
would be to interactively code ‘country’ and ‘sex’ as a
new row variable, with 23�2� 46 categories, cross-
tabulated against the question responses. For each
country there would now be a male and a female point
and one could compare sexes and countries in this
richer map. This process of interactive coding of the
variables can continue as long as the data do not
become too fragmented into interactive categories of
very low frequency.

Another approach to multiway data, called multiple
correspondence analysis (MCA), applies when there
are several categorical variables skirting the same
issue, often called ‘items.’ MCA is usually defined as
the CA algorithm applied to an indicator matrix Z
with the rows being the respondents or other sampling
units, and the columns being dummy variables for
each of the categories of all the variables. The data are
zeros and ones, with the ones indicating the chosen
categories for each respondent. The resultant map
shows each category as a point and, in principle, the
position of each respondent as well. Alternatively, one
can set upwhat is called theBurtmatrix),B�Z�Z, the
square symmetric table of all two-way crosstabula-
tions of the variables, including the crosstabulations
of each variable with itself (named after the psy-
chologistSirCyrilBurt).TheBurtmatrix is reminiscent
of a covariance matrix and the CA of the Burt matrix
can be likened to a PCA of a covariance matrix. The
analysis of the indicator matrix Z and the Burt matrix
B give equivalent standard coordinates of the category
points, but slightly different scalings in the principal
coordinates since the principal inertias of B are the
squares of those of Z.

A variant of MCA called joint correspondence
analysis (JCA) avoids the fitting of the tables on the
diagonal of the Burt matrix, which is analogous to
least-squares factor analysis.

As far as other types of data are concerned, namely
rankings, ratings, paired comparisons, ratio-scale, and
interval-scale measurements, the key idea is to recode
the data in a form which justifies the basic constructs
of CA, namely profile, mass, and chi-squared distance.
For example, in the analysis of rankings, or pref-
erences, applying the CA algorithm to the original
rankings of a set of objects by a sample of subjects is
difficult to justify, because there is no reason why
weight should be accorded to an object in proportion
to its average ranking. A practice called doubling
resolves the issue by adding either an ‘anti-object’ for
each ranked object or an ‘anti-subject’ for each
responding subject, in both cases with rankings in the
reverse order. This addition of apparently redundant
data leads to CA effectively performing different
variants of principal components analysis on the
original rankings.

A recent finding by Carroll et al. (1997) is that CA
canbe applied to a square symmetricmatrix of squared
distances, transformed by subtracting each squared
distance from a constant which is substantially larger

than the largest squared distance in the table. This
yields a solution which approximates the classical
scaling solution of the distance matrix.

All these extensions of CA conform closely to
Benze� cri’s original conception of CA as a universal
technique for exploring many different types of data
through operations such as doubling or other judicious
transformations of the data.

The latest developments on the subject, including
discussions of sampling properties of CA solutions
and a comprehensive reference list, may be found in
the volumes edited by Greenacre and Blasius (1994)
and Blasius and Greenacre (1998).

See also: Factor Analysis and Latent Structure:
Overview; Multivariate Analysis: Discrete Variables
(Correspondence Models); Multivariate Analysis:
Discrete Variables (Overview); Scaling: Multi-
dimensional
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Scaling: Multidimensional

The term ‘Multidimensional Scaling’ or MDS is used
in two essentially different ways in statistics (de Leeuw
and Heiser 1980a). MDS in the wide sense refers to any
technique that produces a multi-dimensional geo-
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metric representation of data, where quantitative or
qualitative relationships in the data are made to
correspond with geometric relationships in the rep-
resentation. MDS in the narrow sense starts with
information about some form of dissimilarity between
the elements of a set of objects, and it constructs its
geometric representation from this information. Thus
the data are ‘dissimilarities,’ which are distance-like
quantities (or similarities, which are inversely related
to distances). This entry only concentrates on narrow-
sense MDS, because otherwise the definition of the
technique is so diluted as to include almost all of
multivariate analysis.

MDS is a descriptive technique, in which the notion
of statistical inference is almost completely absent.
There have been some attempts to introduce statistical
models and corresponding estimating and testing
methods, but they have been largely unsuccessful. I
introduce some quick notation. Dissimilarities are
written as δ

ij
, and distances are d

ij
(X ). Here i and j are

the objects of interest. The n�p matrix X is the
configuration, with coordinates of the objects in �p.
Often, data weights w

ij
are also available, reflecting the

importance or precision of dissimilarity δ
ij
.

