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"nis bock is a corrected version of my éissertation of Februvary 1973. There ere

ge number of emall errcrs.
o

213 not be referred Lo as such
Trere are three major develepments in the area cove

place a lesrge nurber of FORT 'RAN prograns is

ané Mike Tiok-Joe of the CRI, the computing

A corresponding series of program abstiracts

who is interesta=d in these ebstractis should contact

T
Tre projeczt will probadly not be finished before the end cf 197
ccnceiveble that the programs will be corrected ard/or extended during the cource

he project. The current programs, for exemple, ell use the Jacobl method 1o
J = S E} )

O
b
ot

the symmelr?

elmost certainly be replaced dy a Househclder-Givens
hol

cozpute the eigenvalues and eigenvecteors of

The second Gevelopment is stetistical. Fer som

e
term in the expansions given in section 6.8. This

to produce ncthing but very lon and

of cmses encountered in practice the number of replicaticns will s

smeil for these Sormulas to apply. Moreover the methods
f the msre interesting rull hypotheses, basically bvecsau

exnansicns depends on the assumption that the eigenvalues
2 > 4
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a
f the eigenvelues tends, with probability one, to the semi-cirele

law of Wigner. By the condensed distribution we mean the randem function

Wwix) == 7 O ,x),
be n .= 1
i=1
with
1if At < x,
§(al,x) = *
VAL e A

0 ctherwise.
The semi-circle lew is an absolutely continuous ditrivuticn fuacticn with density

given by
w(x) = (27r02)-1 /(462 - x2)

on the intewvael (-20,+20), and zero elsewhere. The most generzl

\

those of Arnold (1971), who proves that Wn(x) - W{x} a.s. for

which seem quite strong, but which ere actually met in some of the example we



2 chapter L. There are three directions in wheih the results of Arnold
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should te extended. In the first place we would like to weaken the restrictions
otably those dealing with independence and equidistribution of the ma+*;x elemernts),

in the second place we would like to establish the weak convergence of the

eppropriately normed random functiion Wn(x) - W(x) to some well-defined renden

function on the seme interval, azd ir the third place we would like to obtain

inforration about the asymptotic distribution of Xoimogorov-Smirnov type

tics such as a sultebly normed version of sup (W {x) - W{x)| .
"n
x

I am not sure in how far this last program can actually be carried out, end I am
certainly not sure that I can carry out even a small part of it. The resu
however, certainly bte very useful, not only for some of the methods discussed in

this book, but for psychometrics in general. If a lerge part of it could te carried out
scue of my rescrvations sbout the possibility of rigorous stetistical inference

in these exploretive eigenvector-eigenvalue techniques would 2lmost surely disappear,

although I still think that the discussion in section 1.3 of this bock remairs

The third development is in the direc%ion of normetric cenonical anelysis. In szction

2.%9 we pointcd out that ordinal restrictions on the weights could be incorporated

rether easily. Kevertheless we still measure homogenelty in &a essentially metric way.
0 [+

It is, however, possible to define homogerneity measures which have the progeriy

a

tnet the quantification is perfectly nomogeneous iff all induced vectors of ccores

are monotone with each other. Defire

t = (2., - 2z, L o- .
Siugir < (3 ‘11)( xj ™ P!
V2 now make the pertition
Scurce Coefficient
n o n m
etween column 3= z 2 2 Z ti?"l'
i=1 j=1 k=1 151 F3I
a mon 7
Vithin columns W) i IS R I O
i=1 3=1 k=1 1=1 k391 ik3J1
m n m ,
Total T = D N NN T
j=1 %=1 1=1 1EL

Ve can maximize B/T over the weights by using gradient or alternating least sguares
methods, starting with the original meiric solution as a first approximetion. Becesse
the beiwesn-cormponent is essentially the same for both the metric ard the nommeiric
vartitions we can derive some interesiing relationships between the two arproaches.

If we want to w2 can coipute edditional solutions by requiring orthogonelity of the
\

different sets c¢f weights, either in the sense used throughout this vook, or in the

sense of section 3.21.
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cn to some of the current topics in

social sciences in general. Its
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peychometrics and data analysis
murpose is to justify to some exten’ the scaling % chniques discussed in
this dissertation. We do this by ciscussing a number of mcre or less
recent conbroversies in the data analytic end related methodological
literature (some of these controversies are more or less dramstized for

cument). In some cases the discussior of these contro-

tihe saxe of the argu

y relevent for the evaluation o
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class of techniques discussed in our later chapters.

1.1 Clinical and statisticel peychologists

Cnce upon .. time therc was a heated controversy between

superiority of either the clinical or the statistical metvhods of predic-

tion, the possibvility and the usefulness of an 'objective' or even 'oujecti-
vistie' approach to the social sclences, the usefulness of hermensutic!
ohenemenclogical! methods, the distinction between 'Naturwisgsenschaf-
ten® and 'Gelsteswissenscheften', and the role of 'Versienen' in the

use we do not want to get mixed up in all of these
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problems we sepurate them into three classes: philosophical, empiricel, end

It nas o 4O Wwith the methodolo-

the besheviour of individuals end/or sociael
instituzions by getiting to kzow the rules {and/or values) that goverrn
iem has not been satisfactory solved, but as it
this is not exactly o surprise. We can agree

ot the function of science to give & 'complete description of

30), and that it certainly is not the function
of science to give a partial sensory of emotional reproducticn of reslity
{ of Rudner 196§, p 69-70, p 81-83), but in the last analysis this oaly
seems to mean that we {a rutber of scientists) agree ebout a parvicular

-

definition of science {ef Bleck 1534, p 3-23). Ciher sclentists agr

ing of the area under considerztion {cf Winch 1958, p 113), and that in

some szreas it may be impossible to apply statistics at all.



controversy seems to amount to the fact that some scientists
e

rule-knowing aspects

propedeutic to true
ethodological anarchy. Other
important ideas belong to that

technological 'design' espects

"irst group says that 'Verstehen' is

s

izportont but certainly not scientific, the second group

says that the
sults of the phrsicalistic espproach to the social sciences ere scientific,

o t this point both groups get very engry. This
question of character, & /

two groups of scientists

fignht over the ownerghip of " the labels 'science'

are, a&s labels, both not very important and not very
convincingly argued by Black (195%) that all defini-
thod' ere essentizlly persuasive in the sense of
2nstein hes even defended the more general peint of
really only *his' are persu-
ions‘that destroy prejudices. This

ism, and algo for behaviourisa

cures him, you win. In the same way if you succeéd in persuading your friend

thot psryeonology is ofly bedly formulated physies, and this solves hi

cou win {Wittgenstein 1956, p 23-28). Lord Rutherford once said that
o s and stamp collecting, bit nobody believes that

it is rot the task of science o give the

n
¥
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innumerstle psychologists still believe that the only

rt experiences is to recreate them in the reader or

that physics is e science, but for some reason or another

iculties with psychology, history, ethics, esthetics,

sematics (the reasons are different in these different

all these disciplines are practiced by people who

‘ves scientists, who are payed by scientific ins stitutions for

£ifis work, and who sare consicdered scientists by their friends,

v lots of other people. This may Le a better point
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[+
i
@
o
43
Is%
o

than an Aristotelian definition of science which leads to useless
end clightly ridiculous quarrels. Of course the empirical problems about
tical prediction are complete-

althouzh not everybody seens
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ss as a psychologica

the predictions of the ciin

limited value anyway.
From our point of view
the arguments used by the ol

other social sciences) agal

methods.
it is the
of a) g

comruted for grouvs of peop
glinical) psychclogist.
oI the nzture of g
sis cn descriptive st
behavioural science cou
a particular situation.
behavicur of a single
to another, even if the condit
icentical {and even if

ations). Pert of this

benaviour of e subject
which we may consider
stochastic model may or may not be appropria
a large number of situations it has be

subjects has a typical Lehaviour and

this pettern are merely randorn (with
that the psychological Journals are filled with &rticles in
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them at all. Sometimes there is only order and

er. We only suppose in

I

no group struxure, sometimes there is not even or

+vis dissertaticn that classification can te wambiguously performed, i.e. ‘

ko]

“luence of experimental psychologz:
ustrated in the book of Guilford (19SL), has led

gast ordinal in crder to be scelaetle

even in the more recent books of Torgerson (1958)

The psychophysicel scaling methods require gualitative

these can be traaslated directly into {probabilistic) ordinal

underlying scale. Experimental psychologists and the

poychology have (or had) a tendency
end less siructured data collected
de is somevhat beside the pcint.

ial classificetion in gendral, is

terns of 'weake relaticnal systems are called 'sofi' by some psychologists.
ususl use 8s & term of opprosriuz for the aree is guite unfair. Work

arczs need not be any less rigorous or scientifie; truth statements

to be less specific' {Coombs 1964,

we usuelly need larger samples). It

maintain that the

nas been parmful, but some of the hebits and prejudices that survive from

“rnese earller periods are certainly harmful and must be abandoned {the same
“hing is true for the étructured labyrintn of bad habits cslled psychological
matricians)

cross tables

analysis hes been dominated by the
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distriiution for & awzber ¢f cbvious reascrns. For multinorzal

Gistrivutions some standard stetistical optimizezion problems could be
m

tiv ‘y sinple, end the
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multincrzal distribution could be epplied to a very lerge number of data.
Nevertheless not a single statistician has ever maintained that multiva-
riate enalysis is essentially multincrmal, and essentlially linmited to
cele data. A sozewhat irritated quotation of

exposed exclusively to certain algebraic men p~1azion

s
such manipulations +to be the essence of mathematics. A moere sophisticated vie

arch could be saved by reccgrnitiun of the Tzct that
ications lead to just as rigourcus impliceticns as do

Guttman 19L&k, » 193). Although it is true that looking &t
tebles from a large body of multivariate data can be

misieeding and not very instructive, it certainly is not true that
o

a s

t be analyzed by mulitivariate techn 2y -two

ears later, after the Shepard-Guttman computationsl breakihrough, Cuttmen
could remark (triumphantly):'In order to comprehend great ccmplexities,

it proves tc be efrective end powerful to focus only on most qualitative
features; from these can be derived actual metric ccnseguences, with no
special assumpticns.'{Gutimen 1965, p 495). In the next few sections of

epter we shall discuss some of the technigques that can be used,

ct
&
o
w0
o
o

voth for explorative data analysis and for confirmatory enalysis.

included: '.».procedures for anal lyzing data, technigues
results of such procedures, ways of planning the gathering of data to make
its analysis ezsier, more precise or more accurate, and all the machinery and
results of (mathematical)statistics which spply %o anelyzing data'.(Tukey
1962, p 2). Consequently he alsc thinks that stetistics has two different
roles. 'As far as statistics applies to real data it can be judged by the
standards of data enalysis, es far as it does not aprly to resl data it

mist be critisized eccordirg to the standards op pure mathematics.'(l.c.,
p 3). At other places Tukey descrites the inferential {or confirmazory),

+he incisive (or exploratory), and the allocative {(cr

14

data anslysis. Tuxey's conception of data enalysis &
of science with it own (more cr less explicit) standards has rot received

the attention it deserves.
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s testing situation is not very realistic, and
not very representative for the diverse things that are actually done

consequently quite possible that the objectivist's dilemma

objectivist's nighimare if he tries to apply his objective

e complex, multivariate exploretion situations which are

0
1
}e
ot
m
i
[N
m
t
[e]
t
o3

vary cormon in the sociael sciences.

ther hand it is important that the fact that it is still not

(&
43
+ %
T
o
[}

vossidvle to justify, say, ziltidimensional scaling in & statistically
Goes not imply that the technique has no value. In fact it
Zces not even imply that the technique is incomplete in some sense.

Usuelly MDS is not used for inferential purposes and the statistical

estions mre simply not relevent. If MDS tries to argue from the

sazple to the population it is a very incomplete and non-rigorous
transforraticn which makes a given data set more easy to
understand, and which gives some indications about further (possidbly confir-
t

satizfactory. Althmigh it seems to be true that the distinction between

edures in data analysis is usually more difficult to.

(2
[9]
[e]
P5h)
I
Q:
o
o
O

ge]
4]
[o]
0

arew than the distinction between good and bed procedures in statistics,

2inly reflects the fact that the emphasis in data analysis is more

t
o
98
]
2}

he usefulness of procedures and hot on their optimality. There are

o]
3
ot

no cut-and-dried criteria for usefulness, and, in fact, in data analysis

+he user and his habits have a very strong and often frustrating influence
on tha procedures that are going to be used in particular instauces

(even if the date aralyst prescribes other procedures which are better
according to his criteria).

How does this discussion apply to our problem of the multivariate analysis
of categorical data. The first investigators who applied techniques of

the kind we propose were somewhat apologetic. '...if the statistician

has not as yet developed an appropriate method which he can offer us, then
the psycholcgist, however imperfectly, must set to work to devise his own.!
(sirda, 1950, p 1€8). As usual Gutiman is somewhat more self-assured:

'Wa cannot even begin te tackle sampling problems until we define what

the best answer would be for the population; for the case where there are
po sawpling errors.' (Guttman 1941, p 341)., We can be less apologetic

for several reasons. In the first place it is possible and essentially

trivial to give asymptotic campling distributions for our 'estimates'

tsing nothing but the assumption of irndependent, identically distributed
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successive observations (this could easily be relexed to ¥arkov-denendence

as long as the CLT epplies to the tyensition counts). The formuls's

e complicated (cf section 6.8) but once sgain the computer COTES to

the aid

B

f the psychologist and computes the standard errors of his estimators.

O

Nevertheless it must be empmsizedthat the statistical modzls used are

very primitive, &nd that the computed approximete standard errors ere only
achenical type of additionel output th at may or may not be used 1n the

exploration. This is importani because since the early fifties the s-etisticians

have developed a number of technigues for the multivariste analysis of.

categoriecal data that use more explicit probability models end concentrate

on the seme basic notions as we do (heterogeneity, independence, interaction).

™he most important references are Mitre (1956), Roy & Mitre (1955},

Roy erd EBnapker (1960), Bnapkar (1961, 1966, 1969}, Birch (1963, 196k, 1965),

Good (1963}, Lindley (1964), C ussirus {1965), Benzéeri (1967), Xullback,

Kuppermen, & Ku (1962), Ku, Verner, & Kullback (1971), Plackett (1969)

Berkson {1958), Bock (1969), Grizzle, Starmer, & Koch (1969), end especiall’”

Goodzan (1958, 1970, 1971, 1972). The main disadvantage of this class of methods

is thet they are asyaptotic as well, end use counts in all cells of the

ruitidimensional table. 1 we heve more than three or four variables with

o« rodarate nurber of ca tegories each this means that the number of

observations has to be enormous (at least for some higher-order hypothéses).

Our methods only use biveriate and univeriete margirals, and these narginals

ere, of course, alweys larger then the frequencics in the dody of the e

<t multiveriate

In our cxamples in chepter T we show that even if the 'proper
technigues can be applied, our procedures still can give useful edd itional
irformation.
Tor the general problem of multivariate categorical data anelysis & number
of multidimensicnal sceling techniques have been cdeveloped by Guttman
(reported by Lingoes 1968}, and by De Leeuw (1969). They are based upocn
the pseudo-tcpological notions of cont iguity and separation, respectively.
hese techniques are date enalytic in an extreme sanse. Minimizetion of
the loss function (measures of, respect1Vcly, contiguity of the representation,
and smoothness of the separating poundaries) requires neavy gradient-type
computation, end sampling distrivbutions ere not even wentioned. There umay
ne serious local minimum troubdble, the unigueness problem {admissible
+yensformations) is complicated, end the very weak nonmetric reguirements
4end to produce degenerate solutions. Nevertheless Guttman's GL-MSA-I has
been successfully applied to & number of examples, and it certainly is based

on some beautiful idecas. It is clear that there is a lot of space on the
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whizh is somewhat less

has argued, quite convincingly, that
rmoss useful in those very areas whe
snould not have been used &t ell.

MDS solutions are sometl

o

partially empty, if there er

uggests that there cannot ce

=1 «»

+is is true for the colour ci

even more so for solutions which show us

ol ed working on the ra
systeratic structural characteristics of the
projections on arbitrary dimensions (this is

ron the factor anelysis days). Gubtman, who

o]
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point of view in the most extreme wey I know of, refuses
to do with G-spaces, untestable axioms, a

in representstion theorems, it i

u

only as displaying a kind of perf

tic or both (cf Guttwan 1967). I thi i somewhat too exir

After 2ll our MDS solutions may in 1led psyehological

space is behind the whole thing. At some plece in our thecry

process there may come a time when as

of which solvability is a part. That this
the naive deta reduction point of view

and related areas is clear from the

Torgzerson, Shepard, and Coocmbs, wiao have &

psychological and sociclogical dat

o

The meagurewent theoretical '

of simple po;ynomial rmodels (such as the edditiv
can imagine psychological centinua,
combination laws that make sense, and

their classical physical brethren. In

indeed find that even our explorative

by our techniques have relatively straightfcr
In more complicated situations (in which less structure cen be 23sumad)

the interpreteticn in terms of e

He

nterpret the results using other

preliminery eveluation I wculd con

sufficiently proved by the excell

or decision meking and risk taking.
experimentation and balanced des

which require that much have a limited value for the sociel sciences in

general. The same thing is true for the studies in multidimensional &
psychopnysics of Krants, Tversky, Wender, and others. Agzin this 1s limited

to 'uninteresting' stimulus domains with

cal figures. And even in these artificial or controlled contexts the thing

that really counts is the stetistical model that is essumed, not a purely

elgebraic analysis. The axioms are now merely qualitevive consecuences of

the overell statistical model, which can Te used 1o
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I+ may be the case that measurement theory loses a lot of its 'exact'
or 'sigorous' arpeal, if translated into these simple stochastic terms.
lasion of ACY into two-way ANOVA, model I, with an ardbitrary

of the cell entries, shows what can be expected.

