfies our assumptions of different diagonal elements and
nonzero off-diagonal elements, and consequently can be analyzed by using
our previous results.
A very similar analysis is possible for modfied singular value decomposition,
for which we refer to Bunch and Nielsen (1978)).

14.6.5 Quadratic on a Sphere

Another problem naturally leading to a different secular equation is finding
stationary values of a quadratic function f defined by

f(x) = 1
2x

′Ax− b′x+ c

on the unit sphere {x | x′x = 1}. This was first studied by Forsythe and
Golub (1965). Their treatment was subsequently simplified and extended by
Spjøtvoll (1972) and Gander (1981). The problem has recently received some
attention because of the development of trust region methods for optimiza-
tion, and, indeed, because of Nesterov majorization.
The stationary equations are

(A− λI)x = b,

x′x = 1.

Suppose A = KΦK ′ with the ϕ1 ≥ · · · ≥ ϕn , change variables to y = K ′x,
and define d ∆=K ′b. Then we must solve

(Φ− λI)y = d,

y′y = 1.

Assume for now that the elements of d are non-zero. Then λ cannot be equal
to one of the ϕi. Thus

yi = di

ϕi − λ
and we must have h(λ) = 1, where

h(λ) ∆=
n∑

i=1

d2
i

(ϕi − λ)2 .
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Again, let’s look at an example of a particular h. The plots in Figure 1
show both f ad h. We see that h(λ) = 1 has 12 solutions, so the remaining
question is which one corresponds with the minimum of f .
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Figure 1: Quadratic Secular Equation

Again h has vertical asympotes at the ϕi. Beween two asymptotes h decreases
from +∞ to a minimum, and then increases again to +∞. Note that

h′(λ) = 2
n∑

i=1

d2
i

(ϕi − λ)3 ,

and

h′′(λ) = 6
n∑

i=1

d2
i

(ϕi − λ)4 ,

and thus h is convex in each of the intervals between asymptotes. Also h
is convex and increasing from zero to +∞ on (−∞, ϕn) and convex and
decreasing from +∞ to zero on (ϕ1,+∞).
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14.6.6 Generalized Inverses

14.6.7 Partitioned Matrices

14.7 Matrix Differential Calculus

14.7.1 Matrix Derivatives

A matrix, of course, is just an element of a finite dimensional linear vector
space. We write X ∈ Rn×m, and we use the inner product ⟨X, Y ⟩ = trX ′Y,
and corresponding norm ∥X∥ =

√
tr X ′X. Thus derivatives of real-valued

function of matrices, or derivatives of matrix-valued functions of matrices,
are covered by the usual definitions and formulas. Nevertheless there is a
surprisingly huge literature on differential calculus for real-valued functions
of matrices, and matrix-valued functions of matrices.
One of the reason for the proliferation of publications is that a matrix-valued
function of matrices can be thought of a function of for matrix space Rn×m to
matrix-space Rp×q, but also as a function of vector space Rnm to vector space
Rpq. There are obvious isomorphisms between the two representations, but
they naturally lead to different notations. We will consistently choose the
matrix-space formulation, and consequently minimize the role of the vec()
operator and the special constructs such as the commutation and duplication
matrix.
The other choice
Nevertheless having a compendium of the standard real-valued and matrix-
valued functions available is of some interest. The main reference is the book
by Magnus and Neudecker (1999). We will avoid using differentials and the
vec() operator.
Suppose F is a matrix valued function of a single variable x. In other words
F : R→ Rn×m is a matrix of functions, as in

F (x) =


f11(x) f12(x) · · · f1m(x)
f21(x) f22(x) · · · f2m(x)

... ... . . . ...
fn1(x) fn2(x) · · · fnm(x)

 .
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Now the derivatives of any order of F , if they exist, are also matrix valued
functions

DsF (x) =


Dsf11(x) Dsf12(x) · · · Dsf1m(x)
Dsf21(x) Dsf22(x) · · · Dsf2m(x)

... ... . . . ...
Dsfn1(x) Dsfn2(x) · · · Dsfnm(x)

 .