1. Sources of Distance Data

Dissimilarity information about a set of objects can
arise in many different ways. This article reviews some
of the more important ones, organized by scientific
discipline.

1.1 Geodesy

Themost obvious application, perhaps, is in sciences in
which distance is measured directly, although gen-
erally with error. This happens, for instance, in
triangulation in geodesy, in which measurements are
made which are approximately equal to distances,
either Euclidean or spherical, depending on the scale
of the experiment.

In other examples, measured distances are less
directly related to physical distances. For example,
one could measure airplane, road, or train travel
distances between different cities. Physical distance is
usually not the only factor determining these types of
dissimilarities.

1.2 Geography�Economics

In economic geography, or spatial economics, there
are many examples of input–output tables, where the
table indicates some type of interaction between a
number of regions or countries. For instance, the data
may have n countries, where entry f

ij
indicates the

number of tourists traveling, or the amount of grain

exported, from i to j. It is not difficult to think of many
other examples of these square (but generally asym-
metric) tables. Again, physical distance may be a
contributing factor to these dissimilarities, but cer-
tainly not the only one.

1.3 Genetics�Systematics

A very early application of a scaling technique was
Fisher (1922). He used crossing-over frequencies from
a number of loci to construct a (one-dimensional) map
of part of the chromosome. Another early application
of MDS ideas is in Boyden (1931), where reactions to
sera are used to give similarities between common
mammals, and these similarities are then mapped into
three-dimensional space.

In much of systematic zoology, distances between
species or individuals are actually computed from a
matrix of measurements on a number of variables
describing the individuals. There are many measures
of similarity or distance which have been used, not all
of them having the usual metric properties. The
derived dissimilarity or similarity matrix is analyzed
by MDS, or by cluster analysis, because systematic
zoologists show an obvious preference for tree repre-
sentations over continuous representations in �p.

1.4 Psychology�Phonetics

MDS, as a set of data analysis techniques, clearly
originates in psychology. There is a review of the early
history, which starts with Carl Stumpf around 1880, in
de Leeuw and Heiser (1980a). Developments in psy-
chophysics concentrated on specifying the shape of the
function relating dissimilarities and distances, until
Shepard (1962) made the radical proposal to let the
data determine this shape, requiring this function only
to be increasing.

In psychophysics, one of the basic forms in which
data are gathered is the ‘confusion matrix.’ Such a
matrix records how many times row-stimulus i was
identified as column-stimulus j. A classical example
is the Morse code signals studied by Rothkopf
(1957). Confusion matrices are not unlike the input–
output matrices of economics.

In psychology (and marketing) researchers also
collect direct similarity judgments in various forms to
map cognitive domains. Ekman’s color similarity data
is one of the prime examples (Ekman 1963), but many
measures of similarity (rankings, ratings, ratio esti-
mates) have been used.

1.5 Psychology�Political Science�Choice Theory

Another source of distance information is ‘preference
data.’ If a number of individuals indicate their prefer-
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Table 1
Ten psychology journals

Journal Label

A American Journal of Psychology AJP
B Journal of Abnormal and Social Psychology JASP
C Journal of Applied Psychology JAP
D Journal of Comparati�e and Physiological Psychology JCPP
E Journal of Consulting Psychology JCP
F Journal of Educational Psychology JEP
G Journal of Experimental Psychology JExP
H Psychological Bulletin PB
I Psychological Re�iew PR
J Psychometrika Pka

ences for a number of objects, then many choice
models use geometrical representations in which an
individual prefers the object she is closer to. This leads
to ordinal information about the distances between
the individuals and the objects, e.g., between the
politicians and the issues they vote for, or between the
customers and the products they buy.

1.6 Biochemistry

Fairly recently, MDS has been applied in the
conformation of molecular structures from nuclear
resonance data. The pioneering work is Crippen
(1977), and a more recent monograph is Crippen and
Havel (1988). Recently, this work has become more
important because MDS techniques are used to
determine protein structure. Numerical analysts and
mathematical programmers have been involved,
and as a consequence there have been many new and
exciting developments in MDS.

