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Introduction

Consider the following empirical situation. For a number of objects or
ih’dividuals, indexed by i =1, ..., n, we observe two vector variables x;and y;. The
basic idea behind this partitioning of the variables into two sets is that we have the idea that
the y; are influenced by the x;, i.e. that the x; are the causes of the y;. The x; can be thought
of as input variables, the y; as output variables. In econometrics the x; are called
exogenous, and the y; endogenous. In psychometrics, and in various other areas of
applied statistics, the x; are called independent variables, and the y; are dependent. Thus
we have two sets of variables, and the two sets play a different and asymmetric role in our
thinking.

In myultivariate analysis the individuals are often considered to be replications of the
same basic structure. The data can be considered to be a random sample from some well-
defined population. Another way of saying this is that there is no causal connection between
variables with different indices. Thus x, influences y;, X, influences y,, and so on, but there
is no influence of x; on x, or on y,. This is called the independence assumption.
Another important aspect of the usual models in this class is stationarity. This means that
the influence of x; of y, is supposed to be the same as that of x, on y,, and so on. Models
for which the independence assumption is violated will be discussed in a subsequent
publication (De Leeuw and Bijleveld, 1987).

Independent and stationary models are at the basis of regression analysis, and of linear
models in general. More recently a slightly more complicated class of these models has been
discussed, which goes under various names. They are called reduced rank regression
models, redundancy analysis models, growth curve models, MIMIC models, or errors-in-
variables models. Their basic common idea is that the influence of x on y is mediated by
unobserved latent variables {, with x determining {, and { determining y. In general the
dimensionality of the { is lower than that of the x, and in this sense { filters the
relationships between the two sets of variables. We call the space of the { the latent space,
and we use p for its dimensionality. For various versions and applications of reduced rank
regression we refer to Anderson (1951, 1984), Keller and Wansbeek (1983), Jgreskog and
Goldberger (1975), De Leeuw, Mooijaart, and Van der Leeden (1985). The basic properties
of such models will be discussed in general terms below.

In addition we consider techniques for fitting models of this kind. Some general
considerations must be kept in mind here. In fitting models to data there usually are three
kinds of errors that we have to take into account. The first error is approximation error.
This occurs because models are never true, and are at best approximations. The second kind



of error is replication error or sampling error, this is the kind of error studied in
statistics. It occurs because we sample from a population. It is often expedient also to
discuss measurement error, which occurs because of limited precision or other disturbing
circumstances. In survey research the measurement errors are often discussed as non-
sampling errors. Observe that we assume that even if there are no sampling errors and no
measurement errors, then there will still be approximation errors. This is because models are
not exactly true, by definition. For further discussion of these points we refer to De Leeuw
(1987¢).

The techniques discussed in this paper are based on the general ideas of alternating least
squares (Gifi, 1981, Young, 1981), or PLS (Jpreskog and Wold, 1982). They emphasize
approximation errors. Or, to put it differently, we do not model sampling errors and
measurement errors explicitly. Not because this is not feasible, in fact in subsequent
publicatioxis we intend to include both types of errors in our modelling process. It seems
preferable, however, to start with the relatively simple case in which we merely approximate
complicated multivariate data structures by simpler ones. This is, in fact, the usual way in
which regression and component analysis are applied in multivariate data analysis. One of the
purposes of the paper is to outline the class of models, and to see how they can best be fitted
using alternating least squares.

Regression with latent variables

In the usual regression situation we study the conditional distribution of y given x. This
conditional distribution is studied through conditional expectations or conditional variances.
Suppose p(y!x) is this conditional distribution. We use a somewhat informal notation here,
which can either refer to discrete probability distribution or to densities. The purpose of
statistical analysis in this context is to see if we can describe this conditional distribution in
simple terms. Often this is done by assuming that the conditional expectations are linear in x,
and the conditional variances do not depend on x (i.e. are homoscedastic). But this type of
simplification of the models is perhaps a little bit drastic in many circumstances.