If F is a function of a vector x ∈ Rp then partial derivatives are defined
similarly, as in

Di1···isF (x) =


Di1···isf11(x) Di1···isf12(x) · · · Di1···isf1m(x)
Di1···isf21(x) Di1···isf22(x) · · · Di1···isf2m(x)

... ... . . . ...
Di1···isfn1(x) Di1···isfn2(x) · · · Di1···isfnm(x)

 ,

with 1 ≤ is ≤ p. The notation becomes slightly more complicated if F is a
function of a p× q matrix X, i.e. an element of Rp×q. It then makes sense to
write the partials as D(i1,j1)···(is,js)F (X) where 1 ≤ is ≤ p and 1 ≤ js ≤ q.

14.7.2 Derivatives of Eigenvalues and Eigenvectors

This appendix summarizes some of the results in De Leeuw (2007a), De
Leeuw (2008), and De Leeuw and Sorenson (2012). We refer to those reports
for more extensive calculations and applications.
Suppose A and B are two real symmetric matrices depending smoothly on
a real parameter θ. The notation below suppresses the dependence on θ of
the various quantities we talk about, but it is important to remember that
all eigenvalues and eigenvectors we talk about are functions of θ.
The generalized eigenvalue λs and the corresponding generalized eigenvector
xs are defined implicitly by Axs = λsBxs. Moreover the eigenvector is iden-
tified by x′

sBxs = 1. We suppose that in a neighborhood of θ the eigenvalue
λs is unique and B is positive definite. A precise discussion of the required
assumptions is, for example, in Wilkinson (1965) or Kato (1976).
Differentiating Axs = λsBxs gives the equation

(A− λsB)(Dxs) = −((DA)− λs(DB))xs + (Dλs)Bxs, (1)
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while x′
sBxs = 1 gives

x′
sB(Dxs) = −1

2x
′
s(DB)xs. (2)

Premultiplying (1) by x′
s gives

Dλs = x′
s((DA)− λs(DB))xs

Now suppose AX = BXΛ with X ′BX = I. Then from (1), for t ̸= s,
premultiplying by x′

t gives

(λt − λs)x′
tB(Dxs) = −x′

t((DA)− λs(DB))xs.

If we define g by

gt
∆=


1
λt−λs

x′
t((DA)− λs(DB))xs for t ̸= s,

1
2x

′
t(DB)xt for t = s,

then X ′B(Dxs) = −g and thus Dxs = −Xg.
A first important special case is the ordinary eigenvalue problem, in which
B = I, which obviously does not depend on θ, and consequently has DB = 0.
Then

Dλs = x′
s(DA)xs,

while

gt
∆=


1
λt−λs

x′
t(DA)xs for t ̸= s,

0 for t = s.

If we use the Moore_Penrose inverse the derivatives of the eigenvector can
be written as

Dxs = −(A− λsI)+(DA)xs.

Written in a different way this expression is

Dxs =
∑
t̸=s

ust

λs − λt

xt,

with U
∆=X ′(DA)X, so that Dλs = uss.

In the next important special case is the singular value problem The singular
values and vectors of an n×m rectangular Z, with n ≥ m, solve the equations



244 CHAPTER 14. BACKGROUND

Zys = λsxs and Z ′xs = λsys. It follows that Z ′Zys = λ2
sys, i.e. the right

singular vectors are the eigenvectors and the singular values are the square
roots of the eigenvalues of A = Z ′Z.
Now we can apply our previous results on eigenvalues and eigenvectors. If
A = Z ′Z then DA = Z ′(DZ) + (DZ)′Z. We have, at an isolated singular
value λs,

Dλ2
s = y′

s(Z ′(DZ) + (DZ)′Z)ys = 2λsx
′
s(DZ)ys,

and thus
Dλs = x′

s(DZ)ys.