Of course we ¢an test this model by deriving monotenicity in rows and
cciumns, end the various cancellation conditions, but the only advantege of
tnis ig thet we cen use nonperametric methods more easily. It hes been

1958) that algebraic measurement theory has only

for the physicist, but a very real scie

[

velie for the social scientist. Th

s only seems to be true in & limited

rurker of cases; in most situations algebraic measurement theory belongs

Scaling techniques can be used in two different ways. Although the
difference does not seen te be very essentizl, we discuss it briefly. We
ording to Coombs, & scaling theory is a triple consistin_
theory, an error theory, and an algorithm (it follows from
cussion tnat the procedures discussed in this dissertation
th

e
vat the concept of a scaling

value). In th first case & scaling theory can be
ombs, &5 a technique. It is assumed (more or less
e deviations from t}

t
e requirements of the measurement
o

s is minimized. The main

r
reduction, emphasis is on the algorithm. A different
<hecries is as criteriea or tests of the measurement

iptive rodel. This implies a different wey of looking at

algorithn in the two cases, although some scaling

for both purposes. One of the main differsnces between

and & scalin ritorion is their degree of vulnerabilit,
&
(VO-,,:.‘L.S .196)*, » 72-T73, 8:). A less vulnersble technique yields a '"hest!
-~ J

epresentation, no matter how bad the date are from the measurement theore-

e

s (1964, p 81) points out, there is a certain connection

betwsen vulnersbility and the theory of type I and type II errors in the
t £ highly vulnerzble technigue will increase the

the hypothesis while it is true, a stronger

sceling will tend to increase the type II error

and decresse the type I errur. We have argued in the previous pages that



-17-

for all practical purposes we can replace 'measurement theory' by

tstatistical model' in this discussion. The Coombsian distinction

netweon the two cases can now be &irectly tr anslated into the datae snalytic

concepts 'ewploration' and tconfirmation' with a censideradble gain in
- . . .

clerity. It is now obvious that exploratory tecnniques, interpreted 1

statistical models, have low power, while coafirmatory techniques

which use all the specifi ¢ properties of the model have higher power. It
is also obvious that highly specific cenfirmatory technicues break cown

of pcwer) if the assumptions of the model are seriously

vielated. This is not exactly what Cocmbs had in mind. His vulnerable
techniques are the quelitative scaling methods discussed in his theory of
data which became out of date since the computational breakihrough.

1t is well known that most of the preblems of inferential s-atistice can

rO\*CTS. Tn De Leeuw {1971 we heave tried to

o

his concept for data analyiic purposes. We introduced the

concept of a scaling theory in 2 more or less Cocmbsian way (witnout
istence of an explicit measurement theory). The difference

ith o sbtancerd decision problem is thet there mey be no stochastic structure.
£ erns of a neiural

lgetraic measurenent

ul approasch when it is completely worked
cut. The procedures Giscussed in this dissertation ere sceling theories

in this new sense, bhul they are very incomplete both as Cocmbs ian scaling
theories end as classical decision problems. It 1s irue, however, that

2t leasl some of them can be interpreted in terms of elgebraic or
geometrical measurement models, end in terms of definite statistical models.
Of course every data cnalyst is only too glad when his procedures allow

for a multitude of possible interpretations, although this may be bad for

in certain spocific situetions

inor controversies

In this final sezction we discuss som controversies which ere essentially
technicel end really not very important. They corregpond w with three
possible options for the user. He cen treet his data metrically or ron-
retricelly, he can use (multi)normal or non-parametric statisticel (data

arelytic) techniques, and he csn choose & biveriate or multiveriate

d'

veatment. The first choice hes provoked a consideradle amount of discus-

ion in the past, the second choice should provoke & considerable amount

©

of discussion among social scientists but does not do so pecausz of the



m™here has been & lot of confusion about the reiative uwseluline

and ronmetric methods. The nonmeiric methods (originally develops

by Gutiman and Coombs) use only the cordinal properties of the dave.

days (in fact Gutiman reports triumphantly that one
on the subject was turned down by Psychemetrikal).

chenged since the publications of Shepard, and Xrus

[
[¢]
b
ot
IR
81

Since then large nurbers of very successful eppli
n the journels. In methodclogica
initial enthusissm for these very powerful date anzlysis
t0 level off somewhat. The idea that this was all w
deta turned cut to be too optimistic. As indicated alr

one of the picncers, the nonmetric meth

)
olcer metric methods, but sometimes they throw away in?

i
4
by
[e]
~
Ie)
13
-
I
<

ve dispensed with. The same thing applies, with even mo

nominel treatment of the data 1s not very fundemental. Al data are

b
e
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cetegorical, end prior numericzl and ordine
e used in the analysis. The techniques Go not really change if ve use
this extra information, the choice is now completely in the hon
user, whicn is where it telongs. Th2 arguments for
information if it is at all present are surmmarized
M

Most of these arguments ere definitely ocut of date.

&
still of some importence, however, malnly because using

can reduce the storage reguirements considerasble, and
for le:ge deta sets from surv ey enalysis, for excmple.
runerical results are
to the pum {coordinate-free) nonmetric scaling

and his co-workers, and these techni

GL~85A, GL=-MSA, MIH

wnich generate numericel results



objection mentioned by Coomd

informetion gives no essentia

has some populerity with pecple

(metric) techniques. Neverthele

not false, the argument would be

can prove, in some sense, that the assumptions

correct). There are lots of exampl
the ordinal information in the 4
sentations than using the Tull numerical infermetion (¢
The results of Torgerson (1965) shows the

occur: sometimes use of the metric informet

of the results. In our class of technigue

wey of lookirg at the output. The cenclu
careful sbout two dad habits which have ©
one is to replace nominal or ordina
numericel information {fer example by using

second one is to replace numerical info

there (we invent informetion). In
effects at all, in otkher examples
The prior irnformation can be of
know or suspect that some of the v
distributed in the
can be used to spply a more g
we discuss. In fact we can

istribution right sway. In De Leeuw {1972} %
from & date enalytical point of
emphasized. Agein we may oOr my)
have it we may or may not use
choice between perametric and
statistics. It depends on our

data, but also on the question

(8]

can be made as before. We may apply r
are rot eppropriate, aad we pey refuse

where it could have bveen useiul.

We heve already menticned the endless
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1.2. They stend for an essentielly biveriste treatment of multivariate

2]

gtegorical data, corresponding with looking &t 2 large correlation
wmatyrix in the multiveriate numerical case. The point of Guttman's order
analysis (19669) is that lots of useful things can be learned by merely
locking at patterns in correlation matrices, but sometimes there simply

are no petterns, and all we see is & large number of pairwise relationships
~hich are very @ifficult to irtegrate into & more complete picture of the
inding such patterns in large sets of vivariate contingency tables is
21so pessible in principle, but it will be even more difficult and it

an be even more misleading. In this dissertation we study the Jjoint
Liveriate treatment of general categorical data, corresponding with
+he multinormal enalysis of means and dispersions. There is, however,

an escentisl difference. In multinormal analysis joint bivariate analysis

sultivariate esnalysis, end this is exactly what is done in the methods
mentioned in 1.3. In this sense our joint biveriate analysis, which uses
iye seme data as the 'isolated' biveriate approach, but combines them into

2 joint analysis, is somewhere between classical multinormal
pralysis and a CROSSTAB type of analysis. We expect that the methods will
ve useful both for the highly stiructured data sets of experimental
psychology where they c2n supplement the statistically more direct

(pultinormal or multinomial) zultivariate techniques and for the large,
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r motrices end cuentificstion

apitals will be used for metrices and supermatrices, roman charzcters

for vectors end supervectors. Greeck characters will be used for scealers,
except Tor integer constants which are cdenoted by k,l,m,n. Elements of the
vector x will be written es x1, x2, ..., X_; elements of the matrix H by

h v..s h__ (the first subs ript referring tc rows, the sacond cne
oty

1 i
11° '12’
to colunns). If & supervectior X consists of n subvectors, ve write xT, xz,

cevs Ky for these subvectors (we always itake care that there is n

confusion possible with elements of ordinery vectors). For supermatrices

H and C we use H; and C. ij for submatrices. The elements of submatrix C:j

3 . i

1 \ . 1, .

of subvector X, as x,. We use & prime to dencte
i 1

are written as i
transjposition, column vectors are written without a prime, row veclilrs

with & prime. As special symbols we use I for trhe unit matrix, and E
for a matrix with all its elements equal to unity. A vector with all 1ts
elements equal to unity will be written as e, the number of elements in
e (a2d the order/dimensions of I and E) will always be clear from the

comtexs. A vector with £ll its elements equal to zero, excepy element 1

which is unity, will be written as e Scre eboreviations are iff for
if and only if, wlg for without loss of generality, dfr for degrees of

freedom, end df for distridbution functi

2.1 Indicatoxr wmatrices.

We shall be concerned with rondom samples of size w from p-variate
populations. Because we deal with finite samples we can assuue without
loss of generality that the p random veriables ¢, assume only a finite

nurber of different values, even if the underlying 'populet ion' variadbles
are really defined in such & way that their range is a real interval.
Moreover we also suppose that the m sample elemerts are classified

eccording to n-p deterministic criteria; i.e. our semple is structured

r stratified. Consequently there is a total of {n-p)+p=n finite sets

Ti with cardinalities ki' We record our multivariate observations in &

supermetrix H of déimension Ik, x=: ( = K xm, say). H is obteined by
. . . L . .. i
superimposing the n matrices K, of dimension k xm, with h .= 1 iff
-y
i

ariable ¢4 assumes the value for sample element j, and hi.= 0

otherwise. H is cslled the indicator matrix, the H ; are rergiral indicator

retrices. Lingoes refers to H as the att tritute or trait matrix, but I

Gon't like these terms because they suggest particular epplications
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shall follow the conventional usage ty calling &

irducing a twofold classification [dichotcmous veris
are &lso guite populer terms). In a sence ithe
one: we can alveys recduce & varisbleé with X
with two categories. Observe
variables have categories whi

This is no real restriction of

simply compound binery ones in
reccrded. Alternative

them from the legician W.E.

multiple

with yes - no responses is a set of binary variables, a survey with
both numerical (income, age, number of childrez), nominel
rrofession), and ordinsl {ettitude items with cataegories fally

pli

numerical veriables

these are often based on binary variables
correct items in & subtest). More ccmplic

comparisons (esch peir defines a binary ve

B

have additional informatior

them we
ways to portray our informatiocn.

we can display our deta as an n

all the information in ¥ plus th
v

(the reduced metrix
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wstrix as e row of zeroes end ones, & nominal veriable by simply num-

nal veriable by embedding the categories

te

ord

bering the categories, &

2}

iscmepaically into the recls (supposing, of course, that we are

i+n o wesk order over the categories). Because the reduced
g

wmerical we only need to remember whait rows refer

“¢ rominal variables, whet rows to ordinal cnes, and so on. We do not

use ¥ in ametusl computetion, orly for theoreticsl purposes.

4 divcet puantiicaticn of the possible velues of variable 1 is a real

t quantificetion of Ti defines an
m sazple elements by the rule

i, ' ()

e

Coserve “het this nerely implies that we replace every category sl eTi
KK : ? pserve thai the direct guantification of all
Tacets produces n induced guantifications of the sample elements.

A direct guantification of the sazple elements is a real m-element

of Ti by the rule :

vector z, which defines sn induced guentification x

i

= 1
=1 z, hl.. (2)
Observe thet a direct quaniification of the semple elements produces
induced guantifications of all verisbles. If we have direct

quantificatiorns X of the T. thea the n x m matrix

. (3)

[
n
-
3}
ot
u
[arl

X

[N
o
i
=
AR
I
Ll

is called the induced matrix of scores. If we heve a direct quantification

the sample elements, then the supervector

b (L)
j=1

is celled the irduced vector of weights. Consequently we may weight

directly, which defines induced scores by (1). And we may score directly'
“hish defines induced weignts by (2). To preserve symmetry we also define
of scores, which simply contains the coluun~sums of Z, the
scores. Verbally: the induced score-of e sample element

waights of the categories it is in, the induced weight of

sum of the scores of the sample elements in that category.



25~

2.5. HEistorical

This perticular wey of scoring categorical data is due, indepently,

o Guttmen (1941) and Burt (1950). The term indicator m trix was coined

by De Leeuw (1968), attribute and tyait matrix were used by Lingoes

(1968). Yule's contridbutions are contained in his famous textbook (1

the facet terminology of Guttran is explained, for example, in Foa (

and Wish (1965). The distinction between ways of classification and

varietes is familiar from (factoriel) enalysis of variance, end fron
5 x 2 tables waere we distinguish the double &ichotomy

eand the corperatative trial tables. For the general cose see€, for

example, Roy 2nd Mitre (1956) or Bhapkar and Xoch (1969). Thz parallel

2istinetion btetween dependent and independent variedles is femilia

from regrecsion analysis, an consequently these terms have & numerical

bigs. The two dual ways of cuantifying ere due to Cuttmen (1941}, as

gre the torms 'weights' and ﬂscores'. Tre interpretation of nurerical and

ordinel variates in this fremework is more or less explicitely conteined

is
in the work of Lingoes (1963, 196k) and Guttman {1959).
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Tor o engt " d bs is compietely determined by the other rows. The
ve, therefore, in gereral vV £ min( -~ », m) solutions

% ic positive. Zach solution defines a different supervector of
veizets end, consequently, @ different induced metrix of scores. The

oring' is anelogous tc the similer problem in

w
o
ot

A. In fact psychomeiric considerations suggest e similar bound

sz in TCA: we have pesitive generalizability as long as A > i/n. This fol-

We have

_ n (A= 1

) = ( \ ), (12)
eted as n parts of a test, whose total

scores (the column sums of Z). It follows

te the PCA procesdurc &s

erpre
ts) of the generalizability. It follows that

(13)

+ween common and unique scores we can use

e
'(D.
[0 - xlzms (1)
8 X (u—U)X

the unigue scores. This defines & -factor

ions of the variatles into several subsets we

a = { 2y [ 1 .z_..\,—s
=L v (15)

XD X+ ... *x'DX

! . (16)

x'Cx

r
"
\L
—
—
i

L=

whare the D, are the within-subset parts of the matrix C (cf chapter 5).
L
In <his case the rule is

a 20 iff x 2 1/s, (17)
with s the rurber of subsets. Of course o is only a lower bound to the
1isbility of the composites, and the cut-off rules (13) end {17) are
somewhet 2d hoc. Again this can be related to the ambiguous role of

fgticel decision procedures in this context. From the data aralytical’

point of view (13) erd (17) mey be of some help, dut the interpretability
»
i r

u
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©
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diserimination model the sample
ategory are separated by

ese lirear separation

CA of categorical data with the

g

and De Leeuw for categorical data mentioned in

at most X - n + 1 solutions

veey A

J e o}
These roots have some interesting relation

wita the X9~values that can be computed from our data.

I

with A, = 1 correspondin

3

For the sum of the

¥-n
o a2 - -3 =1 -3
L. LI %S, =ml Tr(pT2cDTCp7®) - n2| = mn? p, A2.
=1 1 - t=1 't
¥or we find
X7, = mlk, - 1),
ii i
end
32
I, X;; = n{k-n) = X_.
Therelore
K-
2 2 2
= LX,. = - - .
Xs E#J llJ z LI (n)\t 1)



We can also interpret our improper solution in this framework. Consider

problem (10). Ve shall usually solve this by computing the roots end
1

vectors of T, = % D~ 2cDp" . The unit length vector corresponding with the
dominant root XO =1 is n—éD e, and Hotelling deflation defines
RS N T !
T, =<+ D2cD"2 - — DPee’ D. {4)
1 n n

If we translete this by using the expected vealues on the hypotheses of
complete biveriate independence for each of the subtadbles of C, we see

that this is equivalent to removing the chance expectation from a X -

If m - @ we can iranslate the prcblem into population terminology.
-

-

Although thc matriz H is of little use, the matrix C= = C converges
to the Mh-glna; vivariete znd univariate frequency functions. Ccnse-
cuently we can study our technique in the case of populations too.
Suppose, for exanple, that we are dealing with an n-variste normal
distribrution. We let ki+ o for all i, and the weights ere replaced
by real valued function ni(x) defined or the real lire(we assume that
+this new random variable has finite expectation and variance}. Then

we can expand the g using the Hermite-Tshebysheff polynomials wi (x)

(=0, 1, 2, ...)

n(x) = T oap vi(x), (L2)
t=C v
in which the series Z(ai)z cenverges for each i. Then
non o, . ;3 : )
B=.L I & I af “i {J WS(X)wi(y) Ni.(x,y) dx dy=
i=1 j=1 s=0 t=0 J J
L N R
=f I I a_a® ¥y::. (43)
i=1 j=1 g=0 ° ° 1J
L e i2 i 2
= . ! = =
T=1n I, I, (o) J [}S(x) N, (x) ax

- iya .5
055y (&g (og)® iy (3%)
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actueally

ivariate marginals. Multivariste repre

consequence of the fact that we can find

not heve to go any further than variances

analysis in section 3.8 shows
that most of the work on the more genere

has concentrated on the complex contingancy tz

our manifold classification in the essentic
but in & X, X Ky X oaen X
nteresting extensioans of the

orthonormel functions, P

dissertation. One should consider
practical and cuite useful link

biveriate aralysis, and the new forms ©
case that we sre actually dealing with

if we can find weights which transform

3

rultiveriete normality) the three types

essentially identical resulis, although

Hy

orroi.

3.10 The case n = 2

The remarks in the previous two sections suggest that our tech

simplify considerably in the case n = 2. Moreover W& cal

jal
4]
5
(5]
[¢]

interpretations thet may generalize in some sense L0 the multivariate czse.
For ease of notation we write, in this section X fTor C,., I Tor D,
- e i

N, for D
2 22 71,

k1, and m for k2

for the cptimal we

1 2
.2y n. for d;., for m, x for x., y for %,, n Ior
11 Ja i

N

n, for d
.
(and we suppose wlg that m g n). The
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m™his can te simplified by considering the two equations
By = ( 2x = 1) N %, (48a)
Ntz = (2 A~ 1) Noye (L8v)

tinz o for 21 - 1 we see tiat solving (48) is equivalent to the

which has v g 2 - 1 proper solutions and one improper one. The stationery
are pps Pqs tt Omat® end we cen agree glg that pgz 0 for

ha stationary values of (47) axe

o] +1
) = g * ! —m=l =X
Y] PO ” m-1 (50a)
< <
1-p_ s
=1 =X "
ch = (500)

(50¢}

X yo),/... , (xm_1,ym_1), +hen those of
{47) corresponding with the roots (500) are (—x 3o Yy cee s (—xm_1,ym_1).
Pirally the system (47) hes n-m solutions of thc form (x, 0) with eigen—
2lues A =3, ecorresponding w;tn the n-m ﬂ1-0rth0801ul vectors x satisfying
wig maves & total of (2m-2)+{n-m) = mtn-2 solutions with non-

nich one is impreper).

» of (h7) can thus be easily derived from that of

e result from (L8)

(51)

whieh is the specialization of (32) ton = 2.

mat happens o the results of section 3.87 It is easy to see that the roots

PR
Qs are
1 i+ 1 1=2o° )
R E T AT T3 ) (53
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Consequently (L6) reduces to

w

z 2s 2 5

=1°f =2-f— =2 (54)
1

. S .
The a_ and a_ correapending o the roots (1 + p°) /2 are 211 proportional
S b

to {1, 1), and conseguently the solutions of {45) are the Hermite-
Tshebyshesl polyncmials of the first degree, of the second degree, end so
on. We moy assume egein wlg that p 2 0, and consequently (1 + ps) e >
(i - pt)/Q for ell s,t. The other eigenelements, corresponding with o «
(

-1, 1), nead not enter into the analysis st all, The relation (52) vecones

-1 , 2 2 @ 1 2
x y) (2m) ™" exp(=3{x" +y")) {1+ 12 osws (x)p (v} (55)
which is Pearson's polychoric expansion of tnesb normal distribution
with correletion perameter p. Equation (32) shows thet the seme thing

is true for .the joint bivaeriate marginals in the rultivariate case.