2. An Example

Section 1 shows that it will be difficult to find an
example that illustrates all aspects of MDS. We select
one that can be used in quite a few of the techniques
discussed. It is taken from Coombs (1964, p. 464). The
data are cross-references between ten psychological

Table 2
References in row-journal to column-journal

A B C D E F G H I J

A 122 4 1 23 4 2 135 17 39 1
B 23 303 9 11 49 4 55 50 48 7
C 0 28 84 2 11 6 15 23 8 13
D 36 10 4 304 0 0 98 21 65 4
E 6 93 11 1 186 6 7 30 10 14
F 6 12 11 1 7 34 24 16 7 14
G 65 15 3 33 3 3 337 40 59 14
H 47 108 16 81 130 14 193 52 31 12
I 22 40 2 29 8 1 97 39 107 13
J 2 0 2 0 0 1 6 14 5 59

journals. The journals are given in Table 1. The actual
data are in Table 2. the basic idea, of course, is that
journals with many cross-references are similar.

3. Types of MDS

There are two different forms of MDS, depending on
how much information is available about the dis-
tances. In some of the applications reviewed in Sect. 1
the dissimilarities are known numbers, equal to dis-
tances, except perhaps for measurement error. In
other cases only the rank order of the dissimilarities is
known, or only a subset of them is known.

3.1 Metric Scaling

In metric scaling the dissimilarities between all objects
are known numbers, and they are approximated by
distances. Thus objects are mapped into a metric
space, distances are computed, and compared with the
dissimilarities. Then objects are moved in such a way
that the fit becomes better, until some loss function is
minimized.

In geodesy and molecular genetics this is a reason-
able procedure because dissimilarities correspond
rather directly with distances. In analyzing input–
output tables, however, or confusion matrices, such
tables are often clearly asymmetric and not likely to be
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directly translatable into distances. Such cases often
require a model to correct for asymmetry and scale.
The most common class of models (for counts in a
square table) is E ( f

ij
)�α

i
β
j
exp ��φ(d

ij
(X ))�, where φ

is some monotone transformation through the origin.
For φ equal to the identity this is known as the choice
model for recognition experiments in mathematical
psychology (Luce 1963), and as a variation of the
quasi-symmetry model in statistics (Haberman 1974).
The negative exponential of the distance function was
also used by Shepard (1957) in his early theory of
recognition experiments.

As noted in Sect. 1.3, in systematic zoology and
ecology, the basic data matrix is often a matrix in
which n objects are measured on p variables. The first
step in the analysis is to convert this into an n�n
matrix of similarities or dissimilarities. Which measure
of (dis)similarity is chosen depends on the types of
variables in the problem. If they are numerical,
Euclidean distances or Mahanalobis distances can be
used, but if they are binary other dissimilarity mea-
sures come to mind (Gower and Legendre 1986). In
any case, the result is a matrix which can be used as
input in a metric MDS procedure.

3.2 Nonmetric Scaling

In various situations, in particular in psychology, only
the rank order of the dissimilarities is known. This is
either because only ordinal information is collected
(for instance by using paired or triadic comparisons)
or because, while the assumption is natural that the
function relating dissimilarities and distances is mono-
tonic, the choice of a specific functional form is not.

There are other cases in which there is incomplete
information. For example, observations may only be
available on a subset of the distances, either by design
or by certain natural restrictions onwhat is observable.
Such cases lead to a distance completion problem,
where the configuration is constructed from a subset
of the distances, and at the same time the other
(missing) distances are estimated. Such distance com-
pletion problems (assuming that the observed dis-
tances are measured without error) are currently
solved with mathematical programming methods (Al-
fakih et al. 1998).

3.3 Three-way Scaling

In ‘three-way scaling’ information is available on
dissimilarities between n objects on m occasions, or for
m subjects. Two easy ways of dealing with the
occasions is to perform either a separate MDS for each
subject or to perform a single MDS for the average
occasion. Three-way MDS constitutes a strategy
between these two extremes.

This technique requires computation of m MDS
solutions, but they are required to be related to each

other. For instance, one can impose the restriction
that the configurations are the same, but the trans-
formation relating dissimilarities and distances are
different. Or one could require that the projections on
the dimensions are linearly related to each other in the
sense that d

ij
(X

k
)� d

ij
(XW

k
), where W

k
is a diagonal

matrix characterizing occasion k. A very readable
introduction to three-way scaling is Arabie et al.
(1987).