For the singular vectors our previous results on eigenvectors give

Dys = −(Z ′Z − λ2
sI)+(Z ′(DZ) + (DZ)′Z)ys,

and in the same way

Dxs = −(ZZ ′ − λ2
sI)+(Z(DZ)′ + (DZ)Z ′)xs.

Now let Z = XΛY ′, with X and Y square orthonormal, and with Λ and n×m
diagonal matrix (with ∇⊣\∥(Z) positive diagonal entries in non-increasing
order along the diagonal).

Also define U ∆=X ′(DZ)Y . Then Dλs = uss, and

Dys =
∑
t̸=s

λsust + λtuts

λ2
s − λ2

t

yt,

and
Dxs =

∑
t̸=s

λtust + λsuts

λ2
s − λ2

t

xt.

Note that if Z is symmetric we have X = Y and U is symmetric, so we
recover our previous result for eigenvectors. Also note that if the parameter
θ is actually element (i, j) of Z, i.e. if we are computing partial derivatives,
then ust = xisyjt.
The results on eigen and singular value decomposition can be applied in many
different ways. mostly by simply using the product rule for derivatives, For
a square symmetric A or order n, for example, we have

f(A) ∆=
n∑

s=1
f(λs)xsx

′
s.
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and thus

Df(A) =
n∑

s=1
Df(λs)(Dλs)xsx

′
s + f(λs)(xs(Dxs)′ + (Dxs)x′

s).

The generalized inverse of a rectangular Z is

Z+ ∆=
r∑

s=1

1
λs

ysx
′
s,

where r = rank(Z). Summation is over the positive singular values, and
for differentiability we must assume that the rank of Z is constant in a
neighborhood of θ.
The Procrustus transformation of a rectangular Z, which is the projection of
Z on the Stiefel manifold of orthonormal matrices, is

proc(Z) ∆=Z(Z ′Z)− 1
2 =

m∑
s=1

xsy
′
s,

where we assume for differentiability that Z is of full column rank.
The projection of Z on the set of all matrices of rank less than or equal to
r, which is of key importance in PCA and MDS, is

Πr(Z) ∆=
r∑

s=1
λsxsy

′
s = Z

r∑
s=1

ysy
′
s,

where summation is over the r largest singular values.

14.8 Graphics and Code

14.8.1 Multidimensional Scaling

Many of the examples in the book are taken from the area of multidimensional
scaling (MDS). In this appendix we describe the basic MDS notation and
terminology. Our approach to MDS is based on Kruskal [1964ab], using
terminology and notation of De Leeuw [1977] and De Leeuw and Heiser
[1982]. For a more recent and more extensive discussion of MDS see Borg
and Groenen [2005].
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The data in an MDS problem consist of information about the dissimilari-
ties between pairs of n objects. Dissimilarities are like distances, in the sense
that they give some information about physical or psychological closeness,
but they need not satisfy any of the distance axioms. In metric MDS the dis-
similarity between objects i and j is a given number δij, usually positive and
symmetric, with possibly some of the dissimilarities missing. In non-metric
MDS we only have a partial order on some or all of the n2 dissimilarities.
We want to represent the n objects as n points in a metric space in such
a way that the distances between the points approximate the dissimilarities
between the objects.
An MDS loss function is typically of the form σ(X,∆) = ∥∆ − D(X)∥ for
some norm, or pseudo-norm, on the space of n×n matrices. Here X are the
n points in the metric space, with D(X) the symmetric, non-negative, and
hollow matrix of distances. The MDS problem is to minimize loss over all
mappings X and all feasible ∆. In the metric MDS problems ∆ is fixed at
the observed data, in non-metric MDS any monotone transformation of ∆ is
feasible.
The definition of MDS we have given leaves room for all kinds of metric
spaces and all kinds of norms to measure loss. In almost all applications
both in this book and elsewhere, we are interested in Euclidean MDS, where
the metric space is Rp, and in loss functions that use the (weighted) sum of
squares of residuals rij(X,∆). Thus the loss function has the general form

σ(X,∆) =
n∑

i=1

n∑
j=1

wijr
2
ij(X,∆),

where X is an n× p matrix called the configuration.
The most popular choices for the residuals are

R1(X,∆) = ∆−D(X),
R2(X,∆) = ∆2 −D2(X),
R0(X,∆) = log ∆− logD(X),

RS(X,∆) = −1
2Jn(∆2 −D2(X))Jn.