Another type of simplification can be introduced by using concepts borrowed from factor
analysis. In factor analysis we observe variables y1,...,¥m» and these variables are correlated.
We assume that there exist unobserved variables or factors zy,...,2, which 'explain’ the

association between the observed variables, in the sense that the observed variables are
independent given the factors. In our informal notation we assume that

P(Y1se-¥ml2) = I P(yjl2), )




and thus

P(Y1om¥m) = | TITL; D(yji2) p(2)dz. )

Now let us translate this to the regression context. The first possibility is to assume that there
are p latent variables z,,...,z, such that y and x are independent given z. In a formula this is

simply p(x,ylz) = p(xlz)p(ylz), or, equivalently, p(ylx,z) = p(ylz). It implies that
p(ylx) = [ p(ylz) p(zix)dz. 3)

But the conditional independence assumption is also equivalent to p(xly,z) = p(xlz), and
consequently the role played by x and y is perfectly symmetric. This is not precisely what we
had in mind. We get the necessary asymmetry by assuming in addition that (1) is true. Then (3)

becomes
p(ylx) = [ TT, p(yjz) p(zix)dz. (4)

Model (4) is called a reduced rank regression model, because z has fewer
components than x. If the regressions of y on z and of z on x are linear, the name becomes
even more clear. Suppose E(ylz) = Hz and E(zlx) = G'x then

E(ylx) = [ Hz p(zlx)dz = HG'x. 5)

Thus the regression coefficients B of y on x satisfy B = HG/, i.e. B is of reduced rank p.
Observe that (5) is also true for the more general model (3).

Fitting the reduced rank regression model

Translating the models into constructive computational procedures which can be used to
estimate parameters can be done in various ways. A maximum likelihood method, based on
the additional assumption of joined multivariate normality, will be discussed in De Leeuw
(1987). In this paper we study the method used in comparable alternating least squares
programs for path analysis (De Leeuw, 1984a, 1987b, Coolen and De Leeuw, 1987). This




is in fact identical to the method proposed by Wold, in many different papers, for the same
type of problem. See Jgreskog and Wold (1982) for an overview.
Let

6(G,H,Z) =SSQ(Z - XG) + SSQ(Y - ZH). 6)

This choice of loss function seems natural, because the first component measures how well
the latent variables Z can be predicted from the input X, and the second component measures
how well the output Y can be predicted from the latent variables Z. Loss function (6) must be
minimized over G, H, and Z. The general philosophy of alternating least squares leads to the
idea of alternating the minimization of (6) over Z with that over G and H. Thus we start with
some Z°. We then compute G and H® by minimizing 6(G,H,Z°) over G and H. This gives
G'=x*7Z%and H = (ZO)"Y, where superscript + is used for the Moore-Penrose inverse.
We then compute Z! by minimizing 6(G%H?Z) over Z, giving Z' = (XG% YHO)I +
(HO)'HO]‘l. Then compute G! and H!, and so on. Following this procedure leads to various
complications, however.

The main reason for these complications is that unconstrained minimization of (6) over G,
H, and Z is not useful. This follows from Theorem 1 below. We first discuss an auxilary
result. Define

0. = min SSQ(Y - ZH). )

In order to compute the minimum and minimizers of (7) we use familiar results on singular
value decomposition, and approximation of a matrix by a matrix of given lower rank. These
results are reviewed in De Leeuw (1984b). First identify the parameters by requiring Z'Z = 1.
This causes no loss of generality. We define Y = KAL' as a singular value decomposition of Y.
We truncate the decomposition at dimensionality p, retaining only the largest singular values in
Ay, and the corresponding singular vectors in K, and L. The minimum of (7) , with the
identification condition Z'Z =1, is attained at Z° = K, and H° = L A, Moreover 6, = SSQ(Y) -

SSQ(A2).

