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NOTES AND COMMENTS

AN UPPER BOUND FOR SSTRESS
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In this note we derive an upper bound for the minimum for the multidimensional scaling loss
“function sstress. We conjecture that minimum sstress solution will be biased towards regular
positioning of clumps of points over the surface of a sphere.
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Introduction

In a recent paper de Leeuw and Stoop (1984) proved some interesting upper bounds
for Kruskal’s multidimensional scaling loss function stress. The bounds are of the follow-
ing form. Suppose o(X) is the stress of a configuration X, which is a matrix with n rows
and p columns. de Leeuw and Stoop define a function x(n, p), with the property that the
minimum of ¢(X) over all configurations is always less than or equal to x(n, p). Thus the
minimum loss in a scaling problem is always less than or equal to x(n, p), a number which
is independent of the data. The function x(n, p) is not at all easy to compute if p > 1. de
Leeuw and Stoop give some mathematical results, some numerical results, and some con-
jectures, which together give a fairly complete picture of the function. They also conclude,
tentatively, from their results that multidimensional scaling results based on stress may
have the bias of equidistributing the points over surface and/or interior of the unit sphere.

In this short note we investigate exactly the same problem for sstress, the loss func-
tion used for example in ALSCAL (Takane, Young, de Leeuw, 1977), It turns out that the
theory for sstress is considerably simpler than for stress, and much more specific results
can be obtained.

Preliminary Results

Our multidimensional scaling problem has n points, which must be scaled in p di-
mensions. The data are a rank ordering of the (3) dissimilarities. We use d;;(X) for the
Euclidean distance between rows i and j of X, and we use J,.j for a matrix of feasible
disparities (i.e., numbers monotone with the original dissimilarities). We define

N 2 Z (dij - dz'y(X))z 1/2
WD =T E®

i<j

We use tildes above symbols to show that we are working with sstress, not with
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stress. The sstress of a configuration is defined as
6(X) = min {6(X, D)| D a feasible disparity matrix}.

Thus the sstress depends on the ordering of the dissimilarities, but because this is fixed for
the problem we do not indicate this dependence explicitly.
Following de Leeuw and Stoop we now define

#(X) = min {6(X, D)| D = 6(E — I), 6 > 0},

where E — I is the matrix with all diagonal elements zero and all off-diagonal elements
one. The matrix §(E — I) is a feasible disparity matrix in any nonmetric scaling problem,
independent of the order of the dissimilarities. Thus

#X) < #X).

Now let &(n, p) be the minimum of 6(X) over all n x p matrices, and let 7(n, p) be the
minimum of 7(X) over all n x p matrices. Then

é(n, p) < %(n, p).

This is the basic upper bound result mentioned in the introduction. Observe that 6(n, p)
still depends on the order of the dissimilarities, while (s, p) does not. The rest of this note
is concerned with the properties of #(n, p). The function x(n, p), mentioned in the introduc-
tion, is derived by de Leeuw and Stoop in precisely the same way, starting from stress
instead of sstress.

Computations

By elementary computations we find, directly from the definition,

XY d;x))?
1— #(X) =

(3) X Y dhx)

i<j

Without loss of generality we restrict ourselves to configurations that are normalized. By
this we mean that (a) their columns sum to zero, (b) their columns are orthogonal, and (c)
the sum of squares of all their elements is equal to unity. For further computation it is
convenient to define ¢;;(X), which is element (i, j) of XX'. Moreover g,(X) is short for
¢;; (X)), the sum of squares of row i of X. And b(X) is the sum of squares of column s of X.
In the multidimensional scaling context the a,(X) are the squared distances of the i-th
point from the origin, and the b (X) are the eigenvalues associated with the s-th dimension
of the configuration. Observe that the g;(X) sum to one, and so do the b(X).
We now have

EY =33 T @
_ % __il }j:l (@(X) + a;(X) — 2¢,,(X)) = n.

In the same way

ST a0 =33 3 @00 + a0 - 2000

l<1

P
—nY @ (X) +23 bAX) + 1.
i=1 s=1
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By Cauchy-Schwartz, applied to the first two terms,

1 1 _Sfpt+1
gz ae =)o)+ 1-2)

with equality if and only if all g;(X) are equal to n~! and all b{X) are equal to p~*.
Combining our computations so far gives

e )
-

Now suppose we call a normalized configuration regular if all rows have sum of squares
n~! and all columns have sums of squares p~*. If there exists a regular configuration with

n rows and p columns (n >> p) then the pair (n, p) is also called regular. We have proved
the following result

Thus

Theorem. I {n, p)is regular then

: _ n P 172
= {-(GE)GE)

Observe that, as intuition suggests, ¥(n, p) is strictly increasing in n and strictly decreasing
in p. Also observe that #(n, n — 1) = 0, reflecting the fact that (E — I) is also a squared
Euclidean distance matrix in p == n — 1 dimensions,

Regularity

The theorem in the previous section gives an upper bound for all pairs (n, p) for
which regular configurations exist. But not all pairs of natural numbers (n, p), with n > p,
are regular. This follows directly from our first result in this section.