Our technique linearizes the regrescions in the sense that for each

comporent (x, ¥)

yo= o—'N;1Nx = Ey (56a)
S [ R )
x= o7 Wy = ¥, (560)

wnere X (§x) stond for the conditiornal expectetion of x {y) for fixed
o (

(x9. The analogon of } in the joint bivariete case is (for

each component X)

-1 -1 -1 -1
x; = (= )70 ] D Cs %57 (nr-1) X%s (57)
JjFi 7 #1000
where x; stand for the corditionel expectation of xj for a fixed value of
X In the biveriete case we maximize the correletion, in the multiveriate

case the sum of the covariances relative to the sum of the variances. This

does not meke all biveriste regressions linear, because that would require
X, =D, 1c..x = ¥
1717457 (58)
for gl 1,J. Consequently our multivariate components cen a2lso be
interpreted as weights which maximize the foverall lirearity' of the
regressions. Once egein we point out that our PCA of manifold classifications
is bivariate in the sense that we analyze H as if it was a two~dimensional

t
contingency table.



W3l

T they

i

23S

3

i

clearly

G

cations ©

repli

.
cot
(5%,

—~
8]
5]

—

e
- ”:
ot
S o] D
N .
d - [
n it n
< I35 20y

a
s
et
I3
N ord
PRI
@
. 1
=t
©
2 i
v
o
Q) -
Ry ]
i &
2] -
4y
v o
= st
5 %
3 ¢
o @
o o
o “ o
b ©
o
Q
ol A1
S5
9 4
o :
ﬂﬁk o
) £
o 3
]
e -
r 9
o 5
B
1 A
42
@ <
s} ()
o
@ ©
] ¢
o x
@ @
Evi
i 5]
4
£33 e
o o
e w
a 3
s 4
o o
e =
g 3
iy S
»
v ©
v a
w s}
By ¥
© ¢

Ay L,
[EARARN

o6

Y e

+

ometric (it

a pseud

i

32

"y

[V

A
o1
I
=
53
w
t
et
D
3
&)
Le
o
[
=1}
L9}
a 5]
o
3
-
el -
P
rh =Ry
XN
e 2y
i3 i
+
LU
ot
g e
(OIS |
0
4 [
g s
et
<G
o
G TS
o
£
w o
oo
(o]
¢
[ IS
2]
e
o (1]
O]
12
ek
U~
(2]}
[SIE
o g
£ A
P o
o Q
u 2
- Q
LA
P
B
O
fe (4]
H o~



or tc Q in the least-sg

vyroximat

catego

ank-p &
11

b

I
\

of a

the metiric
-
e

primal
se

he
T

he ©

2
=
Q9
€
O

4

-
<

bservirng
e

is
nterpret t

ch

)

ine

sense. Obviousl;

¥y by o

def

end
ice
i

7]
«
7]
2
3
i
£
L4
!
[
[
—
)
o
w
&
P
2
o
(0]
0
Q
I
2y
(9
%

Q
0
0
ol
7]
o
7]
L
]
ol
G4
[
il

4.
We
which
elements

"

he

. where

o
Nel

&)

-
+

N(

3
\

ipa
o

i

inc

on to pr

atz

kol

71 suc

techniques
tances

is

enalysis.

the smaller roots,

our
the

[¢%

iscara

g
o
«
o

)
0

ne<
"

ifie

v

e

P

he Euclidean 4

ing
rmod
to d

s anc

to rotate t

complicates

eve
is

ns by t

is

h A denot

t
e sample eleme

)
—
—

&

H
Mal

vonent

could

+

wl
nalys
-

(21) tais

3

cdimensio

o
.

CO;
op

(

t



40w

With obvicus notetion, and with u as counting measure, this gives
2, 1 it i, i
GA(sl,Si.) =3 (slAsl.), (6%a)
2, 1 i -3, 1 iy ity -3, 17
52(3,,51,) =2 Map”2(s) uls™Nsl, i (51.)] (68b)
.2, 1 it -1, % i, i'y -1, it
ucgsl,sl,) =y (Sl) u(slAsl,)u (sl,) {68¢)
C i ting one and yields our previous

(69a)
- . |
nA+ na? 0 j
2T = P : (69b)
L0 nA—n’A% _J
X —x_JI
X = (69¢)
z z |
. 1
Miiar T o= . r wr " t = tyr2-
Then £ = yTy', and we teke ti eixr

2.13 Numerical varizbles

Suvpese rext that scme (or all) of the varisbles are numerical, i.e. for
£ the i there is a vector y. of rezl numbers given. Ve incorporate
i

enelysis by requiring that the weights

propertioned to the vector y., or X, = oy, It is easy to sece
i

+ this makes column i of the induced score matrix Z proportional to the

why we use X, T a.y, as a restriction. Another reason can be deduced

from section 3.8. In the multinormal population case the n solutions for
o turn oui to be the principal components of the population correletion
ratrix. It is now elso very eesy to handle 'mixed' cases in which some of
he variables are numerical and others ere nomingl. The informstion

ables are numerical is, computaticnally, always a

H
+s

&
simplificasicn of the analysis. It jus® means that we must replace the

matrix H, by & sirgle row of prior scores in devietlons from the mean



I

(obviously the internal consistency analysis epplies here too). The
result of this is that all optimal weight vectors for a numerical

veriste are linear functions of the original prior quantifications ¥ie

If we do not use the numerical information in the analysis they ere
arbitrery functions of the s and it cen, in some cases, be very instruc-
tive not to use these prior weights right ewey, and see whet comes out

(of cection 3.8) -

A less rigorous approach which may also be justifiable in some cases is

to use the requirements X, =e¥s only for the first nom,rivia1 ccmponent.

. . . . T
Gne reason for doing this is Vnat we require I (x4)'c11 f =5 ¥ for two
b s 5 s s
different couponents x~ end x . If n = 2 we actually have (x;)'C..xi= *

2
for 2ll ©,s and for both i=1,2. This may considered more satisfactory. We
heve componznts which are not on 1y D-conjugete over all n-variadbles, bul

which ere b —cquugate for navh veriavle separately. If we require

t t s 2 . N
X, = 0.Y: for all t, then \x )'D x. = nocec0s, which is zero only when
73

zero. in an “ploratory phese it may be quite useful

only for the first p dominent components, because it
is intuitively ob ious that the smaller the eigenvalues, the less

reliable the componenis, and the more the possible multinormel effects
will be disturbed. It is also very important how 'continuous' our m umericel

variate is. IT k. is large (close to m) then Hi will be approximately

.

& permutition matrix, and it will not make much sense to restrict none

or only a few of the components. If L is much smaller than m, then it may
be better not to use the restrictions right away and to do sone prelininary

. . t i
exploring before we regulre xi'=a:yi for all t.
i

n

3.14 The numerical case n=

If we heve prior weights & and b for both of the attributes, and we recuire
(in notation of section 3.10) x = a&, y = Bb, then, from (49), p equals
(plus or minus) the sample correlation coefficient for all a, 8 . Conse
quently there is nothing to maximize in this case. Whut we can do is
reguire x = a,y=b(with a and b suitably standardized), compute the
resicuel by deflating ocut = and b, and finding the unrestricted corponents
of the residual matrix. The case becomes somewhat more interesting if we
restrict only x (or only y). Suppose we require y=b, then the maximization
of p leads to =& unigque stationary velue for

x =o_1N'1'1N b, (T12)

n -1 -
p"= n 'b'I\"I!11l{b (T10)
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Cbserve that in this interpretation we have a defirnite s
(independent, identically distributed otservations), and in this sernse the

notacicn is somewhat less general.



Although

tinary case, the reesons Icr ihese require
the binery case no pricr informa
made, end we cennot choose whether t
In the numerical case we reguire t
the ., which are given numters, in Tl
two-elemernts vector y. and require
i
Yi» because we can always fit a sir

reduction of the order cf

g
ourselves scmewhat morz to these ¥
t

Y!D..Y, is diagonal, and thal the
173174 B
equal to unity, i.e. ¥y ;= e It i

Schmidt orthogonalizaticn (we use

a problem for further investigalic

efficient: the cne that operates on a matrix of order
to compute, or the one

more difficult to find. T

velue of K/(K-r). IT this

of the second method, compared with

effort. If we croose Y. in a raticnal

In chapter 2 we mentioned the possibv
with ki categories into k. attributes
cese we put all rows of H
case we have ki matrices Hi of oraer

o

consequently give the same matrix C,

i.e. in the scaling of the solutions. In the

matrices HiHi’ in the second case only theilr



=Ll

variance of the induced scores is defined differently). Observe thsat
this analysis slso holds for ettributes with non-exclusive categories. ‘

In chapter 5 we shall study this idea in a more general sense. We
3y Y g
a

the matrix C remains the same, and that the only effect of these

grourings is changing the structure of D.

3.16 Scme crder-reducing methods

Tne technigues discussed in the previous section, especially for binary

[£]

dats, are a2lso very importent in the general case. In this section we
menticn two special choices of the matrices Yi which are attractive

from e computaticnal point of view and/or from the point of view of

Let His Ny, oo, By be the marginal frequencies of a variable with k

categories. Define the k x k matrix Y by

a, = m %, Ryoeee.om
a, n, -n R
2, T, By - E. ... on (76) .
a, n, By .. ey
n, n, Ny .. ..m -m X .

Let N be the diagonal matrix with elements a; on the diagonal, n is the
vector with the same elements. Then

Y =EN - nl, (17)
Fer eny k-clement vecdtor x '

x'Y = sn' - mx', (78)

with 5 = in. Thus x'Y = 0 iff x =an for some real a and Y is of rank

k=1. In the same way
Yx = te - mx, : (79)
with t = Ix.n,. Thus ¥x = 0 iff x = a e for some real a . Any k-1 columns

of Y are linesrly independent. It follows that any vector x with Ex:ni=0
i

can b2 written as & linear combination of k-1 columncw.of Y. Thus any

k-1 coluass will do for our purposes. Collect them in a k x (k-1) matrix

[ae]

» and use the linear restrictions Ya=x. If H is the k x m indicator
ratrix of the varisble, then

rrpn P’

Y'H = §EH - mH = NE - mH, (80)



- b5 -

which means that the rows of Y'H are proportional to the rows of H in
devistions from the meen. For the matrix Y'H we simply leave out one
o the vows (for exemple the last one). It follows that
Y'Y = Y'EH'Y = mg N - m NEN, (81)
and 7'DY can be tound by leaving oub the proper row and column.
Obviously it is not diegonal. The columns of Y contrest one particular

category of the vari igble with the others.

Another procedure, in which the computations are somewnat different, is

defined by taking Y as the ilelmert-type matrix

io-n, -n3 -0, versaevae -0,

1 - - -

1 n, 2y 0y, sesennss L

i 0 mytn, Wy feresees -ny (82)
.1 6] 0 n1+n2+n3 [N —Lk

1 o] 0 o} tesesess 0+ .. D0

172 k-1
The motrix Y'DY is diagonel in this case, which is a considerable

by contains the last k-1 columns of Y, we can &gein
uze Yo =x. The matrix I'H is 2 bit more difficult %o compute than in
the previous case although only addition end subir action of integers is
involved. The columns of T contrast category i with categories 1,2,...,

i-1, and consequently for the interpretation the order of the categories

feN
%)
-
o

levant. The matrices Yici4ij cen be used to obtain a Lancaster-
Irwin partition of A2- The s&meupartition property obiains, of course,
for ell Y such tuet Y'DY is giagoral. For a pumerical varieble with ¥
categories for example, it seems very interesting to take in Y the
orthogonal polynomizls of degree 1,2,...,k=1 with the first polynomial
= linear function of the priocr numerical scores. This is especielly
interesting if x/m is reletively small, for example in the case of

rating sca

An important special case of n binery veriates is the perfect Guttman-
scale, which carn egain serve as & pseudo-normative model in the same way
ag the multinormal distribution. In the case of e perfect scale we have
n vericbles, &nd there are only n+1 possible score petterns. These

atterns cau be collected in the metrix G.
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consequently D is sirguler and not disgorel. In the
veriebles were nominal we could aveid this diffic

the improper solution which mekes D doth dlagonal

Fortunately such a :lm fication is slso possible when w2 heve a
mixed case with numerical and/or binary verietes. Suptose o § 2

veriates are nominal with more than two categories.

<
d
2

©

o
]

ot

3

e
8]

y

that these are the {irst n variables. Suppose the
K categories. Replace the binary and numerical variates in K by the
single column containirg deviations from the mezn, end dc nob subiract

cut the column means for the nominel verietes. Thenihe product-moment

etrix C has structure

r
C11 cerene

21 vees e
i

P R

w
[
—~
(o8]
(93]
~

\
where S conteins n - n  columns snd X rows. Moreover e's, = Qe
for all column:

in deviaticns

equal to unity end the cther n - 3 equal to zero, then
C t=nDt, {89)
end t satisfies (10) with »n/a. Partialling out the contributicn of

¢2'D, = T,., and every-

is,

simplifies the ccmputation. It
and it does not spoil any of ti
pecplie may consider it a cdisadve
not necessarily correspond to the dominent
cen easily te remedied. We do not, in fact,
computations, only its diegonal D. In C we replace C,
away, which means that Ct = 0, and the irpr
enter our further considerations at all. A

same, In the mixed case the connections wi

nominal, nominal-binary, and binary-binary »

in additive components.



. 2
? is, of course, m¢ij, where ¢

For binery-binary paris this X B
iz the phi-coseficient. For binary-nurmerical peirs we partitio

J
n the
squared point-biserial correlation, for, numerical-numerical pairs the
n. For numerical-nominal peirs,

o
£inally, we vartition the zultiple discriminant correlation.

psvchemetric literature ordinel variables have received a
sroat Ze2l of citention. How do we incorporate prior ordinal inform-
atvion abous the weights into our enalysis? We only consider the case
in which this pricr information can be expressed as a number of
homogensous linear inequalities Axp0, and in which x = e is a solution
We must solve

rax ! " (90)

Ax> 0, (91)

=0 (92)
.: 85 usual, Now we can forget the improper solution

the condition (91) and adjust the optimal solution

seived by & cyclic-coordinete-ascend (CCA) method. Suppose x is feasible.

s

= t 3 0, surrose A is p x K. We now set s=1, replace the element

x_ oy

=x_ +2, . (93)

N + . . .
sen in such a way that A is maximized along the coordinate

¢
. et + o s
directicn (93) under the condition that x remains feasible. The rest of

1

. . . +

the procedure iz relatively stralghtforward: replace X by X let

5= s + 1, and ccmpute the relevant quantities all over agzin. IT

s = K we have completed & cycle. I x has chenged only a little during

this last cycle, we stop, if not we let s = 1 egain and start a new cyecle.

H
ct
0

sn be proved that under some mild regularity conditions (do not

start ir & stationary velue of the unrestricted problem, assume D is
non—singular) the veeter x converges to the absolute maximum of (90)
under the corditicns (91). Consequently we have a computationgf*procedure
which gives us the absolute maximum. How do we proceed from here on ?

The obvious thing to do is to compute residuals and then to decompose

threm with our usual unconsirained procedure. If we would maintain the



reguirement Ax % 0 for all components (together with the usual orsho=-
gonality requirements) the result is not setisfactory, since the two
types of requirements are more or less, c01~radtctory. In fact, if the
oréiral restrictions are x,I 2 x; 2 xk‘fov 2ll i (which will te
the usual case), then for any two component1 % and x satisfying these
strictions

x,%) = I P, a8y, (x) -5 )R
with eaua¢1ty iff for all i, 1, 1' fo

)20 (94)
it is true that

'
wi
ok 42 b e

is true that

e

= xl, and for all i, 1, 1' for which xi > Xy,
= xi,. By expanding (94) we also see thet

i-i
AR

[

e
Fia
1

3T (x,%) =a T Iax
1%

Hea

=m x'Dx = 0 (95)

by crthogonality. Thus requiring both orthogonality and Ax 3 0 for

gll components means that strict inequalities in any of the p solutions
correspond with ties in all other solutions. The successive solutions
will ecntain more and more ties. If the dom inent solution satisfies all
inegualities strictly, then the only other vector setisfying both
orthogtrnality end Ax 3 0 is the improper solution x= e. If we compare
tnis situation with the one we had in the arzlysis of numerical variestes

.

we find that we required x? =u?y‘, tut not a; 2 Q0 for 211 t. In the

i
+ +
ordinal situation tuis would mean requiring either Ax; > 0 or Axi <0

for adl i,t. Cemputaticnally this presents us with a very d&ifficult
problem. Ordinal pricr information will consequently be used in most
cases for the first componeat only. We have warned in the numericel cese
t u: 5 too guickly, we must repeat this warning even
mere strcogly here., In quite a rumber of cases the inequalities Ax 2 0
come out epproximately if we do not use the restrictions at 2ll. It
does not make much sense to apply an elaborete raximizetion prccedure,
create boundary colutions which replace violations by ties, and so on.
The violations of monotonicity may even be quite informative. I would
recommend the procedure only if it is clear frem an unrestricted
snalvsis that the monotone component is there, out as & linear
combination of, for example, the first few or=hogonal principal components.
It mey then also be clear from inspect ion of the results whether it
meves sense to require Ax 2 0 or Ax ¢ O for cther variables and/or
components. Another possible procedure, which we heve consistently
igrored up to now, is to fiad the optimel weignts for one cemponent
only, compute the induced score motrix 2, and apply ordinery PCA to

rl

S

course, aiso be done for nominal, binary, end
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Alternetively we may be able to approximatel ,E) in the region
where there is a large population density by

b () =0,E * &5 {1ck)
It follows by locel independence that if i # k

Pix T PiPx eia.z."g’ (105)
where 02 is the bo“u‘av-cﬂ varience of the rendom variable corresponding
with &. Letvﬁp. - P } 65» and cei/ai, then

{uiuk, (i#x) (16€2)

ik T L. (i =x) (108%)