3.4 Unfolding

In ‘multidimensional unfolding,’ information is only
available about off-diagonal dissimilarities, either
metric or nonmetric. This means dealing with two
different sets of objects, for instance individuals and
stimuli or members of congress and political issues,
and dissimilarities between members of the first set
and members of the second set, and not on the within-
set dissimilarities. This typically happens with prefer-
ence and choice data, in which how individuals like
candies, or candidates like issues is known, but not
how the individuals like other individuals, and so on.

In many cases, the information in unfolding is also
only ordinal. Moreover, it is ‘conditional,’ which
means that while it is known that a politician prefers
one issue over another, it is not known if a politician’s
preference for an issue is stronger than another
politician’s preference for another issue. Thus the
ordinal information is only within rows of the off-
diagonal matrix. This makes unfolding data, especially
nonmetric unfolding data, extremely sparse.

3.5 Restricted MDS

In many cases it makes sense to impose restrictions on
the representation of the objects in MDS. The design
of a study may be such that the objects are naturally on
a rectangular grid, for instance, or on a circle or ellipse.
Often, incorporating such prior information leads to a
more readily interpretable and more stable MDS
solution.

As noted in Sect. 3.3, some of the more common
applications of restricted MDS are to three-way
scaling.

4. Existence Theorem

The basic existence theorem in Euclidean MDS, in
matrix form, is due to Schoenberg (1935). A more
modern version was presented in the book by Tor-
gerson (1958).

I give a simple version here. Suppose E is a non-
negative, hollow, symmetric matrix or order n, and
suppose J

n
� I

n
��

n
e
n
e�
n

is the ‘centering’ operator.
Here I

n
is the identity, and e

n
is a vector with all

elements equal to one. Then E is a matrix of squared
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Euclidean distances between n points in �p if and
only if ��

�
J
n
EJ

n
is positive semi-definite of rank less

than or equal to p.
This theorem has been extended to the classical non-

Euclidean geometries, for instance by Blumenthal
(1953). It can also be used to show that any non-
negative, hollow, symmetric E can be embedded
‘nonmetrically’ in n�2 dimensions.

5. Loss Functions

5.1 Least Squares on the Distances

The most straightforward loss function to measure fit
between dissimilarities and distances is STRESS,
defined by

STRESS(X )�
∆

�
n

i=�

�
n

j=�

w
ij
(δ

ij
�d

ij
(X ))�. (1)

Obviously this formulation applies to metric scaling
only. In the case of nonmetric scaling, the major
breakthrough in a proper mathematical formulation
of the problem was Kruskal (1964). For this case,
STRESS is defined as,

STRESS(X, D� )�
∆ �n

i=�
�n

j=�
w

ij
(d�

ij
�d

ij
(X ))�

�n

i=�
�n

j=�
w

ij
(d

ij
(X )�d�

ij
(X ))�

(2)

and this function is minimized over both X and D� ,
where D� satisfies the constraints imposed by the data.
In nonmetric MDS the D� are called disparities, and are
required to be monotonic with the dissimilarities.
Finding the optimal D� is an ‘isotonic regression
problem.’ In the case of distance completion problems
(with or without measurement error), the d�

ij
must be

equal to the observed distances if these are observed,
and they are otherwise free.

One particular property of the STRESS loss func-
tion is that it is not differentiable for configurations in

Table 3
Transformed journal reference data

0.00 2.93 4.77 1.89 3.33 2.78 0.77 1.02 1.35 3.79
2.93 0.00 2.28 3.32 1.25 2.61 2.39 0.53 1.41 4.24
4.77 2.28 0.00 3.87 2.39 1.83 3.13 1.22 3.03 2.50
1.89 3.32 3.87 0.00 5.62 4.77 1.72 1.11 1.41 4.50
3.33 1.25 2.39 5.62 0.00 2.44 3.89 0.45 2.71 3.67
2.78 2.61 1.83 4.77 2.44 0.00 2.46 1.01 2.90 2.27
0.77 2.39 3.13 1.72 3.89 2.46 0.00 0.41 0.92 2.68
1.02 0.53 1.22 1.11 0.45 1.01 0.41 0.00 0.76 1.42
1.35 1.41 3.03 1.41 2.71 2.90 0.92 0.76 0.00 2.23
3.79 4.24 2.50 4.50 3.67 2.27 2.68 1.42 2.23 0.00

which two points coincide (and a distance is zero). It is
shown by de Leeuw (1984) that at a local minimum of
STRESS, pairs of points with positive dissimilarities
cannot coincide.