Result 1. (n, 1) is regular if and only if n is even. In this case regularity means
existence of nonzero real numbers, of equal modulus, which add up to zero. These num-
bers can only exist if half of them are negative, and the other half are positive.

Result 2. {(n, 2) is regular. This can be seen by choosing n points regularly spaced on
the circle with center in the origin and radius n™ Y2, The summation calculus can be used
to show that the resulting configuration is indeed regular.

Result 3. If (ny, p), ..., {n,, p) are regular, then (3 n;, p) is regular. Suppose the
regular configurations are X;. Let n, = Y n;. By writing the m configurations (n;/
n,)*2X; on top of each other we create a regular configuration of dimension n, x p.

Result 4. (n, n — 1) is regular. Take a square orthonormal matrix, that is, an X with
X’'X = XX’ = I, of order n whose first column has all elements equal to n~ /2. Delete the
first column and multiply by (n — 1)~ V2. The resulting configuration is regular.

Result 5. If (n, p) is regular, and n > p + 1, then (n, n — (p + 1)} is regular. Suppose
X is regular, and n x p. Multiply by p'/2. Add a column with all elements equal to n~ /2
and add the n x (n — (p + 1)) matrix Y which makes the complete n x n matrix square
orthonormal. Then (n — (p + 1))~ ¥2Y is regular.

Result 6. If (n, p) is regular, and n < 4p(p + 3), then (n + p + 3, p + 2) is regular.
This result make look a bit contrived, but we need it in the proof of the theorem below.
Suppose X is a {p + 3) x 2 matrix which is regular. Such an X exists by Result 2. Suppose
Y is a {p + 3} x p matrix which is regular. Such a Y always exists because of resuits 5 and
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2. Suppose Z is a regular n x p matrix, which exists by hypothesis. Then form

X BY
0 yZ

with
a=Q/Mp+2)"% y=@/(n+p+3)?
and

B ="+ 3p —2m)/{(p + Din + p + P~

The resulting configuration is regular. Of course we can only choose f in this way if
p*+3p—2n>0,ie.ifn < 3p(p + 3)

It is clear that these six results can be used to generate many regular configurations.
It turns out that we can do this in a very systematic way, producing the following interest-
ing theorem.

Theorem. 1If nis even and/or p is even, and p < n, then (n, p) is regular.

Proof. Results 1 and 2 show that the theorem is true for p =1 and p = 2. We now
use strong induction on p, distinguishing the cases in which p is odd and even. Suppose
the theorem is true for g < p, where p > 2. This is the induction hypothesis.

First consider the case with p odd. Then (p + 1, p) is regular by Result 4. Choose
1 < k < p, with k odd. By the induction hypothesis (p + k, k — 1) is regular, because k — 1
is even, and Result 5 then gives regularity of (p + k, p). This shows that (p + 1, p), (p + 3,
p), ..., (2p, p) are all regular, Now repeated application of Result 3 proves regularity of (n,
p) for all n > p, with n even.

Now suppose p is even. Choose 1 < k < p. Then (p + k, kK — 1) is regular by the
induction hypothesis, because p + k is even if k is even and k — 1 is even if k is odd.
Result 5 shows that (p + k, p) is regular. We know again from Result 4 that (p + 1, p) is
regular. From the induction hypothesis (p, p — 2) is regular. Because p < (p — 2)(p + 1)/2
we find from Result 6 that 2p + 1, p) is regular. Thus (p + 1, p), (p + 2, p), ..., 2p + 1, p)
are all regular. Again Result 3 can be applied repeatedly to prove regularity of (n, p) for all
nwithn > p.

The theorem now follows by strong induction. Q.E.D. O

Observe that the theorem only provides a sufficient condition for regularity. It is still
possible that pairs (n, p), with neither n nor p even, are regular, although some such pairs
are excluded by our earlier results. Thus (n, 1) with n odd is not regular by Result 1. By
combining Results 5 and 1 we also see that (n, n — 2) is not regular if n is odd. But these
are about the only results we have in the direction of showing that our conditions are also
necessary.

Conclusion

In keeping with the results and interpretations of de Leeuw and Stoop we conclude
that, especially in the case of poor fit, multidimensional scaling solutions based on sstress
may be biased towards distributing clusters of points regularly over the surface of a
sphere. There may be many local minima of the same type in such bad-fitting cases,
because it is largely arbitrary how many clumps there are, and which points are assigned
to which clumps. Again we emphasize that this may be a possible explanation for the
clumping effect we have sometimes observed in real ALSCAL applications. Of course the
clusters one finds in these cases may also be “real,” although one expects real clusters to
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correspond with a good fit. And, of course, we have only proved the upper bound. We
conjecture a bias towards regularity.
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