This equivalent with the Speerman rank-one case © cmmon factor enelysis,

where the ¢,

nelity problem on our hands. This cen evidently be
tidimensionel persmeters. The proper generalizaiion is
pi(a) oo () o (107}
are r functiocns of the {pessibly multidimen sional) subj=ct
(szcond order) local indepsnderce yielés the

parameters £. Using

common factor analys

As & final example we study a ons-dimensional model

1s

rnodel of rank

-

which hes rec

received a lot of attention. Suppose

- g 7
p.{(¢) = - . {
T F ¢
1 Oi g
This is George Hssch's model. We essume that in the popaelation of
subjects log Eras the logistic distribution with mean log Egr Tr
F(E) = 7= (
£~ +tE
0
and the corresponding density is given by
>0
ar{g) = 7=, &
te) (g *+ €)% g (
Thus
o
r 50
;7| o, e (g, +0F OF T
0,
I -0 - £ 0 .
- EO(QO Oi) sooi 106(50/01) (
(c - D & ?
\ao Oi)
if @ # EO’ end p; =2 otherwise. 3y loc dependece
b £
Pix ={_'€""" =S 7'_0"2' ag- {
.+ + £ g
e TE e (g
Defining u.=0./(&,. - Qi) we find for i # k, 0; # 0» &4 # go,ok#

.a
—a

-



log ei ~ log Ok _

Py - PP T M %o o, - @

1 K

e _ \
fi log £, - 108 e, } log ) - log e} } )
SO I S Ry -8y
=;ouiuk(6ik £08508%0) " (113)
In the saxme notation

L= (1 - ) (1 - 006,00 11k
p. = (1 - w) (1 - 0;6,0) (114)
We can test our PCA of binery data on various sets of variables with
different ranges of ©, and see how cur eigenvectors are related to the
Oi-

In a2 sense Guttman's deterministic model for birery varisbles is the
vesic latent trait model. It can be generalized in at least three
directions. In the first place it can be mede probabilistic (
that the p,(f) are rot step functions any rore). This leads directly to
Lezersfeld’'s polynomial models, to the normel ogive model, and “he Ra
Birnbavm logistic model. In the second place it can be generalized to
{tems, and to ordered and continucus manifest

SA model will be discussed in arotker publication.

s general model one can generate all kinds of populetion models

Using thi

y our PCA technigue to the values of ¢ they yield.

o©
3}
u
I
C
p

In some situstions it seems edvisable to maximize A under the extra

the induced score meirix,

then cur standard technique meximizes n tr(ES) under the condition

) . . —1 e

that tr(S) = n, and this modification maximizes n +r{ES) under the
more restrictive conditions ithst diag(S) = I or, egquivelently, it
mexinizes n_1 r(ER}. This gives the staticnary equations

Ecikﬁk = nki Dixi’ (115)
with

A, =Ix!C. X, " ‘1°6)

1%k

vo=Dy = n~' tr{ER) (117)

Again this system hes on improper solution with all x, proportional to

3

e, cnd all A, egual to unity. A simplification is possible by defining
1
D; . Trnen {115%) reduces to

£ Y, = nl.¥., (118)

A

3
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J -1
¢.. =0 %, D * (119) :

In solving (118) we can require that yly. = 1. The equations can be
solvad by methods which strongly resemble the ordinery power method,
tuT & convergence prcof cznnot easily be given. We norm all subvectors

o usuel convergence proof besed on the canonical form of

el
o
5
1)
o
[t
}os
b
3]
3
jo"
ot
jod

the matriz does not apply. In fect one of the principal disadventages
cf +hne methcod sesms to be that a siructural algebreic theory comparadle
o eigenvectcr-eigenvalue theory does not exist, although the method

does lead to e perfectly well-defined optimizeticn problenm.

After we have found the ebsolute maximum we want to maximize A agein,

tut this time over all sets of vectors z; satisfying zizi = 1 and

z!y, = 0. The crihcgonality restrictions can be incorporated in the
i3 .
procadure by using generelized inverses. If we define
~11)
g = (1 - y.y! 120
ik R 1) ik (z y,yk) ( )

about the orthogonality requirements any more,
the staticnery ecuations

Z.. (121) R

orthogonal with Y we can make it orthovonal
Jy. which gives the same value of A. After
ack to the metric of the z. by premultiplying

vidently continue in this way, definirg '»esidual’

,(‘_- -1 Ar ! \ a\t
{s=1) (s-1) (1, ()" (122)
b3 1 1

anishes as soon as we heve found ki solutions
). If this hoppens we collaps the matrix
vesulting nonzero submatrices., Other possibilities
c

method without deflation but

to the previous solutions, the

with arbiirary orthonormel complet ion, and the
simultanscus method with orthonormalizeticn of the set after each

wewercd-matrix iteration.

Altrougnh the scaling method discussed in this section seems more natural

e theory in this dissertetion

This is not only because of the lack
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Bertlett (1953) end McDonald (1968) in the ¢

less implicitly, that tx
T v,

If they turn out to be
then a more parsimoneous descr
principel component enelysis
to cornfuse this with McDona
we mean by NLPCA thre te

c
under the somewhat regrettazble

normal case and the perfect
we can interpret cur component

the affirmative. We only have

n the analysis of

(1

[N

systemaetic relationships between the compenernt scoves

we cannot interpret them in the usual, naive

dimensional model, and cur weighting fu
functions which ere the components of
probability of a positive response on
standard interpretation of these resul
metrix of phi-coefficients, with verim
be extremely misleading. Ir fact it wi

ifficulty factors, which have baffled

time (cof McDoreld 19465). Their conclusi
is not the proper correlation coefficient in this cass (Henryscon %
Thunberg 1965). This is cbviocusly the wrong conclusion. If we can
conclude from our results that the Rasch model {or the normel ogive or
arcsine model) helds , we can Tind estimates of all the

paranmeters. Nevertheless it is of course perfecily true

multinormal case for example, if we ha
the population correlation coefficients the results would come cut
more directly. We can use the tetrachoric or pelychoric correlation
coefficients (Lancester & Hemdan 19¢L)

In the first place we ascume cutright thet we ars dealing with

multinormal situation, in the second place some of the smaller roots
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of the dispersion matrix may be negative (although T don't think that

ous). Consecuently the guestion whether we should use
;] g

ot
o
o
D
<
@
H
4
%
o
]
e

teirecncrics or phi-coefficients in binery PCA can be very easily

scived: using phi-coefficients should tell us whether the use of

It rresurposes that there are no serious sampling errors, and that
e cen be perfectly detected. The same thing is true
fcr gereral categoricel date, In the cases where the multinormal effect is
horic series to estimete p.. for each pair
i
variables do not f£it in the multinormal
In tke case of the perfect

imensional latent continuum

Al

pretaticn of a PCA of phi-coefficierts
r

lookx at the results will show

nctions are located, and consegquently

n
111 give estimates of all the relevent parameters. The use of tetra-

cherics In this context is obviously absurd (cf Guttman 195Ca).

ues outlined in this chapter must

© have been used against claszical

PCA. In eople have questioned PCA because it does not
explicitely involve & stetistical model with parameters which are
estimated by some conventional itechnigue. It merely is a transformation

, and becansz it Iis just a transformation it is difficult
to forzmalize the idea of some kind of error. And, since the idea of
error is nct very clear, it is difficult to give a rigorous justification
dropping the smaller eigenvalues. In a sense these ’
criticisxs ere justified. PCA does rnot fit a statistical model, it is
aic transformation of the data. But this does not imply
0% be valuable es & technigue in the exploratory

ions (ernd a large part of the sodal sciences

se). PCA must be seen as a tool helpful in

structuring or even in plotting the date. A very readible account of
its use iIn this context is Gnanadesikan & Wilk (1969), and encther

sercuasive defense cf PCA as & useful exploratory technique is given
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It is well known that principal components have a large nuaber of
interesting optimality properties. Our homogeneity end discri-
mination indices are optimized by vrincipal compenents. In the
purerical case this has alreedy been shown by Horst (1936),
Tdgerton & Kolbe {1936),and Wilks (1936). A large number of other
optimality properties, starting with the ones discussed by

Peerson (1901), are collected in Rao (1965), and Okamoto & Kanazawe
(1958) and Okamoto (1969). They are very useful in this connection.
In fect esch optimality property of PCA cen be used to define &
rew retiondle for our approach, and implies a new way of looking

at cur weights and scores. The optimelity properties are derived,
gererally, for the components corresponding with the p > 1 largest
eigenvalues. A criticism of this approach is contained in Bergmenn
{1969). He enphasizes the fact that a principal component is a
mathematicel ertefact, not an observed variable, and not an uader-
lyingz, latent, true physical dimension. The first principal com-
ponent (PC1) usually has a clear optimality interpretation, but
the second one optimizes the same criterion after the eliminatiocn
of this artefect. Bargmann doubts whethef this is a wise procedure,
and suggeststo proceed stepwise in stead. We find PCI for all

the veriables, find the correletions of the variadbles with PC1,
form & subset of the variables with low correlations, coxmpute

* PC1 for this subset, and so on. This may be interesting, but I
doubt whether it is a true improvement. In fact I do not believe
that PC1 has & different lLogical, methemeticel, and/or statistical
importerce and/cr meaning than the other components. PCI gives

the best rank-one optimelization, PC1 and PC2 the best rank-two
optimalization, and so on. In this sense PC2 is not the optimal
solution after the elimination of an artefact, but the pair (PC1,
PC2) is o new artefact. The fact that the first component of this
new arteSact is the same as the previous artefact 1is a mathere-
tical property of principal components, which does not hold, for
exarple, in the rulti-way generalizations discussed by Cerroll

& Chang (1970). Bargmann's hierarchical procedure may have some

-

edvantages,but we lose sc much that I don't consider the gamdble

werthvhile (for exanple what happens to the geometrical inter-
pretations we have considered?) Of course we fully agree with Bergmann
that PCA is an exploratory technique which works with ertificial

veriables, and that it is a common and very serious mistake to
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use multidimensionel scaling.
velid objection to our PCA in

cases the results may dbe migleadin

to a linear, bivariate model
these cases are theoretically v
we can expect that in almost al

effects will be present. Cur task

about the questicn whether one

or nct. People like Gutt: (195

a
have defended the view that FA and PCA are designed
variates only, while Burt (1950, 1953) has pleaded to trezt the
two cases alike, whenever possible. To defend thig point of view
Burt r e?e*c to such exex

Kendell generalized correlati

theory but I think thes
thet in the gqualitative case we have only frequencies, in the
quantitative case we have both scores arnd frequeacies {end. in the
binery case scores end freguencies hapven to te the same thing).

Cur cetegorical PCA reprodu

frequency criterion X . Ordi

and reproduces scores and f

nto a sum of

i
that factoring is

data in general need

confusion over the wcrd factor analys

exist in the 1950's, but this cannot

More recently Anderson {1959) and McDo a {191
general latent structure models, which are basad only on the assumpilon

of locel independence, and which apply to ell kinds of lstent
and manifes spaces. Factor enelysis is an incomplets version of
a very special LSA model (incomplate exactly Tecause it considers

only the variances end ccvariances, not mements of higher order).



Another coniroversy between Burt end Guttman was if one should only

ccnsider PC1 or also the other components. Guttman argued for

PCt cnly, Burt aedvocated a complete PCA. One can ascribe this to

diffarent objectives: Gutiman was trying to scale a one-dimensional

ettitude, Burt was factoring by welghted summation (i.e. doing a

PCA). One could also argue that Guitman wes extrepolating

experience with the perfect scale which is really one-dimensional

{crly one latent variable). Consequently, Guttman was deeling

¥ith a cne-dimensional model with nornlinear regressions on the

latent verisble(step functions), Burt was thinking in terms of
(MeDorald 196G9). Guttman was well awere of the

srs involved in interpreting PCA-results routinely if non-

, Burt seems %to step over these

o lightly. Since then, however

hes ergued thet nonlinear regressions are often
resent in numerical data as well, and he has conjectured that

it is guite probable that many of the usuael routine interpretaticns
©f TA end PCA pudblished in the literature (with simple structure

relgtions and the like) may be stionable because of these

bjecticn, which may te heard from the more advanced

o
i3
(o]
t
o
D
a1
Q,

J

normetric devotees, is why we bother with principal component type
error thacries if there are such splended new technigues as GL-MSA-I,
and so on. In fact Guitman (1968), who used a technique eguivalent
to our PCA as early as 1941, now admits thaet he realized from the
stert that this was only approximete. This statement is importent,
in the first place bscause it comes from a psychometrician who
rarks with Speazrmen, Thurstone and Burt; in the second place because
the 'zonmetric' methods are becoming more and more populer.  From

t of view these methods can be classified as (a) definitely
very useful such &s the sdditive and linear programs (Kruskal

ery iv
1985, De Leeuw 1969a), (o) proba:
Q&

U

1y guite useful such as the

tandard MD3CAL an MINTSSEA pr

ms for the ccmplete case, {(c)

rot wvery satizfactory such as the unfolding programs of Xruskal and
Roskazm, and as (d) rether dangerous such as the GL-MSA prograns.
The lineer and additive models ere straightforward extensions

of standerd stetistical medels, end using normel theory assumptions

estimates of both the parameters

transformation. The standard
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MDSCAL and MINISSA programs ere, in their latest versions,
reasonably well-behaved with respect to local minime, end the

problem they try to solve is reasconadly well-defined with respect

-

“o uniqueness (De Leeuw 1970b). Consequently we may consider
ther as useful deta-reduction techniques for similarity date,
although further research is needed to cczpare their perfcrmances

ey

with methcds which epply the staadard metrie techniques to a
set of conventicnal numbers {such as rark nunbers, or xz—order
statistics) The techniques for unfoldéing end multidimensional
scalcgram enalysis ere dangerous because they put reletively

few restrictions on the deta, so that a large set of cuite different

perfect colutions exists. Moreover the a2lgerithms es such will

C

cencentrate on possible degenerate solutions in order to minimize

heir less function, and ore never knows how influential this

this is, by the way, a very unsatisfectory

Normetric techniques

for the analysis of indicator metrices

)
trman end Lingoes (Lingoes 1967), arnd

) is possible to regard cur PCA as an
epproximation to the solution of these iterative programs (as
Guttman seexs to do), it is also possible to regard it es en inde~
pendent solution of the same prcblem using a different type of error
theory. In the %“erminolegy of De Leeuw (1671a) iterative programs like
MSA-T ard MZA-IT have a loss function and a solution map which are
strongly consistent, in our PCA the lcss function 1 - X and the

solution map are wveakly consisternt. This loss of consistency is

ompensated by a gain in determineteness, & gain in structurel
zathematicnl properties, end a geirn in alterdative possibilities

realized from the stari that these methods are only epprcximate

es somewhat premature from the point of view of methodology.

3.24 Historical remarks

Clecsical PCA has its mathematical rocts in elgebraic eigenvalue

Q 3

thecry, which dates back to Euler, Cauchy, Jacobi, Cayley, and

Syivester. The first stetistical use of these algebraic results is

Karl Pearson's work on dispersion matrices (1902), but as o dats
reduction technique PCA must e credited to Hotelling (1933).



5

British psychologists like Burt and Thonpson edvocsted 1T es ong
of the major approaches to
be derived from ANCVA-type
was already known tc Horst
Wilks (1938). The pioneering paper

veriates is Guitiman (1981

ot

he work of Horst et al t
relevance of Hotelling's canonical

(by using correlation ratio's) eguatior

the neture and role of imp
int )
2

>3

. In 2 later seriecs
the appliceticn of

results menticned briefly in secticn

conteins a brilliant mathemetical exzos

The application o
dently, by Burt{1950) D
Burt {1953). Useful additicn

3

Verious aspects of this problem are stud
discovered (56), Fisher {1941) who coniributed (52), and Lancaster
(1957, 1958) whe studied the mcre g:

(55). Benzécri considered

n =2 {(ef Cordier 1G83).

paper of De Leeuw
on canonicel decom
distributions is reviewed in Lancaster':

Cur systematic interpretation of crdinal end numericsal

this framework is possidbly
for n = 2 these result
Lancaster (1957). The
although inspired by
to Yates (1948) and ¥

metrices (82) is reviewed by La
the partiticn of X2 Ty La

4

i
iz closely related to some work Ly Bradlay,
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discussed some technigques for incor-

ng pricr ordinel information in e PCA. In this chapter we

ve way of dealing with ordinal information of a

8
T
o
0
'y
o
(e}
w
©
18
I
Yoo
ot
»
v
143
o
ot
e

particular the techniques in this

comparison data (or with ordinal data which

Consider a paired comparison experiment with n stimuli and m subjects
{
Ay

: s . . 2 .. . .
or scccasions). This defines N = n birary variables (forced choice

iff subject

i is neavier than kx, or what have you).
binary variables from 3.15 quantifies
the s2t of all ¥ peirs, which is not what we usually want. The femiliax

stochastic theories for peired comparison experimenis suggest using

I 1. .

x\;") =V - Yy (12)
(i,x) _

X._ —yk -yi’ (1b)

for ell i, k = 1, ...,n. Observe thet this implies

(i,k)(

n i.x)
gzgl,&)_ (~,k,(yi - yk) - v ‘k) -
=En(i’k) - n(i_’”](yi - v (2)

which is usualiy rnot equel to zero. We investigate the optimal direct

quantification of the variables under the conditions (1), i.e. the

1ing of an optimal y. We find for the induced score vector

e
-
i
i
i
!
|-

Z MENINENY (i,x), (i,k)
Z.j X 5 +’ h +3 + X _’ h _3
B R c(1,k%) (i,%)
=y iy -y R - R (3)

)
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with

id -3
c.. =N a,. - bo.)e (5¢)
N 1J 1
Moreover, using (1),
g =EEE’z(l’k))2 =II(y. - v )zz(h(i’k) - b(i’k))2=
s ¢ i7 %% +J s
. 2 2 - 2
=mn Iz(y; - yk) = 2?{ rIy; - (Lyl) ]= ny'Qy, (6)
with [ 2m(n-1 ifi=x
- hi - -
%y —I : (1)
L ) if i # k.
Clearly
z =y's, (8)
with
s, = m—12c... (9)
i ij

Applying our usual procedures we find

B = Ny'CC'y, (10a)

W= Ny'(Q - CcCl)y ) {10%)

T =Ny, (102)
provided

2 =3y's =0 (11)
Tt is obviouu.%rom (5) that § alj = § bij’ and thus § cij = 0, Conse-
quently CC' is doudbly centered, and so is Q. It follcws that we cen
require y'e = 0, and that we can replace Q by a = 233 I.

