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1. INTRODUCTION

Suppose that, for N subjects, we have measured at T' time points, k input variables z, and we have
stacked our observations in a data box X of size (N x k xT'). A set of output variables, measured at
the same time points, is named y, and it is stacked in a data matrix ¥ of size (N xm xT'). Suppose
moreover that the z are understood to influence the y variables, and that the time dependence of the
measurements itself is of interest. Thus, we have two data boxes X and Y, where the rows represent
the subjects, the columns represent the variables, and where the time points are stacked in the third
dimension, viz. Figure 7?. In Figure ?7, three methods for slicing the data box can be distinguished.
For instance for data box X, a first method is by slicing the data box horizontally: we then obtain a
k x T datamatrix for one subject, which is the usual data matrix for time series analysis. When we
slice the front of the data box, we get an N x T data matrix, that is 7" observations on one variable
for N subjects, a not very common type of data matrix to analyze. When we slice the side of the
data matrix, we get an N x k data matrix, which is a cross-sectional data matrix of N subjects
measured over k variables.

We will consider models where the impact of the input on the output is supposed to be mediated
by an unobserved factor, the so-called latent state, stacked in a data box Z, of dimensionality
(N x p x T). The input influences the output in the sense that the input variables influence the
state, and the state in turn influences the output variables. At the same time, the state embodies
the time-dependence in the measurements, transferring information from each time point to the
next. In system analytic terms, the input variables X, latent state variables 7, output variables
Y, and the relations between these, together constitute a system. The state at any time point ¢,
comprises all information from the former time points that is relevant for the future. As such, the
system is Markovian, and the state functions as the memory of the system. The dimensionality of

the state, which we refer to as p, is usually lower than that of the input and/or the output. As such,
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the state also serves as a filter between input and output. Thus, the state is of crucial importance
in a system.

In the following, we assume that our models are discrete, that is, we assume that both the latent
state and the observed variables are categorical. Our expressions however also apply to continuous

versions of the variables if probabilities are replaced by densities.

2. THE CAUSAL STRUCTURE OF STATE SPACE MODELS

There is much recent research dealing with modeling the dependence structure of variables by
using graphs. The interesting part of this research is to do the modeling in such a way that
the structural properties of graphs, such as connectivity and separation, are isomorphic with the
dependence structure of the vari'c;bles. This is often called “causal modeling”, a description which
is unnecessarily controversial. Models are filters, or smoothers, which can be used to bring data
in a form which is more interesting, more easy to communicate, or more easy to relate to existing
theory. We separate the signal from the noise by using prior theory whenever it is available, and by
using inductive techniques otherwise. We can talk about our results in causal language, as long as
we realize that this language is simply another (verbal) model with which we overlay the statistical
analysis. Verbal models are vague, and lead to many possible misconceptions.

The so-called causal models have also been used, mainly in the social and behavioural sciences,
to dress up weak data. Using causal terminology suggest an invariance which simply is not there in
these cases, because the outcomes depend largely on accidental properties of the data and arbitrary
choices of the researcher. This has given causal models a bad name, although obviously the problem
is not with the model but with the data and the way the model is applied to the data (and perhaps
the way the techniques have been sold commercially).

Thus there are many reasons to distrust highly specific path models in which some of the arrows
between variables are present, and some of the other comparable arrows are absent, and there are
no clear reasons for either presence or absence. We prefer full models, in which the dependence that
is modeled depends on some global and fairly uncontroversial choices. Exploratory factor analysis is
one example, multiple regression is another. All the arrows are there between the predictors and the
criterium, or between the factors and the indicators. Such full models are much more descriptive than
the models whose fine structure suggests much more prior knowledge than we actually have. They
can be used as data reduction techniques, and in fact in most cases they are not far from saturated

models. Multiple regression and complete recursive path models are saturated, factor analysis and
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the state space models we discuss here can be made saturated by introducing sufficiently many
latent variables.

The choices we have to make to draw our path models or graphs or arrow diagrams are really
simple. In multiple regression we only have to choose which variable is the criterion, in factor
analysis we only have to choose the number of factors, in MIMIC type models we have to distinguish
input and output variables and choose the number of factors, and in linear dynamic systems we
have to order the blocks of input, state, and output variables in time. These are simple global
choices, with which few people will disagree. The filtering done by the model is entirely in the
dimensionality of the state space or factor space, and we easily see the effect of this by looking at

different dimensionalities.

3. STATE SPACE MODELS

The basic model we are interested in is drawn in Figure 1.

Li1 Ti2 it
Yit Yi2 Yit

FIGURE 1. State Space Model for Individual 1.

Actually there are n such models, one for each individual. We write prob[(AT_; AL, yit)(AP_; AL,
2zis) (A" AfL, zit)] for the probability of observing the data-boxes X,Y, and Z. Our basic task in
this section is to derive a general expression for this probability, taking the properties of the model
in Figure 1 into account. The key result used to translate directed acyclic graphs into statements

about joint distributions is a simple one. We suppose that, given z;;, y;; is independent of all other
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variables in the system. Also, given z; ;—1 and #;t, z;; is independent of all other variables in the
system.