Here ∆2 and log ∆ are elementwise transformations of the dissimilarities,
with corresponding transformations D2 and logD of the distances. In RS
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we use the centering operator Jn = I − 1
n
ee′. For Euclidean distances, and

centered X,
RS(X,∆) = Γ(∆)−XX ′,

with Γ(∆) ∆=−1
2Jn∆2Jn. Metric Euclidean MDS, using RS with unit weights,

means finding the best rank p approximation to Γ(∆), which can be done
finding the p dominant eigenvalues and corresponding eigenvectors. This is
also known as Classical MDS [Torgerson, 1958].

The loss function σ1 that uses R1 is called stress [Kruskal, 1964ab], the
function σ2 that uses R2 is sstress [Takane et al, 1977], and loss σS that uses
RS is strain [De Leeuw and Heiser, 1982]. R0 has been nameless so far, but
it has been proposed by Ramsay [1977]. Because of its limiting properties
(see below), we will call it strull.

Both R1 ant R2 are obviously special cases of

Rr(X,∆) = ∆r −Dr(X),

for which the corresponding loss function σr is called r-stress. Because

lim
r→0

Rr(X,∆)
r

= log ∆− logD(X)

we see that σ0 is a limiting case of 1
r2σr.

There is some matrix notation that is useful in dealing with Euclidean MDS.
Suppose ei and ej are unit vectors, with all elements equal to zero, except
one element which is equal to one. Then

d2
ij(X) = (ei − ej)′XX ′(ei − ej) = tr X ′AijX = tr AijC(X),

where Aij
∆=(ei − ej)(ei − ej)′ and C(X) ∆=XX ′. If we define

A∗p
ij

∆=Aij ⊕ · · · ⊕ Aij︸ ︷︷ ︸
p times

,

and x = vec(X) then d2
ij(X) = x′A∗p

ij x, which allows us to work with vectors
in Rnp instead of matrices in Rn×p.
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14.8.2 Cobweb Plots

Suppose we have a one-dimensional Picard sequence which starts at x(0), and
then is defined by

x(k+1) = f(x(k)).

The cobweb plot draws the line y = x and the function y = f(x). A fixed
point is a point where the line and the function intersect. We visualize the
iteration by starting at (x(0), f(x(0))) = (x(0), x(1)), then draw a horizontal line
to (f(x(0)), f(x(0))) = (x(1), x(1)), then draw a vertical line to (x(1), f(x(1))) =
(x(1), x(2)), and so on. For a convergent sequence we will see zig-zagging
parallel to the axes in smaller and smaller steps to a point where the function
and the line intersect.
An illustration will make this clear. The Newton iteration for the square
root of a is

x(k+1) = 1
2

(
x(k) + a

x(k)

)
.

The iterations for a = .5 starting with x(0) = .1 are in the cobweb plot in
figure 14.2.
In the code section there is R code for a general cobweb plotter with a variable
number of parameters.
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Figure 14.2: Cobweb plot for Newton Square Root Iteration
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Chapter 15

Code

blockRelax <-
function (f,

x,
g,
itmax = 100,
eps = 1e-8,
verbose = TRUE) {

k <- split (1:length (x), g)
m <- length (k)
fold <- f (x)
itel <- 1
blockFun <- function (z, g, y, i) {

y[i] <- z
return (g (y))

}
repeat {

for (i in 1:m) {
kk <- k[[i]]
o <-

optim (
x[kk],
blockFun,
gr = NULL,

251
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g = f,
y = x,
i = kk,
method = "BFGS"