Theorem 1. inf 6(G,H,Z) = 0, and the infimum is attained if and only if rank(XIYLp) =
rank(X).



Proof. It is clear that 6(G,H,Z) 2 G,.. Now take G° arbitrary, Z° and H® as above, and define
(G,H,Z) = (¢G°,00 'H°,0Z°). Then 6(G,H,Z) = a?SSQ(Z° - XG°) + Oy, and letting e — 0
makes 6(G,H,Z) — o,. The minimum is attained if and only if we can choose G such that
SSQ(Z° - XG) = 0, which is possible if and only if Z° = K, = YLPA;,I is in the column space
of X. QED.

The condition in the theorem implies that the column spaces of X and Y must have a
subspace of dimension at least p in common. Thus a necessary condition for the minimum to
be attained is that p canonical correlations between X and Y are equal to one. In practice, of
course, this means that the minimum will not be attained. Thus minimizing (6) is not a good
idea, because iterative procedures will generally not converge, but produce a very large H
proportional to H°, a very small Z proportional to Z°, and an arbitrary, but also very small,
value of G.

In alternating least squares approaches to multivariate analysis (Gifi, 1981, Young,
1982, De Leeuw, 1983) this problem is often solved, or circumvented, by imposing a
normalization condition on the parameters. We investigate a simple and, at first sight,
natural one. It is clear that the system Z = XG and Y = ZH' has a solution if and only if it
has a solution with Z'Z = 1. Thus we can impose this as a normalization condition, and see
what happens. It is clear that the sequence of solutions in the proof of Theorem 1 cannot be
used any more, because for this sequence Z'Z — 0. Moreover the normalization choice Z'Z
= I conforms with similar normalizations in the alternating least squares programs for
component analysis and canonical analysis.

It is clear that if we normalize Z we cannot update it any more by using Z « (XG +
YH)[I + HH]™. In order to find the correct update we must maximize tr Z'(XG + YH')
over ZZ =1 This is a so-called Procrustus problem (Cliff, 1966), which we solve by
computing XG + YH' = KAL', the singular value decomposition of the matrix on the left.
The optimal Z then is Z° = KL'. We use the suggestive notation Z° = PROC(XG + YH')
for this. In fact from a computational point of view a somewhat simpler solution is to take z°
= GRAMXG + YH'), with GRAM() the Gram-Schmidt orthogonalization. While this is
not optimal in the least squares sense, it only differs from the optimal Procrustus solution by
a rotation. Because computing G and H in the next substep of the alternating least squares
algorithm takes this rotation into account, this means that a complete step consting of
GRAM plus G and H adjustment decreases the loss function to exactly the same value as a
step consiting of PROC plus G and H adjustment. Since GRAM is simpler than PROC we
prefer it.



An eigen analysis of the problem

The alternating least squares algorithm is mainly useful, because it can deal easily with
various generalizations we will introduce at a later stage, notably the use of optimal scaling.
For the problem we have outlined so far, alternating least squares is not really necessary, and
probably computationally unwise. It is far easier to reformulate the problem a little bit, and to
show that it can be solved by standard eigenvalue techniques. For this purpose we first
project out G and H from the problem, by minimizing over them. The remaining problem is
to minimize the resulting function, which is now only a function of Z, over ZZ = 1.

Define o(*,*,Z) as the minimum of (6) over G and H, for given Z satisfying Z'Z = L
Then

o(*,*Z)=p +tr Y'Y - r Z{X(X'X)'X' + YY')Z, ®

and minimizing (8) over Z satisfying Z'Z = I is an eigenvalue problem. The optimal Z must
satisfy the equation

(XXX)'X' +YY')Z = ZQ, )]

with Q a diagonal matrix eigenvalues of the square matrix on the left. We write the optimal Z
and Q as Z, and Q,,, to indicate that we only use the p largest eigenvalues. Observe that X
and Y enter into the calculations a bit differently, because the results are invariant under all
linear transformations of the input matrix X, but not under linear transformations of the
output Y. This reflects the inherent asymmetry of the problemin X and Y.