5.2 Least Squares on the Squared Distances

A second loss function, which has been used a great
deal, is SSTRESS, defined by

SSTRESS(X )�
∆

�
n

i=�

�
n

j=�

w
ij
(δ�

ij
�d �

ij
(X ))�. (3)

Clearly, this loss function is a (fourth-order) multivari-
ate polynomial in the coordinates. There are no
problems with smoothness, but often a large number
of local optima results.

Of course a nonmetric version of the SSTRESS
problem can be confronted, using the same type of
approach used for STRESS.

5.3 Least Squares on the Inner Products

The existence theorem discussed above suggests a third
way to measure loss. Now the function is known as
STRAIN, and it is defined, in matrix notation, as

STRAIN(X )�
∆

tr�J(∆(�)�D(�)(X ))J(∆(�)�D(�)(X ))�

(4)

where D(�)(X ) and ∆(�) are the matrices of squared
distances and dissimilarities, and where J is the
centering operator. Since JD(�)(X )J��2XX� this
means that ��

�
J∆(�)J is approximated by a positive

semi-definite matrix of rank r, which is a standard
eigenvalue–eigenvector computation.

Again, nonmetric versions of minimizing STRAIN
are straightforward to formulate (although less
straightforward to implement).
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6. Algorithms

6.1 Stress

The original algorithms (Kruskal 1964) for minimizing
STRESS use gradient methods with elaborate step-
size procedure. In de Leeuw (1977) the ‘majorization
method’ was introduced. It leads to a globally con-
vergent algorithm with a linear convergence rate,
which is not bothered by the nonexistence of deriva-
tives at places where points coincide. The majorization
method can be seen as a gradient method with a
constant step-size, which uses convex analysismethods
to prove convergence.

More recently, faster linearly or superlinearly con-
vergent methods have been tried successfully (Glunt et
al. 1993, Kearsley et al. 1998).

One of the key advantages of the majorization
method is that it extends easily to restricted MDS
problems (de Leeuw and Heiser 1980b). Each
subproblem in the sequence is a least squares pro-

Figure 1
Metric analysis (STRAIN left, STRESS right)

Figure 2
Nonmetric analysis (transformation left, solution right)

jection problem on the set of configurations satis-
fying the constraints, which is usually easy to solve.

6.2 SSTRESS

Algorithms for minimizing SSTRESS were developed
initially by Takane et al. (1977). They applied cyclic
coordinate descent, i.e., one coordinate was changed
at the time, and cycles through the coordinates were
alternated with isotonic regressions in the nonmetric
case. More efficient alternating least squares algor-
ithms were developed later by de Leeuw, Takane,
and Browne (cf. Browne (1987)), and superlinear and
quadratic methods were proposed by Glunt and
Liu (1991) and Kearsley et al. (1998).

6.3 STRAIN

Minimizing STRAIN was, and is, the preferred al-
gorithm in metric MDS. It is also used as the starting
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point in iterative nonmetric algorithms. Recently,
more general algorithms for minimizing STRAIN in
nonmetric and distance completion scaling have been
proposed by Trosset (1998a, 1998b).

7. Analysis of the Example

7.1 Initial Transformation

In the journal reference example, suppose E( f
ij
)�

α
i
β
j
exp��φ(d

ij
(X ))�. In principle this model can be

tested by contingency table techniques. Instead the
model is used to transform the frequencies to estimated
distances, yielding

�logpf	
ij
f	
ji

f	
ii
f	
jj

�φ(d
ij
(X ))

where f 

ij
� f

ij
��

�
. This transformed matrix is given in

Table 3.

