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In this note we derive an upper bound for the minimum for the multidimensional scaling loss 
function sstress. We conjecture that minimum sstress solution will be biased towards regular 
positioning of dumps of points over the surface of a sphere. 
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In t roduct ion  

In  a recent paper  de Leeuw and S toop  (1984) proved some interesting upper  bounds  
for Kruska r s  multidimensional scaling loss function stress. The bounds  are of  the follow- 
ing form. Suppose tr(X) is the stress of  a configurat ion X, which is a matrix with n rows 
and  p columns, de Leeuw and S toop  define a function x(n, p), with the proper ty  that  the 
min imum of  a(X) over all configurat ions is always less than or  equal to K(n, p). Thus  the 
min imum loss in a scaling problem is always less than or  equal to r(n, p), a number  which 
is independent  of the data. The function x(n, p) is not  at all easy to compute  if p > 1. de 
Leeuw and Stoop give some mathematical  results, some numerical  results, and some con- 
jectures, which together give a fairly complete picture of  the function. They also conclude, 
tentatively, from their results that  mult idimensional  scaling results based on stress may  
have the bias of  equidistributing the points over surface and /or  interior of  the unit sphere. 

In  this short  note we investigate exactly the same problem for sstress, the loss func- 
tion used for example in A L S C A L  (Takane, Young,  de Leeuw, 1977). It  turns out  that  the 
theory for sstress is considerably simpler than for stress, and much more  specific results 
can be obtained. 

Prel iminary Results 

O u r  mult idimensional  scaling problem has n points, which must  be scaled in p di- 
mensions. The data  are a rank ordering of  the (3) dissimilarities. We use do(X) for the 
Euclidean distance between rows i and j of  X, and we use d u for a matrix of  feasible 
disparities (i.e., numbers  m o n o t o n e  with the original dissimilarities). We define 

= . . 

We use tildes above symbols to show that  we are working with sstress, not  with 
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stress. The sstress of a configuration is defined as 

~(X) = min {#(X, /$)1/5 a feasible disparity matrix}. 

Thus the sstress depends on the ordering of the dissimilarities, but because this is fixed for 
the problem we do not indicate this dependence explicitly. 

Following de Leeuw and Stoop we now define 

~(X) = min {~(X,/$)1/$ = O(E -- I), 0 >_ 0}, 

where E -- I is the matrix with all diagonal elements zero and all off-diagonal elements 
one. The matrix O(E -- I) is a feasible disparity matrix in any nonmetric scaling problem, 
independent of the order of the dissimilarities. Thus 

~(X) _< ~(X). 

Now let ~(n, p) be the minimum of ~(X) over all n x p matrices, and let {(n, p) be the 
minimum of ~(X) over all n x p matrices. Then 

~(n, p) _< ~(n, p). 

This is the basic upper bound result mentioned in the introduction. Observe that ~(n, p) 
still depends on the order of the dissimilarities, while {(n, p) does not. The rest of this note 
is concerned with the properties of {(n, p). The function x(n, p), mentioned in the introduc- 
tion, is derived by de Leeuw and Stoop in precisely the same way, starting from stress 
instead of sstress. 

Computat ions  

By elementary computat ions we find, directly from the definition, 

(E  E d,AX)Y 
i < j  

1 -  2(x) = (.2) E E 
i < j  

Without loss of generality we restrict ourselves to configurations that are normalized. By 
this we mean that (a) their columns sum to zero, (b) their columns are orthogonal, and (c) 
the sum of squares of all their elements is equal to unity. For  further computat ion it is 
convenient to define co(X) ,  which is element (i, j) of X X ' .  Moreover  as(X) is short for 
c ,  (X), the sum of squares of row i of X. And bs(X) is the sum of squares of column s of X. 
In the multidimensional scaling context the as (X) are the squared distances of the i-th 
point from the origin, and the b~(X) are the eigenvalues associated with the s-th dimension 
of the configuration. Observe that the a i (X) sum to one, and so do the bs(X ). 

We now have 

' i i  = ~ (as(X) + a i ( X  ) -- 2co(X)) = n. 
i = 1  j = l  

In the same way 

i = l j =  

n p 

= n ~ a 2 (X)  + 2 ~, b2(X) + 1. 
i = 1  s = l  
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By Cauchy-Schwartz ,  applied to the first two terms, 

i < j  

with equali ty if and  only if all a~(X) are equal  to n -1 and  all b~(X) are equal  to p -1 .  
Combin ing  our  computa t ions  so far gives 

1 -- "?'>(X) ~ / I . \ 2 . , /  \ ~ - P - ~ ) )  

Thus  

n p 

f 

kn - U \ p  + l J )  

N o w  suppose we call a normal ized configurat ion regular if all rows have sum of squares 
n -  1 and all columns have sums of squares p -  1. If  there exists a regular  configurat ion with 
n rows and  p columns (n > p) then the pair  (n, p) is also called regular. We have proved  
the following result 

Theorem. I f  (n, p) is regular  then 

.n, {i - ( 
\ n - -  l f \ p  + l f J  " 

Observe  that,  as intui t ion suggests, g(n, p) is strictly increasing in n and  strictly decreasing 
in p. Also observe that  ~(n, n -  1) ---0, reflecting the fact that  ( E -  I)  is also a squared 
Euclidean distance matr ix  in p = n - 1 dimensions.  

Regular i ty  

The  theorem in the previous section gives an upper  bound  for all pairs (n, p) for 
which regular  configurat ions exist. But not  all pairs  of  na tura l  numbers  (n, p), with n > p, 
are regular.  This  follows directly f rom our  first result in this section. 