From the computational point of view it is often not very sensible to solve the eigenvalue
problem (9). We can use the classical duality theory for eigenvalue problems to simplify the
computations. Define U = (X | Y), where X = GRAM(X), the Gram-Schmidt orthogonalization
of X, and C = U'U. We partition C using Cxx, Cxy, Cyx, Cyy. Thus Cxx =1 Now solve the

eigenproblem for C, using again the p largest eigenvalues. Thus
CxxAp + CxyBp = AphAp, (10a)

CyxA, + CyyB, = ByA,. (10b)



Theorem 2. We have Qp = Ap and Zp = NORM(Z(_Ap + YBp), where NORM(.) normalizes the

columns of its argument to length one.

Proof. This follows directly from the singular value decomposition of U, which can be written
as Uy = ZA2A" and U, = ZA?B'". Q.E.D.

We have to realize, of course, that the choice of the normalization condition Z'Z =1 is
somewhat arbitrary. If we restrict Z'Z to be equal to o1, for a2 # 1, then we can find a quite
different solution. This is perhaps undesirable, because we do not want the character of the
solution to be determined by the arbitrary choice of normalization. It is also unlike the situation
in component analysis and canonical analysis, in which the choice of the normalization is much
less essential, because different normalization conditions lead to basically the same solution.

A family of eigen solutions

Let us try to establish what the influence of the choice of a2 in ZZ = a2I is.
Minimizing (6) under the condition that Z'Z = oI amounts to the same thing as minimizing

o(G,H,Z) = 0’SSQ(Z - XG) + SSQ(Y - ZH') an

under the condition Z'Z = 1. If o is very large, then minimizing (11) under the condition Z'Z =
I will amount to minimizing the second part SSQ(Y - ZH') of (11), under the condition that the
first part SSQ(Z - XG) is equal to zero, i.e. under the condition that Z = XG and Z’Z = 1. We
formalize this in Theorem 4, below. But first we need some additonal notation.

Suppose o(a) is the minimum of (11) over G,H,Z, with Z’Z = I, and suppose G(v),
H(ar), and Z(or) are the minimizers. Using the same reasoning as before we find H(a) =
Y'Z(ct) and G(a) = X*Z(cr). Computing the optimal Z(o) amounts to the same thing as
maximizing tr Z'{ aZXX*+ YY' }Z over ZZ = 1. Thus Z(o) contains eigenvectors
corresponding with the p largest eigenvalues of 0?XX*+ YY'.

For the limiting case we need to define

6°(G,H) = SSQ(Y - XGH"), (12)



and o°(*,*) is the minimum of (12) under the condition that G'X'XG = I. The minimizers are
G° and H°. In order to find G° and H® we use the singular value decomposition X'Y = KAL',
again with X = GRAM(X), and truncate it in the usual way after p dimensions.

Lemma 3. The minimizers of (12), under the identification condition G'X'XG = 1, are G°
(X'’X)K,, and H° = LA, The minimum is 6°(+,%) = SSQ(Y) - SSQ(A2).

Proof. In the first place (12) can be rewritten as
6°(G,H) = SSQ(Y - XByg) + S8Qxx(Brs - GH)), (13)

where By g = (X'X)!X'Y. This shows that we are looking for the least squares rank-p
approximation to (X’X)I/ZBLS = X'Y. The same classical results as before give the
minimizers. From (13) we obtain for the minimum ¢°(*,*) = {SSQ(Y) - SSQ(X,X)_l(X'Y)}
+ (S8Qqp, 1XY) - SSQUAD) = SSQUY) - SSQ(AD) . QED.

We now make our statement about the limiting behaviour of minimizing (11) for large o: more

precise.
Theorem 4. If a0 — oo then 6(a) — 0°(*,*), G(o) = G°, H(a) — H®, and Z(or) — XG°.