4.2, An slternative eporosch

n aliernative and somewhat simpler approach can be tased on & slightly

e

giffer=nt wey to define within and vetween. Define
-

ALY
1 +J

N , 712a)

the number of times subject J judges i righer than sorething else, |

t7. = (ki) (12b)
b +3

Lhe numser of times subject j judges something else higher than i. The

mean of the scalce values of the things subject J ranks higher than
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(i,%) (et
x_’ =Yk—Y,-, {zid)
The formulas for z , end z and for &.., b.., Cc.., remain valid. The
J LG 13 d 5
expression for the total sums of scguares changes 10
= EREPRY IEERTA -
z (* ) Lii,k).2
S, =if{y. -y, ) g(r ¥ -ntTV ) =
T T et T 4 .
(3 %) IR
sxnly, - y)2 (205 4 Ry (22}
i

velid. Another complication arises in
ments in which we do not coxpare sil
This also irfudes ceses in which

less these complications are only re

for balanced incomplete designs, whic
]

There is one importent

we only investigate th

n
the (2) pairs (i,%x) with i < k by eas

given the opposite judgment hrere,

=1 ifr = {2z}
=0 ifr =0 {232}

(2ha}
(zhw)
i,
n(B’—) = n, (252}
for all i,k, and
a,. ¥ =D, , 25)
25 = Dy (25)
for all i,j. If in addition
L (i,k) cop s f s
L 0 iff 1i#xXk {z8)
then
(i,%)
h +,j = 1 - E)
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for 211 1§ k and all . The usuel paired comparisons experiments
satisfy voth 232 and 26 (which obviously implies 23b and 23¢). In
“ris case the “rectmens in 4.2 can be simplified by observing that
+
=(n - 1) «t,.. 28a
R (282)
-+
c.. = b4t - 2(n ~ 1}, (28v)
. 1) iJ
vhnich meens that the technique in 4.2 is equivalent to maxirizing
y'CC'y on the condition y'y = 1.
Ln even more impertant simplification is possibdle if there exists
a wezk orde of stimuli such thet
ife i>. X, (29s)

where p., is the renk number of stimulus 1 1in the weak order Zj (tie
+
z2t the average ¢f the available rank m ners). Observe that Ip =
J 1J
znd thus S Z(p:j -9 1.). The resuls (32) simplifies both the
“ - LY
comnutations and the interpretation. Moreover it is now cbvious
iques to =xperiments in which the stimull
the situation is more complicat
which eny number of pairs is

aivia

ed int

& further simplificaetion,

K
iy

can be

ed

ect). This includes all the rank'

B ) elements),
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i>, k ife ieA, A ke3,, (33a)
J J J
i =5 isr i,ksAj v i,k}:Bj, (33b)

a weak order. In this case there exists a birery vector uj such

S
that ug = 1 for ell ieA;, and ug = 0 for all keB.. Cbviously

N(B,) if iea,,

8. = v J (34)
Joo|-MaL)  if i€ B,.
J J

[N} . . .

4,4 Relationships

We heve discussed two different techniques in the previcus sections. In
the case where (232) and (26) are true technique A, based on (1),

raduces to maximization of y'CC'y on the condition that y'y = 1 and

y's = 0. Technigue B, described in 4.2, maximizes y'CC'y on the condition

that y'y = 1. The relationships between the technigues A end B are
rether obvious. In the firsi place it is true in most cases that the.
Gominent eigenvector of CC' is very much like s. If this is true the two
+echniques give highly similar results all the way. In the second place
multidimensional solutions of B can always be made to satisfy y's =0
spproximately by orthogonal target rotation and dropping one dimension.
Observe that the vector s is the best least squares approximation to

the columns of C simulianeously. In a sense we taoke the first centroid

in technique A and compute the principal components of the res sidual. It

is also possible to compare A and B with the techniques known as
"normetric factor enalysis'. There weiry to find an optimal monotonic
+ransformation end reduce by using Drincipal components as usual, while

in A and B we use a prior, fixed morotonic transforuetion, The relation-
ship with classicel paired comparison analysis is also interesting. In

the classicsl analysis using discriminal dispersicns and the like chject

i gets score X from subject j. Each subject defines a random observation
from populaﬁionvi, and we want to estimate the mean over subjects. Ve

use a least squares type technique which minimizes the sum of squares

of the deviations of the differences, i.e. we want to find ¥i and wj

such thet

s=zzz?x - x )—uj(y —;',)]2 (35)

is as small as possible. The stationary equations can be written as
Xw=ay, (362)
X'y = 8w, (36Y)
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o= & (s,T)4(s,1)) ( : G(s,T)H(s,T)\; . (L)
(s,7) J | (1) |
J
and
_ ¥Y'Qy flma
A= ;7;;. (=3c)
Then )\ is to be meximized under the condition that
y' o G(S’*)H(S’T) e=y's =0 (&%)
: (s,T)
if we use technigue A. If we use B we do not reguire {(5:). 0F course
{ m o m
H‘S’T) (H(s"))' = D(")”> is diagorel. Simplifying somswhai furihcr
pe 3 oS (STl (5)
(s,T)
with
t(S,T) - D(E,T) + n(ssT . (LE}
More generally . o o
Q= 5 I G(S,T)H(S,T)(H(S,f)).(G(S,T)). -
-{s.7) (5,%)
- . o(8.T) (s 'r) 5,7 (G(§,T"))| -
(s,T) (8,%)
3
(s,1) (8,%)
with o o _
JSDED | (8,MB,5_ (5,0ED
11 13
fo o mNIT Y fe m\!3 Yy
C§§slf(53*l - cé::~)\33~)i {L:\
and in particular
/
th,T)(S,T) - n(E,T) + n(f’T). (49)
Finally
s, = I sQS,T) z (h(s’T> - h(S’T)}. (5¢;
Fosm ¢t 5 =
m
In the more common cases we have e g( §.7) = 0 for all {S,T). Then sgain
oth P and Q are gingular, In cese g(S’T) corntalins sxactly one elemant

equal to +1 and one equel to ~1 the formulas reduce to ithe cu2s in the

previous sections. This happens, for tne o
U {1} end Uy{k} with i # kx and U arditrary (the £ nsT the set U
does not matter is a femilier axiom i ol

choice behaviour). We have peired compar
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The connections of the theory in this section with the theory of additive
c :jcint reasurement and with the additive cardinal utility theory of

s clear.

0
[e]
s
4
Q
u
oo
o
4
’2
n
I
I
D
w
[

As & Firal generalization we mention the case in which the compered

otjects ars erbitrary vectors of reel numbers with the same dimensionality

n. de reauire
I Y el {4
x\i,k/= nél yp(skg) _ g(;)), (51a)
(i) _ 2 (x) (1)
= I 1
X pE1 p(s P g - ) (510)
x(é’k) =0 (51c)

an be arguad that the essential part of our homogeneity coefficients

is *he numerator, i.e. the same nurmerator with a different denominetor

If we heve & 'nonmetric' theory of the type

) } (52)

then our numerator can be written as (compare formula 4)

it
(i,k) _ (4 (

LIt (h 2 Nl (r) = .y,

EREES -5 rfa ¥i) = o5y {53)

Add a scaling reguirement which mekes ihe set of all solutions bounded end

raximize. Intuitively this means thet we replece (59) by the weaker set

X - ¢j(yi) 2 ¢ (yk): (54)

() 3 0. (55)

i

. PO o~ s . N - [
An approximate solution is found by meximizing the sum of the left hand
sides of these homogeneous inequalities over a compact set of vectors y.

e ZlVe sSinge exan U-CS.
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IRCN: Inner product model, rectangular, conditional

Observed: m paired comparisons of n objects (j=1,...,m 3 1i,k=1,..4,0).
’ t t

. l > > N
Model: 13k < Ly %5557 ot Yje¥ks? (56a)
—_— = oid, ( Ix, y. - Ix,
un $(x,¥) oik € Ixvig stsyks). (56v)
§ o aldLx) (i,x) .
o = (W3 - nld )s (56¢)
Matrix form: é¢(x,y) = trace (x'zY), (564)
IR I BN B
255 =Bofy = Gg) =05, = Oy (56e)

IRCM: Irmer product model, rectarsular, ccmplete

Observed: N peired comparisons of nnm objects with product structure.

Indices: 1,k=1,...50 3 J,1=1,000,m 3 £=15000,N0

Model:
- 5

(3,1) 2 t (l’k)+ﬂ>“xjsyisz ;xlsyks ’ (57a)

Sum:
" t

¢(x,Y) _Ezzzzzcijkl(xjsyis - xlsyks)’ (57b)

t (3,5 61) L (3,50(k,0)
. T T R AN Vs (5Te)
Matrix form:

o(x,y) = Trace(X'2¥), (574)

t e .
Zii =I2f(o ) - 9550 T 955, 7 O.45C (5Te)

ISCN: Inner product model, square, conditional.

Observed: each of n elements orders the other n elements, N replications

Tndices: 1,J.,Kk=1seee,n 3 L=1,5000,N,

Model:

(3,1) 2 ((3.K) = Exs x5 02 DXy Xy o (582)
Sun:

_ t

a(x) -zzzzzgjik(xjsxis xjsxks), (58b)
Metrix fornm:

${x) = Trace (X'AX) = 3 Trace(X'(A + A')X), (58¢)

Q.. = Gus = Gz 20 8a

517 %5407 951 (584)

ISCM: Irnner vroduct model, square, comnlete

2
Obsarved: N paired comparisons of rn° elements with product structure.
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LIRCN: Mixed linear-inner product model. rectansuler, cordi

Observed: m paired comparisons of n real N-element vectors 3

oz N
HER N I

Indices: i,k=1,...,50 3%
Model:

- oy
g 25 & < L X5 Eytssita ;"~s Eytsgkt, (€xa;

Sum: ” v
= 3 (x {649
o {x,y) zEreioyy (% ¥, By = X3¥y 8 ) {6Ln)

Matrix forn:

¢(x,y) = Tr(X'2Y) (5le)
= T J - -j ST
25, = Iggloy - oy) (ond

Special cases:
g, unit vectors: paired comparisons (IRCY),
g. erce sums of a fixed numter of

a

O e

ditive conjeint analysis.

Upto now we nave discussed & number of models

sun principle results in the maximization of a functicn of the fora

tr{X'AX) or tr{(X'ZY), subject to scme sca
not specify these requirements, but for all models thers are & nuscer

of natural choices which lead to more cr

eigenvector problems. OF

+

in 4.3 ere also possible here. If we egree thatg . , = O if the com-

.
perison by subject © of (i,3) and (x,1) is =missing (either oy desizn
or by accident) then we can write down general

distance models of which the four ceszes we

very special examples. The formula look e
. ISCM end DSCM with the generalized missing-data definiticn

i
We can also generalize the maximum sun method to three-way zeodels.

@
e
=i

X
]

L
%)
R
11

Lo
)
(0]
Hy
9]
i
i1
o
b
a
©

also tends to give surpri

less standard arithmetic. In the mocdels wi

we represent the replications

were always pooled over replications. In the

Buclidean space too.

TWWD: Three-way model, weighted distances.

Fach replication defines & set of weights. Dissimilarities correspond

with weighted squared distances:



Eon 3w (x, -0 (65)
ij v s21 g5 Tis s '
We use the generalized signesture ov. .. Then
15kl
2 T t
=Ll .= X ‘ . - . .
olx,w) =Iiz(x s st) s (013.. 9..13) (66
Letting
ke t t t
= gl. + o.. - . .. 7
Biie T %0 T %, 9,45 T 9.5 (672)
T T t t
e, = . + . - . - .
dllt ;... %, o, 4. ¢4 (6Tv)
., =d.. - &.. 6
blgt let alJt’ (67¢)
we find
- o(x,w) =LIZ¥ Db...X. X. . 8
ox,w) =IL letxlstswts (68)
TwwI: Thrae-wav model, weighted inner products -

Again each replication defines a set of weights. Now similarities corres-

vond with weighted inner products:

B e (69)

7
X,Ww) =LILb..,X. X. W 0
$lxyw) P13t%1s s es? (10)
tut now bii* .2s the much simpler form
Jt
. t <

{71}

ij.. ..i

J
TWII: Trree-way model. translated inner products

Fach replication defines a translation of the basic space and & new

crigin from which the inner products sere computed:

. P

Y - A

%13 % g2 (xis zts'(xjs - zts)' (12)
We find

o(x,2) = Tr(X'AX) - Tr(2'BX) (73)
with ’

%55 T %15, T 9.5 (Tha)

. t t t t

ey T O Y05, T 5, "0 (T4v)

Models in which n-tuples of stimuli are compared can also be constructed.
An example 1s the following model.

fafind s oW ZL )Y

TWiD: Trree wav model, homogeneity, measured by distances

Euch replication defines & set of weights. Heterogeneity of a set



®(1) g I I
iel jeI

. (15)

S

Observe thet the TWWD model, and thus the DSCM model, is & speciel
case. And finally we can consiruct models which permit asymmetry in

cquare complete matrices

TWDS: Three-way model, weighted distances, slide vector

Here ®
B L,ow, (e o-x =2, )% (76)

TWWD is the speciel case in which ell slide vectors venish.

4.7 Gereralized correlsfion coefficients

The maximum sum approach is only one way of apprecaching differencing
wodels. We can also use generalized correlations coefficients(GCC)
which are defined as follows. Let ¢ end y be increasing real functions

that satisfy

- = - g (
oy, yj) ¢(yj vi)s (77e)

vy - yj) = —W(yj -¥5)s (17)
for a1l i,j. This implies theat

$(0) = w(0) =0 (18)
and

sign(¢(yi - yj))-= sign(yi - yj), (79=)

siga(v{y; - v;)) = sien(y; - yj)- (T9v)
A ¢CC F¢ ¢(x,y) is defined by letting

Cl;) "‘b('x’.‘.’) =LTY <xl - x‘))¢(yi - yj)’ ) . (80&)

' Y-S , .

Vw(x) =TEY (ki - xj), ‘ (80v9)

() =iy - ) (80c)
end

1 1
= \ .2 2 V).

Fw,Q(X,y) c¢’¢(x,y, / (Vw(x) V¢(y1) (81)
Cleaxly

-1sT, (x,y) <+1 (82)

]

£
end & necessery (but nct sufficient )conéition for I' = 1 is that, for
all i,J,

sign(xi - xé) = sign(yi -y (83e)
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gradient progrems for the seme measuremen

mexirum sum results are better (in terms of
pretation). Odserve
in 4.6, In general
solutions, and it m
best policy is for a parti

k.9

either m ccmplate

comperiscens. Gutimen

Both the linear tive cese ware
both in terms of
coefficients. The maximum
number of interesting exsn
noun intersection date hees
also has some applications of

some applications of DSCN and

found that meximum sur

techrigues. Carroll &

8
technique and found that IRCN

were not erroriree.

The model TWWD is

Carroll discusses




-extensively by Kendell {166

~80~

Wish and Carroll 1971). The square conditional versicn of TWWD has been

used by Van der Xloot (1959). Model TWWI is related tec Tucker

rmultivay factor enalysis (with diagonal core matrix), tut it is in

its metric version a straightforverd generalization of PCA. It has been
ssed by & number of authors. Harshman (1970} relates it to Cattell's

arallel proportionsl profiles, Carroll & Chang {(197C) discuss it in

the TWWD context, and Slater (1669) ntions scme work of Gower on

this model. I have used it in scme urpublished studies and it seems to

give results which ere as setisfactery as those of Carroll

TWTT is new and has never been applied (as fer es I know). Generzlization

of TWWI end TWWD have been worked out by Hershman (3971) under the nane

£ PARAFAC2, and by Jennrich {15971) and Cerroli (mentioned in Carrcll &

properties of TWII, P WHD, and TWDS are interes-
not very useful. Generalized

are possibly
are due to Daniels (1%i4}, and have been discussed
2). Their use in this context was first studied

oy De Leeuw {196¢a)
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In chapter 3 we discussed the generalization of PCA to categorical data, and
some of the protlems that erise with the epplications of this generalization.
In <his chapter we generalize the rest of standerd multinormal joint bivariate

deta in exactly the same way. Because most of the

short indications of the extensions, and we show how the weak aspects of this

class of teshniques vecome more apparent in compliceted cases.

g
2

Consicer g pariition of the n veriables into N subsets, subset containing

.
L
n. variadles {I1=1, ..., N). Of course 1 s N <1, EnL =n, 1 £n ¢ n. For
e
index set {1, 2, ..., n} in K subsets I',,
da

n
ubset L. In the same way the rows of cur

F Z. .
L) -ZT ij (1)
. ieNy
- .
The courzes of variztion thrat interest us are again the variance within

e eierments end the veriance between sample elements, this time measured
over the subset scores in S. If we apply our nomogeneity definition of

cestion 3.1. to this matrix we have (assuming s = 0 once again)

Source Sun of Souares

Between coOLwnns B = NEszj

i s 9 = - )2

Yithin colwans W EE(SLj C.J} (2)
Tcotal T = EESZ.

T L3

and egein we are interested in weximizing x = B/T.

What does this mean? In the first place ve do not interpret the veriables
within the subsets as replications of each other, which have to be homogeneous
o some sense. we interpret the subsets as multidimensional variébles; Just
as in MANOVA-type techniques. In the standard, metric cases of multiveriate
enalysis we make linear combinations of the variebles in the subsets and apply

linear combinations. In our categorical

are additive combinetions of the induced score vectors,

sinations of the originael indicator vectors. In the
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second place we have the

B(s) = 2= (3) » 2 JE =
. n ..
= &)
= (3}
which means that the numerator of A is essential ame, ne mutt

we define our partition of the variedles.

5.2, Matrix forrulation

It follows from (2) and (3) that

ta
X uxX IS
A= [k (Sl
SX UK

in the following way: 1if an

variables in the same subsel

if it corresponds with cetegori
egual to zero. Again wve require ZIs =

these constraints can be incorporat

x. in which each cetegory gets z weight

0
of variables in its subset, satisfies

CxO = N on,

i.e. x. satisfies the basic staticnary eguations with a= 1. ZIemove X,
C

s}
defletion, then

- 1 .
C C ~ o onxo Dy

where D is the diagonal metrix D used in chapter

previous deflated C matrix of formula 3.17. An

Qi1
fas
=}
w
-1

au+cmat1cally satisfies j21 SLj = 0 for ell L=1, ..., ¥ (&lthcugh nc

necessary g z;: = 0 for all i = 1, ..., 1)

(%

By now the structure of both C and D sh

Cij can be divided into two classes: tho

subsets. In D the w1th n matrices ClJ
cii always velong) are copied from C et the corresponding rlaces. Then ihe

rest of D is filled up with zerces. We know that the rani of C satisfies

r(C) ¢ min(¥k - a + 1, m). renh



- 83 -

For the rank of D we find
r(D) ¢ min(X - n + N, =), . (en)

Thus r(D) 2 r(C).