7.2 Metric Analysis

In the first analysis, suppose the numbers in Table 3
are approximate distances, i.e., suppose that φ is the
identity. Then STRAIN is minimized, using metric
MDS by calculating the dominant eigenvalues and
corresponding eigenvectors of the doubly-centered
squared distance matrix. This results in the following
two-dimensional configurations. The second analysis
iteratively minimizes metric STRESS, using the major-
ization algorithm. The solutions are given in Fig. 1.
Both figures show the same grouping of journals, with
Pka as an outlier, the journals central to the discipline,
such as AJP, JExP, PB, and PR, in the middle, and
more specialized journals generally in the periphery.
For comparison purposes the STRESS of the first
solution is 0.0687, that of the second solution is
0.0539. Finding the second solution takes about 30
iterations.

7.3 Nonmetric STRESS Analysis

Next, nonmetric STRESS is minimized on the same
data (using only their rank order). The solution is in
Fig. 2. The left panel displays the transformation
relating the data in Table 3 to the optimally trans-
formed data, a monotone step function. Again, basi-
cally the same configuration of journals, with the same
groupings emerges. The nonmetric solution has a
(normalized) STRESS of 0.0195, and again finding it
takes about 30 iterations of the majorization method.
The optimal transformation does not seem to deviate
systematically from linearity.

8. Further Reading

Until recently, the classical MDS reference was the
little book by Kruskal and Wish (1978). It is clearly
written, but very elementary. A more elaborate prac-
tical introduction is by Coxon (1982), which has a
useful companion volume (Davies and Coxon 1982)
with many of the classical MDS papers. Some ad-
ditional early intermediate-level books, written from
the psychometric point of view, are Davison (1983)
and Young (1987).

More recently, more modern and advanced books
have appeared. The most complete treatment is no
doubt Borg and Groenen (1997), while Cox (1994)
is another good introduction especially aimed at
statisticians.
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Scandal: Political

The word ‘scandal’ is used primarily to describe a
sequence of actions and events which involve certain
kinds of transgressions and which, when they become

known to others, are regarded as sufficiently serious to
elicit a response of disapproval or condemnation. A
scandal is necessarily a public event in the sense that,
while the actions which lie at the heart of the scandal
may have been carried out secretly or covertly, a
scandal can arise only if these actions become known
to others, or are strongly believed by others to have
occurred. This is one respect in which scandal differs
from related phenomena such as corruption and
bribery; a scandal can be based on the disclosure of
corruption or bribery, but corruption and bribery can
exist (and often do exist) without being known about
by others, and hence without becoming a scandal.

1. The Concept of Scandal

The concept of scandal is very old and the meaning has
changed over time. In terms of its etymological origins,
the word probably derives from the Indogermanic
root skand-, meaning to spring or leap. Early Greek
derivatives, such as the word skandalon, were used in a
figurative way to signify a trap, an obstacle or a ‘cause
of moral stumbling.’ The idea of a trap or an obstacle
was an integral feature of the theological vision of the
Old Testament. In the Septuagint (the Greek version
of the Old Testament), the word skandalon was used to
describe an obstacle, a stumbling block placed along
the path of the believer, which could explain how a
people linked to God might nevertheless begin to
doubt Him and lose their way. The notion of a trap or
obstacle became part of Judaism and early Christian
thought, although it was gradually prised apart from
the idea of a test of faith.

With the development of the Latin word scandalum
and its diffusion into Romance languages, the religious
connotation was gradually attenuated and supple-
mented by other senses. The word ‘scandal’ first
appeared in English in the sixteenth century; similar
words appeared in other Romance languages at
roughly the same time. The early uses of ‘scandal’ in
the sixteenth and seventeenth centuries were, broadly
speaking, of two main types. First, ‘scandal’ was used
in a religious context to refer to the conduct of a
person which brought discredit to religion, or to
something which hindered religious faith or belief.
Second, ‘scandal’ and its cognates were also used in
more secular contexts to describe actions or utterances
which were regarded as scurrilous or abusive, which
damaged an individual’s reputation, which were
grossly discreditable, and�or which offended moral
sentiments or the sense of decency.

It is these later, more secular senses which underlie
the most common modern uses of the word ‘scandal.’
Although the word continues to have some use as a
specialized religious term, ‘scandal’ is used mainly to
refer to a broader form of moral transgression which is
no longer linked specifically to religious codes. More
precisely, ‘scandal’ could be defined as actions or
events which have the following characteristics: their
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