Proof. Actually this is a special case of general results on penalty functions (Fiacco and
McCormick, 1968). We shall give a proof which uses the special features of the problem (De
Leeuw, 1985). We have seen that the eigenvalue problem for aZ&)g# YY' must be solved to
find Z(ov). If @ becomes large, then perturbation theory for eigenvalue problems (Kato, 1975)
tells us that to find Z(cx) we choose eigenvectors of YY' in the space spanned by X. This means
that if o0 — o then Z(ct) — XM, where X'YY'XM = MO, and © are the p largest eigenvalues
of X'YY'X. Substitution shows that Q is approximately o’ + @, and o(o) converges to tr ©,
But the elements of © are the same as the eigenvalues of Y'XX'Y, and thus equal to the A%of

Lemma 3. In the same way the eigenvectors of both problems are equal. QED.

It is of some importance to realize that carrying out the minimization of (11) is closely
related to various classical multivariate analysis techniques. This is discussed in detail in
Keller and Wansbeek (1983), De Leeuw et al. (1985), or Wesselman (1987), who also give
the necessary references. If X is a design matrix, then the technique becomes a form of



MANOVA, if it is an indicator matrix (the design matrix of a one-way classification) then it
is canonical discriminant analysis.

Our developments so far make it possible to think of (11) as a class of criteria (or a
class of normalizations). In the two extreme cases & = 0 and o — =0 we find, respectively,
principal component analysis and reduced rank regression analysis (also called redundancy
analysis, cf. Van der Wollenberg, 1977). For intermediate values of o we find intermediate
solutions. It must be emphasized that these intermediate solutions are somewhat arbitrary.
They depend on the normalization we choose for the latent variables Z. The only choice that
seems defendable is to choose Z'Z =1, in the case that also diag (X'X) =1 and diag (Y'Y) =
L. But the limiting case with o — o also seems a very natural one. On the other hand using
(11) with various values of o gives us a trajectory of solutions, starting fora=0ata
principal component analysis of the output, and ending for o — oo with a reduced rank
analysis. It may be useful to look at this trajectory as the solution of the reduced rank
regression problem. This will be illustrated in the example below.

Another remark of some importance is that if o, — o, then we must have Z = XG at the
minimum, and the normalization Z'Z = I is now used only for identification purposes. We
are really minimizing (12) over G and H, and in this problem minimization is no longer
needed. This is what makes the limiting case attractive. Observe that (12) can be minimized
by a special alternating least squares algorithm, which alternates over G and H, no longer
needing Z. This algorithm is simply H' « (XG)"Y and G « X*Y(H')*. It can be written
more suggestively, to make it seem more relevant to (11), as Z; ¢~ XG, H' « Z)Y ,Z,
« Y(H)", and G « X*Z,. This formulation does not imply, of course, that Z, and Z,

converge to the same value.

An example

We analyze an example, merely for illustrative purposes, which shows what the effect
in practice of our theorems is. For this purpose we take data on the fifty states of the USA,
analyzed earlier by many people. We have used a version of these data taken from Meulman
(1986, p. 48-54), in which there is a total of twelve variables. The first seven variables are to
be considered as input variables. They are, respectively, percentage of blacks, percentage of
hispanos, ratio of urban to rural, per capita income in dollars, life expectancy in years,
homicide rate, and unemployment rate. The last five variables are output variables, having to
do with educational achievement in the fifty states. They are: percentage high school




graduates, percentage public school enrollment, pupil teacher ratio, illiteracy rate, and failure
rate on selective service mental ability test.

In order to illustrate the theorems we have first standardized all variables (sum equal to
zero, sum of squares equal to one). Next we computed GRAM(X), and we performed the
eigen-analysis of OLZX_)Q + YY' for a equal to 0, 1, and 10. Table 1 shows the ordered
eigenvalues, with the first seven eigenvalues corrected by subtracting a2, Tables 2a, 2b, and
2c¢ show the correlations between Zs, the eigenvectors corresponding with the five largest

eigenvalues, and the input and output variables X and Y.