Corsider the slightly mcre general problenm: meximize
_ x'Cx
Hx'Dx

under the conditions Sx = C, where S is a p x K metrix of rank » € K. ’

flternatively this can be written as x = Ty, where T is an K x {(K-p

of ranx K-p, satisfying ST = 0. In general such & T cen be Tound by using

the H-p eigenvectors of 8'S correspendir 5. By
substitution cur proble: reduces to the
N v !TICTy
= e, (1C)
Ii_‘,"m' y
The matrices T'CT and T'DT are of order X-p. Moreover
r(T'D7) 2 r(T'CT) = min{K - D, r{C)}, (11)

end thus both matrices are nonsinguler iff r{C) 2 ¥ -
r(c)=K~n+1,enxdpsn-1 suffices. The matrix
r(D)

of linear restrictions treated in sections 3.11., 3.13

W

K - p, and in the usuel case p 2 n - N suffices.

a more or less disguised form fells uncer tnis sectic
Gesiranility of choosing T in such a way thet

end in such a way that the vectors y are directly intel

ct
iy
%]
=l
o
&1
+
2
|5
%
)

for example, a set of discrete functions, or

can easily r strict our weights x to be polynomials of

n the other hand the vecters in T mig be related T

(o)
2]
fos
ot

voerisnles. In our problems with ordinal vostraints of the form 8x 2 O we

an also write this as x = Ty, where T contains the edges

g
by Sx 2 0, and we require, in addition, that y 2 0. Of course the restricticns

Y
E s . = Q for all L can also be incorporated in this form, hut 2lsc the more
b

t Ly Zij = 0 for all i. Thne difference is thati oxnly the
3
restrictions on S are related in a simple way to & particular elgenproblen



S.4. Special effects

It is interesting to find out what heppens in the general case to our 'special
effects' like internal consistency, the relatlicnship with X, the geometrical
interpretations, and sc on. It is trivial to five a formal generalization

of the internal consistency equations (3.25). We have
1

H'x = (M)? s, (12=)

Hs (N;)% Dx. (12p)

The interpretation of these equations i1s move difficult than in the PCA case,
but equation (12a) tells us that the optimal direct scores are egain the column
means of the induced score matrix 5. If D-is‘a generalized inverse of D, then
(12b) can be rewritten as

x = (NA)-%(D_HS + (I -DD)y), (13)

for some real vector y. If we substitute this in (12a) we find

H'D Hs = NAs - H'(I - D D)y. (14)
. o . +
It is not difficult to check that for the Moore-Penrose inverse D we have
+ . ‘s JN
H'(I -~ DD) = 0, end thus (14) simplifies to the more familiar for

+
H'D Hs = Nis (152)
which can be used in conjunction with

Cx = HH'x = NA Dx. (150)

To derive optimal direct scores we can also use the pseudometric (in the sense

of section 3.12.)

' 2 = - v ogipt -
6jl (ej el)- H'D H (ej el), (16)
and find multidimensional score vectors S5 and N in such & way that
<, o= - 2. ) {z, - 2z, 1
ayy = (zg - 230"z zJ) (17)

. ] - 2, .
optimelly approximates Gjl in a (generalized) least squares sense. In most
cases D is not diagonal and the simple set theoretical interpretation is not
valid any more. Observe ihat both H and D can be partitioned into subsets

corresponding with the N sets of variadles. It is easy to see that

+ + +
i = H' + L.+ H' 18
D'H = H' D H, H'yD iy (18)

.
and thus 6§j can be partitioned into N components too. The components (651)
are Mahanaloobls-type distances between the vectors hg and h; in the space

whose {otlique) exes are defined by the dispersicn matrices of the seis of

variables. Subsets with large variance contribute relatively little to the
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overall distences. The reproducibdility equations are

H=1N D(Aé XS * x%x1;; ol ¥ Ai x5, ) (19)
end
C=NDAgxoxg + e * lvxvxé) D. (20)
Tre separating hyperplane interpretetion still holds. Again
+.3 + +.3
2032 = 1T Tr(D])¥C, Py C\r (Dp)*)s (21)
with CLM the cross-product matrices between subsets, CLL = DL' It follows

that the diagonal terms of this summation are egual to the rank of the DL'

' N22a2 = L R(D) + I 44 r{Q,.,) (22)

the sceled cross product matrices from (21). The nondiagonal terms
) are ¥Z-analogues for a complicated hypotheses of independence ‘hich

seys (roughly) that C.,, can be predicted from DL and DM' By our essentially

M
pivariate trestment of the problem we have run into complicaetions once agein,
in the multincmiel extensions of multiveriate analysis the %? measures and

the hypotheses of independence ard interaction come out much more elegantly.

By following the argument in section 3.8. it is easy to see that the stationary

equetions in the multinormal case can be derived from
.

1 0 1
B = E‘(aéc oy * u;C oyt Vs (23a)
T = (o 2% + a'Dla, * ... ) (23v)
0 6] 1 1 ’

where C is the complete and D the within part of the population covariance
ratrix, and superscripts denote taking all elements to the power s (of course
it only mekes sense to assume mulfinormality of the variates, not for factors!).
The stationary equations are

c®s_ = N1 0% (24)

s s

for all s = 0, 1, 2, ++... Again s = 0 tekes care of the trivial solution,
s = 1 is the multinormel solution we are interested in, and for's > 1 we find
further uninformative solutions. Again we cannot expect the nice relationships
:ith contingency to hold, but in practice it still may be possible to detect

and isolate multinormal effects.

5.5. XNumerical and binery variables

If the categories of a numerical variable have prior scores.y. satisfyirg
e

0 we require x* = a,y; Tor all i, then A = (a'Ca)/(Na'Da), &nd




result as in 3.15. Observe,

variables in the general case are real restrictions unlik

which they were & means of simplifying the cozputations.
] g 3¢

the natural restriction in the gereral case is Is,, =
Ly
) n. X,, +n, %. = 0
1€N. ( i+71i+ i- 1-) ?
L
and not Zzij = 0 for all i, or

n., X, +n, x. = 0.
1+71t 1-"1=

Of course the restrictions considered in this section sre part of

theory in 5.3..

5.6, The cese N = 2

In the case that there are only two subsets ihe problen s

in the seame way as in section 3.10. We can order the
way that the stetionary eguations are
[c © 5}/ x) fc @ o Y
A |
' ! ;
E' D,LS'J o i op )|

and this simplifies in the usual way to the related systen

By = pCx,

with u = 2X - 1. Suppose for the moment that E
any one of the m solutions of (27) correspornds
whose values of X add up to one (cf eguaticn 3.
it). Using the linear restrictions x = Ta and
system to

T'EUS = u7'Cla,

U'E'Ta = uU'DUSB.

5.7. Improper solutions

An interesting question in this context is
solution if only for some of the variadles

for others. The question 1s in how far the

T
U
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make the relationships somewhat clearer we emphasize that any nominal variable
is already treated as a subset of binary veriables. In this sense it is
indeed true that binary variables ars the most lasic typve. A PCA of n nominal
veriebles is elready equivalent to & n-set rmatching of sets of binary variables
(with the special property that the within set cross product zmatrices are
diagonal). Thre only technioues in which there is no grouping of the variables
in any sense is the PCA of n birn =y or of n numerical variables with

reciricticns x. = a.y..
1 171

5.9. Relation with PCA

In this section we show that using linear restrictions is general erough to
make the grouping of variables unnecessary. Suppose we have a subset of
n nominal variables with k1, ey kn categories. By using the Cartesian

product of the Ti Wwe can reduce this to one nominal varieble witnh T©k.

i
cetegories. Such a new category is indexed by (11, ceey lq) with 1 g li < ki'
We impose the linear restriction that

(1 vee =x (1) + ...+ x {1). 2
xti,, > ln) Y1( 1) XA n) (29)

It is easy to see that the matrix 2 of induced scores is identical to the
metrix 8 of subset scores and consequently the PCA analysis with linear
restrictions defined by (29) gives identical resulss as the subsets of
veriables enalysis outlined in this cnapter. Of course a PCA withou: the
restrictions (29) in general gives & different result, and I can izmagine
situations in which it is prefereble rot to use these restrictions at all.
If we o not use the restrictions the relations with X2 discussed in chapter
3 hold aéain and we 'test' the pairwise independence of sets of variables.

In the multinormal case using or not using (29) makes no difference at a1,

5.10. Historical

Again the mein ideas in this section are not new. The Tact that &1l forms
of classical multivariete anelysis cen be interpreted as special cases of
canonical enalysis was already emphasized by Bartlett in his famous paper of
1947, Special ceses of our nominal variables incorporation were already
investigated by Fisher (19L41), Johmson (1$50), Guttman (1959b), and Lingoes
(1963). The case (n-1)No(1)No was studied by Fisher (1941) who called it
analysis of variance with optimal scoring and by Carrollf1968) who called

it categorical conjoint mecsurement.

The (n~1)No(1)0r case was described by Kruskal (1965), and imrlemented Yy him

ard Carmore in the program MONANOVA. The special cese (n-1)8¥c{1)0r in which
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re variebles in the first set are all replications wes studied by Bradley,
Xatti, and Coons {1962). The general case with (n-1)N¥u(1)0r and (n-1)No(1)Or

ct

was also studied by De Leeuw (1970) using Kruskal-type techniques, the special
case (n-1)Tu(1)Bi was treated in De Leeuw (1968).

A releted epproach to quantification, from the facet point of view, has been
given by Guttmen (19502). The use of symbols like (L)Nu(1)No tc describe
special cases is new. For our purposes these symtols are general enough. In

he compubter programs written T¥ Doesborgh (1971) different types of variables

ct

can cccur in a single set. This can be described by a more gemeral notation
in which we fix the order of the types Nu, No, Bi, Or and describe each subset
vy a quadruple of indices. Thus PCA becomes

1,0, 0, 0) ... (1, 0, 0, 0) (& times)

classical multivariate linear model tecomes

, a1, 0) (a5, 0, 0, O).
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6. Some special topics

generalizations. Again the descriptions o

because their usefulness has not

straightforvard. We conclude wit

in situations like the ones discussed in

criticisms.

The procedures discussed

and they have not been trie

as a number cf

One of the things that remein

partial correlstion in this

are removed by the familiar

‘canonical correlation between sets of

X, Y, 2 and we want tc partial out the contrituticon ¢f

metrix of X, ¥, Z is

X 0% T2 i3

«Q
2
Q

31 32 33

<
(]
Q
Q

[ —)

The multivariate regression eguations ere

Y = AX + 2,
7 = BX + &, {ond
and the least squares solution for A end B is

-1
A= Cz1 €y

= {2
B=Cy Cpy s (zv)




the residuals are

us

toy

and t

icel problem.
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Here EL is the part of X thet can be predicted by linear regression techniques
from the remeining sets, and XL is the residual. Of course it 1s also possible
to do an image analysis within each of the N sets xpe In that case We can write
SRR (9)
In general the results for this fourfold partition will not be identical to those
of an ordinery image analysis for the complete set of variables.
The relevant equations for the twofold partition are the following.
Inmages: .
o= 1c.C. T x, - %. (10)
L LX KX K o

Anti-imapes:

2L=ng-ucLKcm Xy (11)
Ineze dispersions:
§._ =cC.. =236, CotCo + EEC,Co. 7 C..C “Yo(12)
KL KL ¥P°PP PL ¥P PP “PQQR 0L
Anti-ira~e dispersions:
Cop, ™ BCyp, — ¥ ZCKPCPP—1CPL * Z’:CKPCP1>“1(“PQCQQJCQL'(13)
Mixed dispersions
C.. =20, - 4C,C. "o, + 10 Co. T 0 Coy Cor . (35)
KL KL KP'PP PL KP'PP UPQGQ QL
It féllows that, for example,
¢ ¢ Lo e ¢ "To, . (15)

S = % " Sk Y 2 r 7 KL “webrp Cpr.

Analogues of most of the other identities of image analysis can also be derived.

6.3, Linear structurel models

In this section we study models of the type

xp = ALf +ep (16)
Here X is an oObserved, and f end e, exe hypothetical vector random variatles, A,
is & known or unknown coefficient matrix. We suppose E(feL') = Q for all L, and
E(eLeK') = 0 for all L # K. This iImplies

1Y = o w 1 1 ]
E(xpx ') = &, E(££') A" + Elepe '), (172)
E(x.x ') = £5') A, '
(x,x.") = A E(£5') Ap (17v)

-

I7 we concatenate all vectors, write ¢ for E(ff'), I for E(xx'), and A for the

'diagenel' supermatrix containing 21l E( '), we can write this as

e
T =AM FA. (18)
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Opserve tha® a more general decomposition is also possible here. We can write

X, = AT Y Bg ot : (19)
erd assume that E(fg ') = E(fe, ') = 0 for ell L, that E(t t ') = E(tLgK') = 0 for
e1l ZFL, and thes Z(tLtL') is dlagonaL for all L. Wr1ue w, for u(ngL ), and
fer ®{t_t '), Then (18) is true, and for all the diagonal sutmatrices of A

A, =B B.'+T (20)

U
Lo L YLt L
Eestricting ourselves to the model (16) we want to meke linear combinations.
'a end £'3 that have maximal product moment correlation. The stationary equations

turn out %o be

A68 = A(AGA' + B) «, (21a)
A'a = A¢B: (21v)
Assume thet & is nonsingular, then
g =21 A (z2a)
and
A2 )
(£ - ala =777 ba (22b)

I7 A, ¢, and A are all unknown, then we can require for icdentification purposes
© s -1, . s s

that 4 = I and that A'A A is equsl to & diagonal matrix Q. If we collect all

selutions to {22b) in the matrix A, then the equetion

=1

(AA" - A)A = 8A AZ (I - A?) (22¢)

. - -1 . .
h1s the sclution A = A 'a and A2(I - A2)"' = q - I. The corresponding solutions

to (2za) ere B = Aol

6.4, Error-free subseis

Suppose that there are two sets of variables x and y such that
x = Af + e, (23a)
y = Bf. (23v)

E _[ [-AC)A' + A Ad)B'-‘
l ) (2h)
2 |

|B¢A' B¢B’J

1
The canonical problem (22b) transforms to

{ﬁ1’A Zyo] [aq] \2 [a ﬂ%ﬂ

1 e EE Y R
It follows .that

o, = =L, e (26)



and
(f,, - bdla, = — Ba,, [
[ N 1_)‘2 i
with
L=

Consequently if some of the

partial these variables out

This is of special interest

6.5. Arn alternative aporoach

In 6.3, and 6.%. we maxin

scores xp with linear combiznatio

epproach, but an obvious alter

the structural parts only, and %o
i

of chapters 3 and 5. This gives
<

(z -
where © is the diagonal [y
the sets are errcr-free
(£
11
6.6. Some special cases
we czn

It is obvious that if A, is a square, nonsingular transion
L
ag

simply rewrite (16)

By

matrix) A are the error variences, a

finding the comporents of ine
interpretation is thus thai we

is corrected for attenustion.

If A, ¢, and A are all unknown, then {22%) is

ceronical factor analysis,
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a) a good initial approximetion can de computed by relaxing
the requirements to the single one that YY' is diagonal {and not necessarily
hinarv). In this case it is easy to see that the optimal solution for Y'(YY')™
consists of the k dominant normalized eigenvectors of the matrix X'(XX')_1X.
This may provide a good stariing point for our previous cluster procedures, for
example by usin ounding algeorithm that transferms the solution

&
to the closest binary metrix.

®ipelly we observe that single partitions are the simplests forms of clusters
we have. We can define much more general forms of clustering procedures by

irz cssentially the same idezs. The second set can consist of several

pertitions, of trees OF hierarchice lustering schemes, of lattices or partial

[
[

créers, and so oa. In general this defines very complicated computational
vrocedures, which mey or mey not be worthwhile. Of course it is also perfectly
possible thet the vectors in X contain independent error in the sense outlined

eariier in this chapter. This complicates the algorithms even further.

ady indicated in which sense statistical inference

In chapter 1 we have al

]

n our class of techniques. We do not have very

ry purposes). This means that the model for the indicator

e product multinomial model. The ways of classifications
are used to structure the preoduct, the variates dafine the multinomial
distrivutions. The multivariate vectors of freguencies are asymptotically
joirtly zultinormally distributed, and the elermenis of the matrices that enter
into the generalized elgenproblems are linear functions of these freguencies

(evern in the general setup with linear restrictioms from chapter 5). Twc

[e]

tvious generalizations, which will not be discussed, are Markov dependence

Ir the first class of statistical protlems we are interested in we have two

random square symmetric matrices C end D whose elements satisTy the structural

equstions
ok 0
€55 Z&ij %t 255» (35a)
X 9 - -
= .. + PO
Toy; %y * g (35%)
"re a.. erd b.. zre known resl numbers, the x_ are jointly asyrpiotically

1} i ~k

and covariances 9q We are interested in the
s
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esymptotic distribution of the eigenvalues end the left and right eigenvectors
. -1, - . . .
of the matrix D C. Throughout this section we assume thet all eigenvalues are

simple. We use the standard results from perturbation theory. ILet

0 =X, * e’ (36)
then
czj = cij + eaij, (37a)
:j = dij * Cbij’ (37v)
or ¢* =c+oenp, (382)
p* =D+ €3, . (38v)
If ¢ is smell enough we may write
o =0 - en“sln" + o (39)
ar? thus .
(0")7'c* = p7lc - epT B pTC 4 oD Ay 4 (40)
Suprose D_1C 2 =1z, (51a)
S s S
ZS'ZS =1, (Liv)
ooy, = Ay, (L1e)
v 'vg = 1 (v14)
It follows that :
z = p~! Ve ' (42)

According to stendard perturbation theory

. vimmly ol
a, ¥,/(DA -D

30p7'¢) z
1

—_— S P
axl . ys'zs
A -
_ s (Al AsBl) s _ s )
= 7 Dz =z &.» (*3)
s s -
ard
~ t -
a"i,s - Z Zy, (Al stl) Zg .. 2 his (u1)
o 3 - T s = .
N t¥s (As At) zg Dzs it 1

The ¢-method gives thet the Xs and the Eis are jointly asymptotically normal.

We find, for exauple,

: e " ¥ z s t
ACOV (X5 A ) = 20 2y B8] Tpqr (L5a)
ra PN ¥ o.is it N
ACOV (B 250 0= 2y 12 B B1 (k50)




In the general case we do not simplify moTe
case we have {C not necesserily s;
= Re
~l‘j »i‘ja
= ko ‘
-.lJ Vi.:! 1
1 o)
e.. = IfT, x_ + T..,
&ss H e
i3 i3 Tk b
and the eigenproblem is
e P ;
E C'D Cz =X 2z, <
] s s
z 'z =1,
= =3
iy Vam—t .
¢'D CE Y. = A Y.
'y o= 01, z
YoV
Again - E—1 . o
s
Letting
* 2 -
xk = + gd T, -
we now fir
© nd *)—1(n* =1, K
~ ;

" Letting
w =DC z s Rl
s s
we find
A
8 -
Bxl

and so on, Agsin we do nci

simglifications are possible

As a simple exemple we ccnsider z

chapter 4. We suppose that there

Al’ ey Am. We define

-
where »

.
-

that respond ¥



If the Ai are obv

the obsearved

(5]

5 = ' -
D, Vo' Ay Vg
Assuming a simple multincmial molel over the
- - , o=
ACOV( A, A = — T
cov( s’ t) n 11
, n
. . ~ ("
n 1E1 Vs

ct
52
boe

We can estimate

Needless to say that we expect tha

very lerge (much larger than =).
the mejor product moments of the centered vect

and if X is thne number of ranked

ison experiment the

matrices, &nd in 2 similerity experiment
== Trt =
CE C'z =XA_Dz,
s s
z 'z = 1.
c s
Defire
- “‘ L
ys =E C Zos
= o 'Dz
Ys s 77s

Here C contains the cell probebilities p;j,
i
probabilities.