)
x[kk] <- o$par
fnew <- o$value

}
if (verbose)

cat(
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"fold: ",
formatC (

fold,
digits = 8,
width = 12,
format = "f"

),
"fnew: ",
formatC (

fnew,
digits = 8,
width = 12,
format = "f"

),
"\n"

)
if ((itel == itmax) || ((fold - fnew) < eps))

break
itel <- itel + 1
fold <- fnew

}
return (list (x = x, f = fnew))

}

Code Segment 1: Block Relaxation
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bls <-
function (z,

y,
xold = rep(0, ncol(y)),
blocks = as.list(1:ncol(y)),
itmax = 100,
eps = 1e-10,
verbose = TRUE) {

nblocks <- length (blocks)
fold <- sum((z - y %*% xold) ˆ 2)
xopt <- qr.solve(y, z)
eold <- sqrt (sum ((xold - xopt) ˆ 2))
itel <- 1
repeat {

xwork <- xold
for (i in 1:nblocks) {

u <- drop (y %*% xwork)
yact <- y[, blocks[[i]], drop = FALSE]
xact <- xwork[blocks[[i]]]
yres <- z - (u - yact %*% xact)
xwork[blocks[[i]]] <- qr.solve (yact, yres)

}
xnew <- xwork
fnew <- sum((z - y %*% xnew) ˆ 2)
enew <- sqrt (sum ((xold - xnew) ˆ 2))
if (verbose) {

cat(
"itel: ",
formatC(itel, digits = 3, width = 3),
"fold: ",
formatC(

fold,
digits = 6,
width = 10,
format = "f"

),
"fnew: ",
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formatC(
fnew,
digits = 6,
width = 10,
format = "f"

),
"ratio: ",
formatC(

enew / eold,
digits = 6,
width = 10,
format = "f"

),
"\n"

)
}
if ((abs(fold - fnew) < eps) || (itel == itmax))

break()
fold <- fnew
eold <- enew
xold <- xnew
itel <- itel + 1

}
return (x)

}

Code Segment 2: Block Least Squares

blockRate <-
function (f,

x,
blocks = as.list (1:length(x)),
numerical = FALSE,
product_form = FALSE) {

if (numerical) {
h <- hessian (f, x)

} else {
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h <- f (x)
}
nvar <- length (x)
nblocks <- length (blocks)
nb <- 1:nblocks
nn <- 1:nvar
g <-

sapply (nn, function (i)
which (sapply (blocks, function (x)

any (i == x))))
if (product_form) {

sder <- diag (nvar)
for (i in nb) {

bi <- blocks [[i]]
ei <- ifelse (outer(nn, bi, "=="), 1, 0)
sder <-

(diag(nvar) - ei %*% solve (h[bi, bi], h[bi, , drop = FALSE])) %*% sder
}

} else {
alow <- h * ifelse (outer (g, g, ">="), 1, 0)
sder <- -solve (alow, h - alow)

}
return (sder)

}

Code Segment 3: Block Rate

cobwebPlotter <-
function (xold,

func,
lowx = 0,
hghx = 1,
lowy = lowx,
hghy = hghx,
eps = 1e-10,
itmax = 25,
...) {
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x <- seq (lowx, hghx, length = 100)
y <- sapply (x, function (x)

func (x, ...))
plot (

x,
y,
xlim = c(lowx , hghx),
ylim = c(lowy, hghy),
type = "l",
col = "RED",
lwd = 2

)
abline (0, 1, col = "BLUE")
base <- 0
itel <- 1
repeat {

xnew <- func (xold, ...)
if (itel > 1) {

lines (matrix(c(xold, xold, base, xnew), 2, 2))
}
lines (matrix(c(xold, xnew, xnew, xnew), 2, 2))
if ((abs (xnew - xold) < eps) || (itel == itmax)) {

break ()
}
base <- xnew
xold <- xnew
itel <- itel + 1

}
}

Code Segment 4: Cobweb Plotter
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