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7.1 Introduction 

7.1.1 Problem We compute approximate solutions to homogeneous linear 
systems of the form AB = 0. Here B is an m x p matrix, and A is an n x m 
matrix. Columns of A correspond with variables, rows with observations. 
Columns of B correspond with equations connecting the variables, elements 
of B are coefficients. 

Both A and B are, in general, partially known and our job is to impute the 
unknown elements. Unknown information on the variable side can be the 
usual missing data, it can be in the form of unobserved (latent) variables, or 
it can be in the form of allowing for transformations of the variables. 

Our fit criterion will be least squares. This is different from the usual 
procedure, which embeds the data in a statistical model and then applies 
some form of maximum likelihood. In particular, in the classical case, it is 
assumed that the rows of A are replications of a random vector f!, which 
satisfies g'B = 0. We then transform the system to B'"'£B = 0, where "'£ = 
E(f!q~, and we proceed to estimate "'£ under these constraints, and maybe 
other constraints as well (often assuming multivariate normality of f! and 
often integrating out the parts corresponding with missing information). 
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This may be fine in some situations, although in non-normal situations it 
is unclear why one should focus on the covariances. But in other situations 
the repeated independent trials assumption does not make sense, using random 
variables is not natural, assuming multivariate normality is ludicrous, and the 
framework leads to very complicated or even impossible estimation problems. 
We suggest a more direct approach, formulated directly in terms of the obser­
vations, and using least squares to solve matrix approximation problems. 

7.1.2 Constraints As indicated above, we will look at the situation in which 
some of the coefficients and some of the variables are completely known, some 
are completely unknown, and some are partially known. 

As far as the coefficients are concerned, we are mainly thinking of setting 
some of them equal to known constants, typically zero or one. But in principle 
the computations below can be easily generalized to put bound constraints on 
the individual coefficients, requiring them to be in a known interval, and even 
to equality or inquality constraints linking different coefficients. 

As far as the variables are concerned, we will mostly be interested in con­
straints of the form ai E lCj n S, with !Ci a cone and with S the unit sphere 
in Rn. Cones can be used to allow for monotone transformations, spline sub­
spaces, or monotone splines. For variables we will also explicitly discuss more 
complicated linking constraints, in particular we often require orthogonality of 
different variables. A block of variables that is required to be mutually orthog­
onal is called an orthoblock. 

A key component of our approach is that we allow for variables that are 
completely unknown, i.e. their quantifications can be anywhere in R n. Of 
course, we need to have some prior knowledge in order to prevent perfect but 
trivial solutions to our system of equations. These unknown or latent variables 
will usually be linked by orthogonality constraints with other latent and ob­
served (known or partially known) variables. Once again, we explicitly take 
the point of view that latent variables are a (rather extreme) form of missing 
data, and that the missing values can be incorporated directly in the estimation 
process. 

7 .1.3 Scope Clearly this class of bilinear systems, with the corresponding con­
straints, is sufficiently general to fit the linear models in LISREL, EQS, CALIS, 
AMOS and so on. It is also general enough to fit the models in Gift's form of 
nonlinear multivariate analysis [Gifi, 1990, Michailidis and DeLeeuw, 1999, 
Meulman and Heiser, 1999], i.e. it can be used to fit HOMALS, PRINCALS, 
OVERALS and so on. This illustrates that classical structural (or simultane­
ous) equation techniques and Gift's nonlinear multivariate analysis techniques 
can be captured in a single framework (and can be fit with a single general 
algorithm). 
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7 .1.4 Equivalent Systems In most cases we can rewrite the system, still in the 
required linear form, in such a way that the rewritten systems has the same 
solutions set as the original system. This does not mean, however, that the 
least squares solutions to the rewritten and the original system are the same. 
We shall see some examples of equivalent system of linear equations below. A 
classical example is the reduced form of simultaneous equation systems. 

7 .1.5 Generalizations Most of the developments below go through without 
modifications if we use weighted least squares, with known weights, instead 
of unweighted least squares. Similarly, variables can be elements of an arbi­
trary inner product space, instead of vectors in R n. Thus we can use sample 
or population distributions to compute the inner products of our variables, to 
study what happens in the population case, or to find out what sampling distri­
butions of our statistics are. 