-ty

end

1ls

iously also write

After a lot of algebra we find

{5

\
i
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It follows that
BAQ

b

Pyp = O . (60)

.
Deteiled formule's for this and other specizl cases will be worked out in
further publications. The same thing is true for the more complicated technigues

in chapter 4 ard 5, and for the essentially different technigues of this chapler.

The asymptotic distribution of the %s and z;, can of course te used to construct
esymptotically optimel tests in the sense of Wald, and esympiot ic optimal cornfidence
regions in the sense of Wald or Wilks. The hypotheses we test will mostly e

of the form ls = At tor sll s, t in a subset of the eigenvalues, or'AS = ¢ for

all s in & subset. These hypoiheses often have no clear interpretations in terms
of s relatively simple statistical model for the observed freguencies, but
is, of course, unavoidadle in explorative situations like ours. Asssaing stochastic
independence of the individual cbservations, and assumirg a structure in taras

of variates and ways of classification is often about all we can do.

The extension of image analysis and common factor analysis to sets of nuwnerical
varizbles seems straightforward enough, and there seem to be no extra problems
with respect to interpretation. If some of the varisbles are
interpretation becomes much more difficult, however, In the

purely linsar model for rrobabilities seems to have et most =

value, because of the natural boundaries cof probabilities between zero arnd cne.
This is rot, as serious as it seems, because most of cur procedures can also be
interpreted in the fremework of nonlinear factor enalysis (McDonald 1962, 1967,
19¢€8).

Nonlinear fector analysis is, however, = very problematic class of technigues.
The fundsmental weaknesz of classical Spearman-Thurstone common factor analy rsis
is the indeterminecy in the model x = AT + e, investigeted by Thomsom (1935),
Ledermann (1938), Kestelmarn (1952}, Guttman (1955), Heerman (1964, 1966), and
Schdnemann & Wang (1972). There are nc respectadle statistical techniques to
estimate factor loadings, factor scores, wnd unique variace simultanecusly
{except under highly restrictive assumptions), and the indeterminacy problen
mekes the scientific vaelue of factor scores doubtful. This has as a practical
consequence that from most points of view it seems better to work directly with

the structural covariance medel.

T = AGA' + 4, (61)



end to remember (16) only as a possible justification for (61). The distinction
between linear and nonlinear factor analysis does not make much sense without

reference to the factor scores.

The problem to describe individuals in common factor space remains unsolved,
althougn there is always the possibility to do a Q-type technique. The model
(61) can be used in the context of nominal variables, it simply decomposes the
deviations from bivariete independence of the nondiagonal submatrices. The
idea of Interpreting the dia:onal submatrices aifferently from the rest is, of

N /
course, perfectly natural.

Par+tial canonical correlation analysis is a familiar extension of both canonical

o

orrelaticns analysis and partial regression. A satisfactory description of the
varicus statisticel aspects is the article by Reo (1969). I do not know any
practicel epplications. Image analysis in the form in which we use it has - been
proposed Ly Guttman (1953). Important further contributions have been made by
Guttzaa (1660}, Harris {1962), and Kaiser (1963). A closely related statistical
xodel is described by Jdreskog (1663, 1969).

Le generalizetions of common factor enalysis discussed in 6.3. - 6.5. are partly
due to McDoruld. In licDonald (1968b) he discusses the general problem of canonical
analysis in terms of maximizing ratios of quadratic forms that can be interpreted
as variance ratios of linear combinations in models such as (16), (19), (23),

and (31). In MeDoneld {1969a) he applies the results to the problem of defining

a princigal Tactor analysis (PFA) of n nominal variebles, and in McDonald (i970)
he studies the general case of groups of variables using the Lawley-Whittle egual
residual variance model, the Guttman-J8reskog image model, and the CFA mcdel.

In McDonald {1970) the PFA, CFA, and AFA approaches are discusced and cor irasted
for the classical case of one and only one variable in each group. His conclusion
is that CFA has more useful structural properties than AFA and PFA. This is in
agreecment with the conclusions of McDonald & Burr (1967), and Browné (19€9).

In McDonald {1969b) the model {61) is generalized to the case where A can be a
general symmetric matrix with zeroes at specified places. De Leeuw (1972)

discusses several algorithms for this and even more general cases.

MeTonald (1970) also describes the procedures discussed in the first peragraph
of 6.6.. Moredith {1964) discusses an AFA-type matching technique'which is the
special case of 6.5. with ¥ = 2 and A1, A2 both diagonal. The CFA-type
trocedure of finding linear combinations that maximize the reliavility is due

to Tromseom (1640), Mosier {19L43), Peel (19%8), and Green (1950). The CFA model
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in the classical case is due to Ruo (1955), the AFA model to Xaiser & Caffrey
(1965). The CFA equations turn out to be identicel to those for maximim
likelihood factor analysis (Lawley, 1940), end minirum determinzat

analysis (Howe, 1955; Bargmenn, 1957). CFA can easily be extended to the more

jai
=
\C

general individual differences models discussed i
ty J8reskog (1971).

Structural models of the form {61) with A knowr have &8s familiar specizal ceses
the variance component models in ANOVA and MANOVA, the quasi-simplex models

investigated by Mukherjee (1966, 1969) and J8reskog (137Ch}, and several cihers

of the general type discusssd by Bock and Bargmann (1568), Srivesteva {1068},
Anderson (1966, 1968), Mukherjee (1970), and J3reskoz (16702).
The 'string property' of optimal solutions of cluster preblems is due o Fisher

(1958), ard it is used by Vinod (1969) and Rao(1971) to deviss erficiant integer
prograrming algorithms. The alternative approach based on (Eha) c

discussed by Friedman & Rubin {1967). The first eigenvector anc

these sclutions was discussed by Wilcy (1967) under ihe name o
analysis.
Perturbation theory is discussed, for exemple, in Wilkinson (1965, p. 62-7T0).

8}
In & psychometric context it was used by Derflinger {1968) and Clerke {1570)

to compute the first and second partials in ML and LS factor enalysis. The

§ - method is discussed by Doob (1935), Mann & ¥Wald (1543), Zou {19k3). Tre
relevant theorems are beautifully summerized in Rao {1965, section 4a2.2, pr.
319-322). The relevant asymptotical statistical theory is slmost cempletely

discussed in Weld (194%1a, 194%1b, 1942, 1943).
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I think that most political scientists (cf Stapel 1968, Daslder & Rusk 1971)
would egree on the following order of the parties on the (conceptual) left-

right dimension
DACO -+ PvaA - D'66 - CONF - VVD,

and the following partial order on the conceptual dimension of religious

affiliation
VVD
x kY
CONF -+ D'66 + PACO
- o
* PvdA

(ef also De Leeuw 1968, De Gruyter 1967).

As a first result we have analyzed the marginal tables 1.2.b and 1.2.c with the
techniques from section 3.10 (results previously reported in De Leeuw 1971e,
i971b). We used the progrem CARDOIP. The first twe components azre given in
tabdbles 1.3.a and 1.3.b, end plotted in figures i.4.a and 1.L.b. The correspen-

g partition of the totol X2 of the tables is given in 1.5.a and 1.5.b

n
ohserve that the three comronents are not indeperndent xz, not even cn the

T

.yﬁthesis of complete homogeneity of rows). The interpretation of the results

i5 beautifully clear. If we compare the projections end the rank orders we

find thet in 1.3.b the first dimension is left-right, the second is religicus
affiliation. In 3i.3.2 the rcle of these two dimensions is interchengel, i.e.
students pooled within facultics over universities use the left-right dimension
in their politicsl choices, students pooled within universities over faculties
use the religious dimension. Of course the fit to the conceptual order can be
improved by usipg obliguec nonmetric Procrustus rotation (De Leeuw-1969a), but

this is hardly nrecessary.

Lammers (1969) uscd prior integer scores for parties corresponding with the
linear order we discussed for left-right. This defines an induced quantification
for faculties which corresponds closely with our computed direct canonical
quentification (plot in figure 1.6). The corresponding partition of X2 is given
in table 1.7.a. The main difference between the two quantifications is the score
for theclegy, which is not surprising beczuse of our secornd dimension. In
Lammers' scoring system theology is a faculty somewhere in the middle of the
scale, in our guantification it is clearly on the left side of the scale (and,

n fact, this supports Lemmers' conclusions from his datu even better than his

[

own scores seem %o do). In a factor analysis terminology there is only one
commor. factor, and theology has a large unigue variance. Becazuse of the results

o

of our second cancnical analysis it is alsc not very surprising that Lammers'
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T Ixamples

7.0 Introduction

[N
12
0
oy

In th napter we give examples cf some of the precedures discussed in the

3

previcus chapters.- We used PL/I programs {rom the old CLARD ceries, from the

s &Y
more recent CARDCOP series, a very general new pregram CANONOY, and some ad
hoe programs written in APL. The rrocedures discussed in crepter 6 are nct yet

Frogramzed for the computer. We surplement szome of the cutput of the cancnicel
tech

szmall number of interesting examples, which do rnot of

ticnal or cemputational difficulties, and which are con equently not completely
regresentative for vhe types of data o which our procedures can be appliied.

N

r
mezbers are in preparation and wiil be published separately. A large series or
t

FOSTRAY rrograms is prepared in cocperation with the computing cen

7.1 Deta 1: students and o

st @et of date (provided by prof. Lammers is given in tabdle

r
The Dutch student council NER collecied in 1968 first choices anong

£

rnajor political parties of 1615 university students. The sezple was
over 12 universities and 13 faculties (i.e. the total numher of students in
each university-faculty combinetion was fixed, universities is & factor, only

Loy

clitical choice iz a randenm variable). The three margiral two-dimensioneal

o]

tables are given in 1.2.e-1.2.c (otserve that 1.2.a2 is completely fixcd, 1.2.%
and 1.2.c are of the comperative trial type, i.e. one merginel is fiwed). %he
b

revistions used are

Faculties Political varties

JUR Law, CoNF Denominationsl parties (XVP,
\ED Medicin. ARP, CHU, GPV, SGP).

Wi Math, & physics, chemistry. D Conservatives.

soc Social sciences. Pvaa Socialists.

157 Literature, language. PACO Pacifists, communists.

TEC Technical, D'66 Pragratists.

PSW Political & social.

VEIE Veterinariens.,
TND Dentists.

TEZ Theology.

LW 7 Agriculture.
CIF Philosophy.
ECO Economy.
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scores perforn poorly on table 1.2.c. The partition of X2 is given in table 1.7.Db.

Ir table 1.8.2 we have formed all possible combinations of parties and computed
the witnin group X¢ (the order here is CCNF - VVD + PvdA + PACO + D'66, and thus
16010 means the group COWF - PACO). Of course the within group X2 of 11111 is
equal to the totel %2, and the within group %2 of groups consisting of a single
zarty is zeic. In taoble 1.8.b these within components are used to make edditive
within-zetween pertitions of ¥2. In a sense the ideal situation in a parliamen-
tory democracy is a governmental coalition that is &s homogeneous as possible,
'and an oprosition that is as homogeneous as possible. This implies that government
ion must be as differeat es possibvle from each other. The student date /
the best possible situation is a government consisting of CONF - PvdA -
£i00 - D'66, and an opposition that consists of VVD only. The second best
situation is close to the actual situation in the Netherlands. We have CONF - VVD
-in government end PvdA - PACO - D'66 in the opposition. If the opposition is
ided into two groups we find another situation close to the actual one

CLUF - VWD in gevernment, PvdA - D'66 in opposition 1, PACO in opposition 2)
aiso satisfactory in terms of homogeneity. Due to more recent political develoﬁ-

=zents it may be interesting to observe that

10101 2,489 24
01000 0.000 0
00010 0.000 0

115. 166 24

177.655 L8

is even better.

We also enalyzed table 1.1 with a PCA progranm for three categorical variates
called CARDOLP. Observe that this is not the correct probabilistic interpreta-
tion of these data, and the consequences of this are interesting. In table 1.9
sll weights which are in absolute vaiue at least .010 are given for the first

seven components. The interpretation is

I TECHNICAL universities can be found in DELFT, DRIENENOORD, EINDHOVEN.
II An AGRICULTURAL university can be found in WAGENINGEN.

III £COLOMICAL universities can be found in ROTTERDAM, TILBURG.

v POLITICAL dirension 1.

v POLITICAL dimension 2.

VI You can only become a VETERINARIAN in UTRECHT.

VII 717

Fectors I, II, III, IV, and possible VII are almost completely determinei by
the peculiarities of the {ronrandom) table 1.2.8. Only factors IV r2d V seem to

wave some political relevance.
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It can be seen that IV contrasts the left with the denominational r
contrasts the denominational right with the non-derominstional right (i.e. V
contrasts the two meanings of the word 'right' in political languzge, ¢f Siazel

1968).

7;2 Data 2: leaving primary school

The second set of dste is given in table 2.71.&-2.1.h. In 1870 we ccllected data
in eignht GLO schools in Leiden. For each of the pupils of the 5“h :
recorded the occupation of the father and the type of secondary education the
pupil was going to have after leaving primary school. Previous analysis of
similar, more extensive, date indicate that all types of secondery schocls

could be classified without much loss of information eas

At HAVO, MAVO, VWO.
B: LTS, LENO.

c: LAVO, LEAO.

D: ETS, INOM, MEL.

E: N0 FURTHER ZDUCATION.

The implied partial order (eitker in terms of difficulty, or intelligexzce,

or expected later income, or social status, or wvhai have you)

The occupation of the father was classified into five categories (a lineur

order is implied).

a Academic, directors, ...
B: Higher white collar, army officers, ...
Y: White collar, shop keepers, ...

. 5 Lower white collar, skilled labour, ...

€ Unskilled labour.

The information was collected direetly by the principals of the schools wro

also did the classifying of the fathers (the social status scale is, of course,
a rather weak point in the data gathering procedure). In tadle 2.1 rows reler to
occupations, columns to school types. The bivariate and univeriate marginals

are given in 2.2.a - 2.2.c.

Previous analysis of similar date had given us the idea that elmost =21l variation

in the marginal table 2.2.c¢ is due to the distinctions (e, 8, y) versus (&, €),
and A versus (B, C, D, E). Accordingly we have defined the 4 x L = 16 contrasts
displayed in table 2.3, The last two columns of 2.3 contain an exact and en

asymptotic partition of X2, The only significant single degree of freedem
chi-squares seem to be: (a, 8, y) g0 more to A than (§, €); (a



- 107 -

than y; & goes more to A then e; and, possibly, of all (8§, ¢) not going to A,

& goes more to (B, C) and ¢ goes more to (D, E). The simple partition A versus
BCDE explains avout 80% of the total ¥2 , and the within BCDE component is not
even sigrificant (table 2.L4.b). This seems to suggest thet our school system
concentrates on seperating the A-candidates. from the resi, and thet the choice
vetween BCDE is considered less importent. On the other hand the data set is
small, the number of people not going to A is even smeller, the number of
zeroes in table 2.2.c¢ is large, and the asymptotic distribution theory may te
guite misleading. This means that we must be careful with our interpretaticns

here in an

ct

of the BCDE effects. That the linear order oan the cccupations is

overwhelming way (with respect to A-going or not-A-goirg) is obvious enough.

A more refined analysis, at least from the data theoretical point of view, is
the canonical metnod of section 3.10. Using the APL program CACTO1 we found that
he first component had a X2 of 85.756 {corresponding wiih a canonicel correla-

-
h

ion of |pl= .593). The joint scale in figure 2.5 shows that our prior orderings
t i X 2

(33

are reproduced quite nicely. The most remarkable festures are the large distance
betwesn A and BCDE (remember that X2 for this prior contrast was 82.37%,

very close to the optimum), and the large distance between y, &, and e. Our
'orude' conclusion that the differentiation between BCDE is more or less random
does not seem to be cozpletely valid. Arother interesting cuestion is in how

far we can predict choice of secondary education from the two remaining varia-
tles. The technicue is discussed in chapter 5, the program used was CACTO2,
written in APL. There are two significant components with squared cenonical
correlations p% = .516 and pg = .23%. The joint plot is given in figure 2.6.
Again the mein effects appear to be A vs BCDE and EC vs DE. They are closely
related to aBy vs e, and & vs €. Agein it is remerkable thet the cluster

A/aRy/OP,LC,LL,DR is very homogeneous, much more so than the other clusters.