We first assume individuals are independent. This means
prOb[(/\?zl /\/{:1 yit)(/\?ZI /\,{:0 Zit)(/\?zl Ag’:l xit)]

= HprOb[(/\g’:lyit)(A{:OZit)(Alemit)]
i=1

1)

Theorem 1.

Prob[(A{L yie) (Ai=ozit) (A= it)] =
T
prob[/\;il:vit | zio]prob|z;o] H problyi: | zit]problzis | zit—1 A i)
t=1
Proof. The proof is by induction over T. The result is trivially true for 7' = 1. Assume it is true for

T — 1. Start with a simple application of the definition of conditional probability.
prob[(ALLyie) (Afeozie) (A=1@ir)] =Problyir | (N[5 vie) (Ai=ozis) (Y= ic)] %
problzir | (A2 9ie) (AZg 2ie) (N=y 2ie)]
probleir | (N2 wie) (ArZo 7ie) (Adoy @ie)] %
prob{(A7 7 yie) (N5 2ie) (NS )]

Figure 1 now tells us that

(3) problyir | (AL v (AL o2 ) (AL 2i¢)] = problyir | ziT)
(4) problzir | (ANZy vie)(A=g 2ie) (AZy 24t)] = problair | 2i0-1 A zir]
(5) problwir | (AL wie (Ao 26 (N @4e)] = problair | AL @ie A zio]

But this means that we have proved the recursion
prob[(A{L1yie) (Afzozit) (A= i)] =

(6) prob[y;r | zir|problzir | z r—1 A =i 7|prob[zr | /\?:_111'” A zio)
Prob[(AT i) (NSt zie) (N= )]

By the induction hypothesis this means the result is true for 7. O

Corollary 1. If

prob[ALL; @it | zi0] = prob[A{L; 7]
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then

prob[ /\t 1Yit | /\t 11'”]
T

/ / pI‘Ob[Zio] H prob[y;s | zit]problzis | zit—1 A z; g)dzir . - - dzio.
2i0;- t=1

Proof. Start with the result in Theorem 1. We remove the marginal distribution of the input

variables by conditioning, and then integrate out the state variables. [

4. SPECIFIC SUBMODELS

There are a pumber of useful distinctions that can be drawn in discussing this class of models.
In the first place there are models with and without input. There are models in which the state
variables are discrete and models in which they are continuous. There are models in which the input
and/or output variables are discrete or continuous. There are models which are cross-sectional, in
the sense that T' = 1, and models which are time-series, in the sense that N = 1. Discussing the
models in these terms shows that they do indeed cover a lot of the latent variable models discussed
in psychometrics and other disciplines. We shall discuss a number of these special cases more detail.
This is a simple and straightforward widening of the framework introduced by Lazarsfeld [?] and
Guttman [?] in the forties, and then extended by Anderson [1], McDonald [3], and Bartholomew [2]
for cross-sectional models, and of the framework discussed for example by Metz [?] for time series.

In the class of cross-sectional models without input we find factor analysis (continuous state,
continuous output), latent class analysis (discrete state, discrete output), latent trait analysis (con-

tinuous state, discrete output), and of course various combinations of these techniques.

5. CONSEQUENCES: MOMENTS

We use formula (7) to compute the conditional expected value and variance of the output given
the input. The natural assumptions in this case are linearity of regression and homoscedasticity.
We look at the equations for a fixed value of i. More precisely, we assume that the conditional
expectation of y, given At_,z, and Af_,z, only depends linearly on z,. Moreover, the conditional

expectation of z, given A'Zlz, and Ai_ 2, only depends on z;_, and z,. Thus

(7) y_t:Ht—%t-}.ét’

(8) 2y = Fizy y +Gizy + &
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where

(9) ét—l— Ai:l Zs;
(10) étJ- /\221 Ly
(11) . ét—L /\‘t«;;i ésa
(12) £tJ‘ Az:l Zss

and homoscedasticity means

(13) V(&) =,
(14) V() = ©.

Lemma 1.

t
étJ' /\5:1 (9

15 el A e,
( t s=1 =s
Proof. Again we use recursion. [

We can solve the stochastic difference equation (7), and we obtain

t—1 t

(16) 2 :Pt0£0+ZPtSGs£s +ZPL‘3§3)
s=1 s=1

and thus

t—1 t
(17) Y, = HiPozy+ Y HiPisGoz, + Y HiPrse, +;.

s=1 s=1
where

¢
(18) Pts:]_—_[Fk~ :
k=s

It follows directly that

t—1
(19) E(y, | 20 AN1z,) = HeProzo + EHtPtsGsﬁs,
s=1
t
(20) V(y, | 20 ANaz,) = O+ Y HiPssQ, PLH],

s=1

(21)
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while
min ¢,v
(22) Cly,y,)= Y HiPuQsP)H),.
s=1
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