Result 1. (n, 1) is regular  if and  only if n is even. In  this case regularity means  
existence of  nonzero real numbers ,  of  equal modulus ,  which add up to zero. These num-  
bers can only exist if half  of  them are negative, and the other  half  are positive. 

Result  2. (n, 2) is regular. This  can be seen by  choosing n points  regularly spaced on 
the circle with center in the origin and  radius  n -1 [2  The  s u m m a t i o n  calculus can be used 
to show that  the result ing conf igurat ion is indeed regular. 

Result  3. If  (nl, p) . . . . .  (nm, p) are regular, then ( ~  nj, p) is regular. Suppose  the 
regular  configurat ions are X#. Let n+ = ~ n#. By writing the m configurat ions (rift 
n+)l/2Xj on top of each other  we create a regular  configurat ion of dimension n÷ x p. 

Result 4. (n, n -- 1) is regular. Take  a square  o r t h o n o r m a l  matr ix ,  that  is, an  X with 
X ' X  = X X '  = I, of order  n whose first co lumn has all elements equal  to n -  1/2. Delete the 
first co lumn and mult iply by (n - 1)- 1/2. The resulting configurat ion is regular. 

Result 5. If (n, p) is regular, and n > p + 1, then (n, n - (p + 1)) is regular. Suppose  
X is regular,  and n x p. Mult ip ly  by  pt/2. Add a co lumn with all elements equal to n-1/z 
and add  the n x (n -- (p + 1)) mat r ix  Y which makes  the comple te  n × n mat r ix  square  
o r thonormal .  Then (n -- (p + 1))-1/2y is regular.  

Result  6. I f  (n, p) is regular,  and n < ½p(p + 3), then (n + p + 3, p + 2) is regular. 
This result make  look a bit contrived,  but  we need it in the p roo f  of  the theorem below. 
Suppose  X is a (p + 3) x 2 mat r ix  which is regular.  Such an X exists by  Result 2. Suppose  
Y is a (19 + 3) × p mat r ix  which is regular. Such a Y always exists because of  results 5 and  
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2. Suppose  Z is a regular  n x p matr ix ,  which exists by hypothesis.  Then  form 

with 

and 

= (2/(/7 + 2)) 1/2, 7 = (n/(n + p + 3)) 1/2, 

# = ((p2 + 3p - 2n))/{(p + 2)(n + p + 3))) x/2. 

The resulting conf igurat ion is regular. O f  course we can only choose fl in this way  if 
p2 + 3p -- 2n > 0, i.e. if n < ½p(p + 3). 

I t  is clear that  these six results can be used to generate  m a n y  regular  configurat ions.  
It  turns out  that  we can do this in a very systematic  way, p roduc ing  the following interest- 
ing theorem.  

Theorem. I f  n is even and /o r  p is even, and p < n, then (n, p) is regular. 

Proof. Results 1 and  2 show tha t  the theorem is t rue for p = 1 and  p = 2. We now 
use s t rong induction on p, dist inguishing the cases in which p is odd  and even. Suppose  
the theorem is true for q < p, where p > 2. This  is the induct ion hypothesis.  

First consider the case with p odd. Then  (19 + 1, p) is regular  by Result 4. Choose  
1 < k < p, with k odd. By the induct ion hypothesis  (p + k, k - 1) is regular, because k - 1 
is even, and Result 5 then gives regulari ty of  (p + k, p). This  shows tha t  (p + 1, p), (p + 3, 
p) . . . . .  (2p, p) are all regular.  N o w  repeated appl icat ion of Result  3 proves  regulari ty of  (n, 
p) for all n > p, with n even. 

N o w  suppose p is even. Choose  1 < k < p. Then  (p + k, k - 1) is regular  by  the 
induct ion hypothesis,  because p + k is even if k is even and  k - I is even if k is odd. 
Result  5 shows that  (p + k, p) is regular. We know again  f rom Result  4 that  (p + 1, p) is 
regular.  F r o m  the induct ion hypothesis  (p, p -- 2) is regular. Because p < (p -- 2)(p + 1)/2 
we find f rom Result 6 tha t  (2p + 1, p) is regular. Thus  (/7 + 1, p), (p + 2, p) . . . . .  (2p + 1, p) 
are all regular. Again Result 3 can be applied repeatedly  to p rove  regulari ty of  (n, p) for all 
n with n > p. 

The  theorem now follows by s t rong induction.  Q.E.D. [ ]  

Observe  that  the theorem only provides a sufficient condi t ion for regularity. I t  is still 
possible that  pairs (n, p), with nei ther  n nor  p even, are regular,  a l though some such pairs  
are excluded by our  earlier results. Thus  (n, 1) with n odd  is not  regular  by Result  1. By 
combin ing  Results 5 and 1 we also see that  (n, n - 2) is not  regular  if n is odd. But these 
are abou t  the only results we have in the direction of showing that  our  condit ions are also 
necessary. 

Conclus ion 

In  keeping with the results and  interpreta t ions  of  de Leeuw and S toop  we conclude 
that,  especially in the case of  poo r  fit, mul t id imensional  scaling solutions based on sstress 
m a y  be biased towards  distr ibuting clusters of  points  regularly over  the surface of a 
sphere. There  may  be m a n y  local min ima  of the same type in such bad-fi t t ing cases, 
because it is largely a rb i t ra ry  how m a n y  d u m p s  there are, and  which points  are assigned 
to which clumps. Again we emphas ize  that  this m a y  be a possible explanat ion  for the 
c lumping effect we have somet imes  observed in real A L S C A L  applications.  O f  course the 
clusters one finds in these cases m a y  also be "real," a l though one expects real clusters to 
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correspond with a good fit. And,  of course, we have only proved the upper  bound .  We 
conjecture a bias towards regularity. 
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