7.3 Data 3: political vreference

In 1968 prof. Hans Daalder and his collaborators asked the 150 mexbers of the
Dutch Lower House (Seccnd Chamber) and the T5 members of the Dutch Upper House
(First Chamber) for their preference rank orders of the twelve most important
Dutch political parties. Only 141 out of 150 members of the Secord Chember and
only T0 out of 75 members of the First Chamber actually responded. We analyzed
both setseusing the CARDO2P program in two dimensions, the technique is the one
discussed in section 4.2. A plot of the projections on the first two principal
components for the Lower House data is given in figure 3.1.a. Results for the
urper house are slmost identical, the plot is given in figure 3.1.b. For the
interpretation it is useful to drew the two arrows representing the two large

clusters PvaA - PPR - D'66 and KVP - ARP ~ CHU = VVD. Projections cn these arrows.
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(directions) represent the typicel preference patterns of people in these
clusters. Observe that is is impossible to accomodete the preference rank
orders of the members of SGP, GPV, CPil, PSP, and BP in this way. In this
preference space the fact that there are two homogenzous clusters, consisting
of the progressive (P) and conservative (C) parties, and a heterogeneous
cluster of smell extremist (E) parties leads automatically to something
closely related to the curved left-right dimension discussed by De Gruyter
(1967), De Leeuw (1968, 1969b), Ven de Geer (1970). The major preference
patterns are (P) > (C) > (E) end (C) > (P) > (E), and they can be accomodated

in two dimensions by the vector model as follows

“©
Jo

{for the distance model basicelly the same thing is true). Observe that the
curved dimension necessarily has some holes. If we plot the induced scores

for individual members of parliament the hetercgeneity within parties will tehd
to take care of filling these holes. In figure 3.2 we have plotted the 11
members of the lower house (the scales of 3.1 and 3.2 are not directly compara-
ble, we could make them 50 end draw a joint plot). Observe that the hole between
the clusters is still not completely filled. The code used in 3.L is: PSP = p;
PvéA = g; D'66 = @; PPR = r; KVP = k; ARP = a; CHU = ¢; VVD = v; EP = b;

SGP = s3; GFV = g. We compare the CARDO2P output with & number of related results.
In the first place Daalder and Rusk (1971) dnelyzed the same Lower House

date with Roskan's UNFOLD program (cf Rosksm 1968). The plot is given in figure
3.3. It is a nice illustration of a point we msde in 3.23, and earlier in 1.3.
The UNFOLD program tends to degenerate the configuraticn, not only by moving
the very unpopular EP far from the other parties, but also by collapsing
homogeneous subgroups of parties into single points. It is possible that if we
increase the precision and continue iterating then BP moves even farther ocut,
and our (P) and (C) clusters collapse even more (this is related to the fact
thet Kruskal's stress is very flat nesr the minimum). Daalder and Rusk show
that by moving BP to the arbitrary point BP' the stress increases from .119 to
.121. This calles for two ccrments. The flatness of the stress function has the
advantags that the simple gardient meihod is relatively effective. If we try to
minimize the simple transform 1n S/(1-8) or St with t »> 1 with simple gradient

methods we may be in some computational trouble. In the second place it has been
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convircingly ergueé by Torgerson (1965) that the degenerating effects of MDS
programs may be very helpful for some data sets, and in the NMSPOM progranms

(De Leeuw 1570) we have & special parameter which regulates collapsing and which
cen Yo used to makxe the MDS program into a cluster analysis program. In our far-
+iculer data set we have seen that the cluster interpfetation is very helpiul,
Yut the CARDOZP program gives much more additional useful within-cluster infor-
ztiocn than the UNFOLD program does. A comparison of 3.1.a and 3.1.b shows that
the within-cluster information is reliable. Further information on these data
and their relevance for political science cen be found in the article of Daalder
end Rusk {since then published in S.C. Patterson (ed): Comparative Legislative

Benaviour, New York, Wiley, 1972).

n th2 second place it may te interesting to compare our results with other
pclitical preference data analyzed by the similar CDARD2 program, and reported
in De Leeuw (1968, 1959). The date from a sample of 100 psychology students
coilected by Dr. Leo Ven der Kamp in 1968 and plotted in figure 3.4 show thet
+he situation here is somewhat different than in parliament. The progressive
students chcose D'65 or PvdA, the conservative ones choose VVD. The denomina-
tional group XKVP - CHU -ARP is very unpopular among students (cf .also data 1).
Tney have only 165 of first choices in this sample (in the Lower House sample

), the VVD has 31%, D'66 23%, and the PvdA 19%. Although the within-cluster
preferences are completely different in this sample, the same clulters are
still thers. The situation is again completely different if we analyze the data
of 80 districts in Amsterdam during general elections for pariiament in -
february 1507. In figure 3.5 we see three different scales, one general (G},
one for the establishment (E), and one for the people who are not satisfied with
the current svstem (U). It is important to observe that CPN, BP, and PSP were
all very porular in Amsterdam at that time (having about 40% of the total popu-
iar vote). A more precise analysis of the individual districts shows that some’
of thex have a hard-core CPN vote , but other districts have'é 'dissatisfied’
CPi vote (is these districts the BP vote is also very high, and between elections
a

lot of people switech from EP to CPN and back).

-
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&
ot
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-
g

olitical similarity

The conditional similarity matrix in table 4.1 was obtained by suming conditio-
nal similarity rank orders for 11 subjects (also collected in 1968, subjects
were students and staff members of the psychological institute). We use the

@s<a to illustrate the DSCH technique from section 4.6. There are two large
eigenvalues, tre projections orn the first fwo principal components are plotted
in figure 4.2. VWe can compare this with the output of a 'proper’ nonmetric

the results form the NMSPOM program {Minkovski exponent 2,

g
error weighting 2, cf De Lecuw 1970). This is plotted in figure 4,3. The



distances constructed by the two different technigues in two dimensions are
'
plotted against each other in figure L.k. The MMSPOM solution can e

8s & two-dimensionzl solution, with the maj

o
ené the second dimension for religicus affiliation {(in general ro

necessary for NMSPOM because we use floeting point exponents for

This interpretation has some unsatisfectory features, an alterneti

tation is that we have considerable variaticn arourd e single linear
L=

dimensicn. The DSCIH solution is more easily interpretable, and gives us a smell
arount of scatter around the familiar curved lefi-right dimension, slreedy
found (with varying degrees of closure and curvedness) by De Gruyter (1947), and .

Roskza (1968, p 7C~T6), and since dy many others.

Of course the summation of “the data of individual subjects

questioned in cases like this, and & conditional TWWD aralysis mey be much rore

N
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ct

aprropriate. We used Van der Kloot's CDARD progranm {(descritve
'~ o o

3
e
Q
I
@
-y
o
It}
H
ot
o

)» which computes the dimensions successively with deflas

erations have converged: (I now think that simultanecus optimalization for a
d nunber of dimensions is usually better, but there is no program yet which

does this). The configuration (with axes of equal length) is given in N.h.

The first two dimensions explain 53 + 13 = €8 7 of the total sum of squares,

which is guite a lot for such a restrictive model. It is w=ll known that *here

is no rotational indeterninacy in models such as TWWD and TWWI, and therefor

t is interesting to look et the projections or the dimensions. The 1

izmension is cleerly left-right in the politicel sense, th

JoTR =

es
can be identified with political extremism. The position of the SGP

o
second dimension is a bit strange (just as in Tigure L.2 we expect SGP to be
closer to BP). Inspection of table L.1 shows that the subjects tend to emphe-
size the fact that SGP is & denominational Calvinis t party, very close to ARP
and CHU, and not so much that it is also a party on the extreme rigrt wing in
the political sense (in fact our subjects think that BP is closer to VVD than
to SGP). A little reflection shows that this effect is also dramatized by the
fact that we have conditional data. We must also remember that the first
dinension is much more important than “he second, and that this can not be seen
from figure 4.4, In figure 4.5 we give the weights given by the various subjects
to the two dimensions (vector of weights scaled to unit length over subjects
for each dimension), There is only a2 little variation, especially in the weights
for the first dimension, and only subject 10 clearly deoes not fit into the ge-
neral pattern. After rescaling we find that for subject 2 toth dimensions are
about equally importent (which means that 4.4 ig representative for this

tject), For subjects % and 7 we find thet the first dimension is zbout twice

as important as the secend. Consequently their configurstion is better represen—
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ted by figure 4.6, which is much more like &.2.

7.5 Data 5: politics and sttridbutes

In 1968 we selected 12 political parties and 17 attributes, and we asked eleven

n
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subjects (students and staff members of the psychologicel in

particular attribute or not. Responses for one single subject are given in telle
5.1. Data of this type occur in may situations, and are somewhat di
analyze. They could be analyzed by unfoldirg type technigues, but t
of the matrix could equaelly well be analyzed by unfolding tyve techniques. In

rows and within columns, but this is elso not exactly what
minary analysis we use the old CDARD1 progrem, in which the atiridutes ere
hyperplanes that separate the parties. The results {projections on dimensicns
1 and 2) are given in table 5.2. It is clear from this teble that the 2P is a
)

straggler, which is due to the fact that (according to our subdject

distances, which are simply the induced scores for attributes (proporiicnal to
the direction cosines of the separating hyperplenes). In stead of using these

direction cosines we have drawn in hyperplenes that seem to dc the separsting

at least as good (figure 5.4, SGP and GPV are represented by the single point

SG). The only violation of the nommetric separting requirements is the fact

that BP is classified as a left-wing party by attriduie 3.

point (BP) we can achieve a perfect SSC solution in the sense of De Lecuw
(1969c) or a perfect MSA-IV solution in the sensc of Gutiman {ef Lingoes 1958).
Observe that (especially if we move BP to (BP)) thes circular coanfiguration of
political parties is there again. It is now a smell step to see that the
attributes define segments of this circle, i.e. there also is a 23
representation in the sense of De Leeuw (1969c), and only the attribuie oppor-
tunism violates it. The representation is drawn in figure 5.5, and the use of
the ideas of Shepard and Carroll (1966), Roskam (1968), Van de Geer (1970), and

De Leeuw {1969c) can be used to map this representation into a single dirension.

si
A final type of representation is the cluster representaztion in figure 5.6 (cf
also table 5.7). In this example we have used CDARD? as an approxization to the

requirements of ronmetric programs. As such it clearly does an excellent job.

7.6 Data 6: spot patterns

This example illustrates the usefulness of our procedures in some of the
situations treated in psychophysics. The deta are Guilford's spot pattern

(Guilford, 1954, p 203). He used 100 different cards with spot patterns. There

u

were 25 groups of four cards, Putterns in each group having the same nuzber of
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octs. One single observer sorted the deck in nine ordered piles, attempting

“

tc keap interpile distences psychologically equal. There were ten replications
of this same experiment. The deta can be collected in a 90 x 100 indicator
matrix in which each replication defines a 9-category variable, and each card
ines a colwmn. We can apply our PCA procedures from chapter 3 directly to
this T2trix, but it seems appropriate here 4o reguire that the direct quanti-
ficasions of the ten variables are identicel {cf section 3.11). If we also re-

-

quire that <t

Y

e quantifications of the cerds with the same number of spots must

be identical we can use formules 3.29 and 3.30 for simulianeous direct quanti-
fication to show that the problem becomes equivalent to applying the procedure
of section 3.10 to the contingency table given in Guilford (of course the more
cozmplicated indicator matrices are not even given by Guilford). Our analysis
consecuently maximizes homogeneity over replicetions under these natural equa-
1lity constraints, it also finds scores which maximize the correlation and the
binormality of the table, which linearize the regressions, and which try to
reproduce the Benzécri distences. Data analytically the homogeneity interpre-
vaticn s=zems the most naturel one by far. The anaelysis shows that the data can
component interesting. The maximal correlation is close to .93, the quantifi-
terns is plctted against the number of spots in figure 6.2,
the category quantification egainst the category number in figure 6.3.
Twe conclusions are immediately obvious. In the first place intervals between
extreme categories are considersbly smaller {from the homogeneity point of

iew) than the subject thinks they are. This is partially in agreement with

<

results using the method of paired comparisons (Guilford l.c. p 206-207).

» the second place the relation in figure 6.2 is linear and not logarithmic,,
which means tnat if we maximize homogeneity then Fechner's law does not come
out. In Guilford's enalysis based on the method of equal intervals (l.c.

p 204-205) Fechner's law comes out nicely, but in the paired comparisonsar-alysis
the regression of the scele values on the logarithm of the number of spota

was positively accelerated, i.e. the relationship also tended to linearity.
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IGURES AND TABLES




JUR
MZD
Wl
S0C

~z

psw
e
£E
X
THEE
LEW
CIF
ZCO

JUR
MZD
Wel
sQC
LET
TE

PSW
VEE
ThD
THZ
LEW
CIF

ECO

i332 9 218
320 7 40
215 L4 515
512 4 31k
5 8 6 3 5

1 7 6 1h

0 0 0 0 1
WAGLNINGEN

311 2 0 9
TILBURG
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10 0 1 1 314 12 210 71 1 0 5§
7 1 3 1 2 L 6 L 713 611 ¢ 2 11
6 0 1 0 1 1 413 L o1g 10 ik 16 7 21
2 0 1 0 2 1 828 11 19 6 & 510 11
2 0 0 1 0 7 816 8 16 316 L 413
11 5 0 b
3 6 1 1 5
0 3 0 ¢ 1
5 0 0 0 0 1 ¢ 0 0 © 5 0 2
0 0 0 0 1 2 2 6 5 7 0 1 0 1 &
L 0 0o 0o 2 716 8 620
A'DAM VU A'DAM GU UTRECHT
2 8 6 0 7 5 7 3 1 §
3 7 3 21 é 9 3 2 5
7 5 9 212 T 2 2 4 §
4 511 610 Loz 5 4z
15 6 2 6 L4 o 8 2 &
07 3 &k 5
12 0 1 3 1 2 ¢ ¢ 2
10 2 0 5 C ¢ 0 5
9 1 1 1 0 00 1 6 0
113 5 0 7
GRONINGEN DRIENENOOKD NIJMEGEN
2 2 1 0 0
8 7 1 1 71

11 3 1

12 7 3 013 2L 66 22 20 50

93315 216
ROTTERDAM EINDHOVEN DELFT

TABLE 1.1.a -~ 1.1.1,
ORDER: CCNF, VVD, PvdA, PACO, D'66.
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JUR MED WeN SOC LET TEC PSW VEE TXD THE LBEW CIF ZCC by
DELET 182 28
EINDH ) 35 35
RODAM 5 24 T 15 114
TBURG 3 15 25 i
NYGEN 22 25 21 37 18 5 11 1 )
DRIEN 19 s
GRONI 23 26 35 36 20 5 4 3 26 178
WAGEN 2 52 1 _55
UTREC 29 39 68 36 3k W6 4 8 8 oLo
ADAMG 41 39 L1 €71 55 11 1 22 57 279
ADAMV 3 1% 8 5 3 5 6 3
LEIDE 74 L4 41 38 27 7 3 235
TOTAAL 200 211 21k 243 157 236 _11 16 3k 36 52 _35 190 1515

JUR MED W&N SOC LET TEC PSW VEE TND THE LBW CIF ECO 0T
CONF 33 37 33 28 22 36 1 3 2 19 11 2 2% 291
VVD 79 61 4o 3% 31 80 1 6 T 1 W L T3
Pvéaa 33 30 45 58 4o 28 5 1 ©o 5 T 9 38
PACO 6 19 22 38 20 2% 0 1 T s 6 5 8
D'66 4 64 74 B85 M4 638 4 5 & 7T b 12 55
TOTAAL 200 agﬂgﬁiﬂgﬁ_ﬂ_ﬁ_ﬁ_ 36 _52 _26 190 1615

DEL EIN ROD TBU NYG DRI GRO WAG UTR ADG ADV LEI
CONF 24 12 20 8 33 0 20 11 ko 21 21 29 251
VVD 66 7 43 12 22 T L6 15 65 59 1 88 L3y
PvdA 22 3 20 3 22 3 43 8 36 92 5 Gk 231
PACO 20 0 4 3 13 L 1 6 27 L3 3 21 158
D'66 5O 13 24 17 50 5 55 15 72 113 9 62 Les
TOTAAL 182 _35 111 _b3 140 _19 178 _55 2ho 334 b5 23k 1616

o

TABLE 1.2.c.




cexr . 029 -.001 CONF -.002 .024
VVD -.007 -.017 VVD -.018 -.005
PvdA -.008 L014 PviA .012 -.005
DACO -.007 . 00T PACO - . 020 -.002
D'€S ~. 001 . 005 D'66 .00k -.00k
-.003 -.012 JUR ~-.016 ~,000

.028 -.003 MED -, 004 .003

.C02 -.015 el .008 .000

. 00T -.007 s0C .07 -.005

.012 . G092 LET .010 -.002

-.022 -. 007 TEC ~.008 ~-.000

-.006 . 005 PSW .019 -.013

WAGEN . 006 ~-.003 VEE -.016 .005
UTREC . 002 -.002 TND -.027 -.002
ADAG ~.010 .016 THE .012 .062
ADAMY .039 .011 LBW -.002 .009
LEILE -.005 -.013 CIF 027 -.013
ECO =014 -.006

TAELE 1.3.b

Canonicel partition universities

Component 1 113.809
Corponent 2 66.472
Residual 22.647
Total 202.928 TABLE 1.5.a

Canonical pertition faculties

Component 1 108.050
Component 2 k7.870
Residual 21.730
Total 177.650 TABLE 1.5.b



01111 129. 8544 00111 35.516 00011 21.097

10111 88.220 01011 97.776 00101 13.688

11011 143.206 01101 90.514 00110 20.010

11101 138.063 01110 121.637 01001. 50.228

11110 166. 642 10011 66.903 01010 T7.142

10101 62.489 01100 72.881

10110 . 176 10001 38.628

TABLE 1.7 11001 96.771 10010 43.558

11010 121,124 10100 46.354

11100 119.L61 11000 56.L40

10111 88.220 00111 35.516 11000 56.kkLo

01000 0.000 11000 56.4L0 00101 13.688

89.435 85.699 0C010 0.000

107.527

177.655 177.655 177.655

10110 T4.176 11001 96.7T1 10100 L6.35L

01001 50.228 00110 20.010 01001 50.228

L7.251 60.574 00010 0.000

81.063

177.655 177.655 177.655

TABLE 1.8.a - 1.8.F

Environment x2 afr School X2 dfr P_
Within aBy 5.527 .30 Within A 0.000 ——
Within &8¢ 26.05k <.01 Within BCDE 17.400 12 .14
Between aBy-6e 68.193, <.01 Between A-BCDE 82.37L N <.01
Total 99.7Th 16  <.01 Total 99.7TT4 16  <.01

TABLE 2.4.e - 2,41
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I I TII IV v VI VIT

JUR -.023 -.018
MED -.011
Wil -.011 .012
sac -.021
LET L0171
TEC .038
PSW .05T  .020 -.020 260
VEE -.019 -.022 -.018 110 .017
o ~-.019 .018 ~.068
THE -.018 -.039 .ob2 -.017
LEW .087

IF .03k Lo .02%
EC .039
DELFT .038
EINDH .038 .017
RCDAM .0L3 ~.omn
TEURG .03k .012 -.0hS
NYGEN -.012 .013 ~.012 -.022
DRIEN .038 .012
GRONI -.015
WAGEX . 084
UTREC -.012 .029
ADAMG .020 .010
ADAXY -.036 .o43 -.013  .031
LEIDE -.022 ~,017
CONF ~-.021 017
vVD -.016
PvéA .013
PACO .012
D'66
by €72 .658 .539 .4B0  .451 .22 397

TABLE 1.9
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tolerant 1101 0 1 1 0 0 1T 1 1
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up to date 0 o 00OCOOOO 1 0 1

responsible LI R B R A A

consistent o1 11100 1 1 1 01

TABLE 5.1

PvaA -.310 -.172 opportunistic -.323 .000
FSP -.202 .516 progressive -.289 L343
ceN .236 .23 left-wing .01 371
VD .030 -.287 dogmatic .L98 .036
BP 1.k15 . 126 conservative .b5s -.123
CEU -.262  -.hs important .000 .000
AR -.335 -.318 clear .36L © .050
G2V .379 -.113 homogeneous .352 .263
3GP .379 -.113 sympathetic -.309 L9
D66 -.6%1 L2 intelligent -.291 .561
we -. 366 ~. k1 democratic -.k98 -~.036
CR -.375 .561 tolerant ~.498 ~.036
- negative .850 . 116
TABLE 5.2 constrecutive ~-.231 -.L66
up to date ~-.326 .. hos
responsible -.850 -.116
consistent .352 .262

TABLE 5.3
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Larmers partition faculiies

2

Source X 4fr
Regression 105.546 12
Residual 72.109 3

Total 177.655 L8

Lammers partition uniiersities

Regression 61.656 11

Residual 141,272 33

Total © 202.928 i
TABLE 1.7.
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