Optimal Scaling

The alternating least squares techniques discussed in this paper can be combined easily
with optimal scaling of the variables. This is illustrated, for example, in De Leeuw (1987b).
In stead of two substeps in a main iteration, one for updating G and H for given Z and one
for updating Z for given G and H, we now have three substeps. In the third substep the
scaling of the variables in X and Y is updated, for given Z, G, and H.

If we take a look at loss function (6) we see that for given Z, G, and H the only part
which depends on variable y; is of the form ssq(y; - ¥;), where ¥; = Zh;. It follows that the
update of variable y; is of the form y; « norm(proj(¥;)), with proj denoting the projection
on the cone of admissible transformations. We use ssq and norm in lower case, because
they are now applied to vectors and not to matrices. The admissible transformations can be
the cone of monotone transformations, the subspace of nominal transformations, a subspace
of spline transformations, and so on. For details we refer to the optimal scaling literature
mentioned above.

For updating variable x; the situation is a bit more complicated. We can write the
relevant part of the loss function as SSQ((Z - X;G)) - x;g;). Here X;G; contains the
contributions of the input variables except x;. Let X; = (Z - X,G;)gi/ssq(g;). Then we have to
minimize ssq(x; - X;), giving x; «- norm(proj(X;)). Cycling over the variables, changing
them one at a time gives the third alternating least squares substep.

Of course there are many variations of this algorithm possible. We can cycle over the
scaling of X and Y various times before we update Z and G and H. We can iterate the
updating of Z and G and H until convergence before computing a new scaling of the
variables. The general experience so far is that not too much work in each substep leads to
simple computations and reasonable overall convergence, but the evidence we have for this
general statement is rather shaky.



Table 1: Eigenvalues for various values of o0

a: 0 1 10 100

01 2.674 2.543 2.245 2237
02 1.331 685 267 265
03 .526 223 .166 .165
04 323 076 .050 .050
05 .146 036 .028 .028
06 .000 000 .000 .000
07 .000 .000 .000 .000
08 .000 .703 1.166 1.169
09 .000 385 528 533
10 .000 182 269 272
11 .000 .108 209 210
12 .000 .058 .07 .071

Table 2a: Loadings for . =0

black 000 .000 .000 000 .000
hispa 000 000 000 .000 .000
urban 000 .000 .000 .000 .000
incom 000 .000 .000 000 .000
lifex 000 .000 .000 .000 .000
homic .000 .000 000 .000 .000
unemp .000 .000 .000 .000 .000
highs -.894 .154 295 400 .086
publi -.259 .844 -460 .086 -.047
pupil 411 .769 458 -175 .002
illit 917 -.028 059 320 -.230
failu 936 .063 -118 .150- 289
Table 2b: Loadings fora =1

black 892 -.116 -049 -.056 -.201
hispa 074 403 547 -538 284
urban -.068 -305 537 .158 073
incom -.552 -270 .608 -013 -.359
lifex -.742 -231 007 -153 531
homic 763 307 279 .026 -179
unemp 277 -152 471 682 109
highs -.839 .193 352 -104 -071
publi -.186 .802 -.281 -118 -.042
pupil 438 655 218 233 -014
illit 900 -.002 186 -.165 118
failu 947 -041 .006 -.060 -.160




—

Table 2c: Loadings for o = 10

black 933 -267 029 -.087 -.140
hispa 085 .642 519 -414 242
urban -.086 -333 586 170 .145
incom -591 -250 655 -013 -.303
lifex -.786 -.156 002 -.165 .561
homic .806 325 274 .093 -210
unemp 279 -221 470 719 135
highs -768 139 284 -.064 -.053
publi -.050 376 -224 -.079 -.038
pupil 433 278 105 167 -.020
illit 806 136 .150 -.098 .094
failu 908 -116 045t -.051 -.120
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