We will not elaborate further on these easy generalizations, but it is good 
to remember that they are available at little cost. 

7.2 Loss Function and Algorithm 

7 .2.1 Loss Function The problem studied in this paper is to minimize the least 
squareslossjUnction 

a( A, B) = tr B' RB. 
Here R = A' A is the m x m correlation matrix of the variables. 

Thus, we will look at the general class of problems in which we minimize 
a(A, B) over the A satisfying cone and orthogonality restrictions and over the 
B with some of the elements known. 

7.2.2 Algorithm In DeLeeuw [1990], we studied the problem of minimizing 
any real-valued function of the form </>(R), with R = A' A, over a; E K.; n 
S. A majorization algorithm [DeLeeuw, 1994, Heiser, 1995, Lange et al., 
2000] was developed there for the case in which <P(R) is concave in R. Futher 
developments of this approach are in DeLeeuw [1988, 1993] and in DeLeeuw 
et at. [1999]. 

In the problem studied in this paper we can define 

¢(R) =min tr B' RB, 
BEB 

where Bare the matrices in Rmxp satisfying the constraints on B. The loss 
function </> is the pointwise minimum of a family of functions linear, and thus 
concave, in R. Because the pointwise minimum of a family of concave func­
tions is also concave, it follows that ¢ is concave in R. We have seen that the 
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majorization algorithm applies to concave functions, and thus </> can be min­
imized by the majorization algorithm. In that sense the class of techniques 
discussed here is an important (and so far unexplored) special case of our pre­
vious work. The main generalization is that in the current framework we do 
not only have the cone constraints on individual variables, but we also allow 
for orthoblocks of variables. 

We give a brief outline of the algorithm in the general case. Algorithms for 
specific systems will be discussed in more detail below. For the majorization 
algorithm we need the subgradient of the loss function. For </> the subgradient 
8</>( R) is the convex hull of the matrices iJ B', where iJ is any matrix minimiz­
ing tr B' RB over B E 8. This follows from the formula for the subgradient 
of a pointwise minimum of concave functions [Hiriart-Urruty and Lemarechal, 
1993, Theorem 4.4.2]. Observe that computing iJ is a quadratic minimization 
problem. This is why it is easy to incorporate bound and linear inequality con­
straints on the coefficients, because we will remain in the convex quadratic 
programming framework. 

The subgradient inequality tells us that </>( R) ~ tr RG, for any G E 
8</>(R). The algorithm selects a subgradient G, and minimizes the majorization 
function tr RG by cycling over all variables (or orthoblocks of variables). This 
gives us a new R+, and we have 

In majorization theory this is called the sandwich inequality, and it forces con­
vergence of the sequence of loss function values (and through that, using Zang­
will [1969], convergence of the sequence of solutions). Observe that conver­
gence will be to a stationary point of the algorithm, which is a point satisfying 
the stationary equations of the minimization problem. This is likely to be a lo­
cal minimum, because it is a minimum with respect to each block of variables, 
but there is no guarantee that we find the global minimum. 

Observe that if we update a variable, or an orthoblock, we have to recom­
pute the subgradient at the new point, i.e. we have to recompute the optimal B 
for current A, before we proceed to the next variable or block. 

7 .2.3 Subproblems for Variables Suppose we are optimizing over the single 
variable a1 E 1\:1 n S, keeping A2 , the rest of A, fixed at its current values. 
Partition A and G in the obvious way. Then 

tr RG = g11 + 2a~A2g1 + tr A~A2G22· 

Only the second term depends on a 1. DeLeeuw [1990] shows that the new 
optimal a1 can be found by projecting h = A2g1 on the cone 1\:1 and then 
normalizing the projection to unit length. 
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If we are optimizing over an orthoblock of variables AI, then by the same 
reasoning 

tr RG = tr Gu + 2tr A~A2GI2 + tr A~A2G22· 

Thus the optimal AI is found by solving the orthogonal Procrustus problem for 
ii = A2GI2• If ii has full column rank, and ii = KAL' is its singular value 
decomposition, then the optimal AI is K L'. In the Appendix we generalize this 
to singular ii, a generalization we will need in our factor analysis algorithm. 

We discuss two more subproblems we can come across in implementing 
the general algorithm. First, we want to find ai E JCI n S orthogonal to the 
block A2, but not necessarily to the block A3 . Clearly 

tr RG = a~ A2g2 + a~ A3g3 + terms not dependent on a I 

To find the optimal ai we need to project 

h = (I- A2(A~A2)-I A~)Aa9a 

on JC1o and normalize. We do not assume here that A2 is an orthoblock. 
The second subproblem asks for an orthoblock AI which is orthogonal to 

block A2, but not necessarily to block A3. With the same reasoning as in the 
previous subproblem, we now have to apply Procrustus to 

ii =(I- A2 (A~A2)-IA~)A3Gai· 

7 .2.4 Algorithm Flow The flow of the algorithm is to partition A into blocks 
that are either orthoblocks or single variables. We optimize the variables over 
the first block, optimize over B, optimize variables in the second block, opti­
mize over B, and so on. It is not necessary to go through the blocks of vari­
ables in order, in fact we can change the order or use "free-steering" meth­
ods in which we cycle through the blocks in random order [DeLeeuw and 
Michailides, 1999], but in general it is necessary to update B every time we 
update a block of variables. This may be inefficient if computing B is much 
more complicated than updating blocks of variables. There are variations of 
the algorithm possible based on using majorization a second time, this time to 
bound. 

It is sometimes also possible, and even advisable, to decompose B into a 
number of blocks and apply block relaxation to optimize over B. Thus many 
variations are possible with our general "algorithm model". 
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7.3 Examples 

Let us look at some "classical " systems to see how they fit into our framework 
and to see what loss functions and algorithms we can expect to discover (or 
rediscover). In discussing regression and various other special cases of our 
general framework, we use additional notation which is natural for the problem 
at hand and consequently obvious. 

7.3.1 Regression It has always been somewhat ambiguous what regression 
analysis wants of the residuals. On the one hand, we want the residuals to be 
"small", on the other hand we want them to be "unsystematic", which means 
unrelated to the predictors (and may mean more). Clearly being small does not 
imply being unsystematic, and vice versa. 

This means that we can distinguish two regression problems in our frame­
work. The first system is 

or y = X j3 + ae, where we require e' X = 0. 
Minimizing loss gives the usual regression statistics (regression coeffi­

cients, residuals, residual sum of squares), which actually make the minimum 
loss equal to zero. There is no room for improvement of the loss in this case 
by using optimal cone transformations of the variables. If we have missing in­
formation in X and/or y, we can just fill it in arbitrarily, and we will still have 
zero loss. This simply repeats the obvious: if we project a vector orthogonally 
on a subspace then the residuals are orthogonal to the subspace, and thus the 
decomposition we seek is always possible. 

Now let us "ignore emors", i.e. remove e from the system. We concentrate 
on making the residuals smalL Thus 

The solution for {3, for given X and y, is again the usual vector of regression 
coefficients, but now, of course, the minimum loss is non-zero, and we can use 
transformations, quantifications, or imputations to attain a better fit. In other 
words, we can require y and/or the columns of X to vary over cones. 

This leads to techniques implemented, for example, in ACE [Breiman 
and Friedman, 1985], TRANSREG [SAS, 1992], or CATREG [Meulman and 
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Heiser, 1999]. Our majorization algorithm is identical to the algorithm used in 
these programs. 

Clearly we can extend this to multivariate regression. Now 

and we typically require E' X = 0. This is entirely tautological again, un­
less we impose constraints such as E' E = I and :E is diagonal, or impose 
constraints on the coefficients in r. 

For path analysis we have 

with 9 upper triangular, E' X = 0, E' E = I and :E diagonal. Again this is a 
saturated system which can always be solved perfectly, and we need additional 
constraints to make imputing missing information interesting. Observe we can 
rewrite this system in the reduced form 

I 

[ Y I x 1 E ) -r(I- e)-1 = o 

-:E{I- e)-1 

which introduces some awkward nonlinear constraints on the parameters. 
For both multivariate regression and path analysis, the "ignore errors" ver­

sions are also quite straightforward. We should emphasize here that "ignoring 
errors" is somewhat of a misnomer. It is only defined relative to a more com­
plicated system which does have one or more additional orthoblocks of unob­
served variables. It can also be misleading to emphasize that blocks such as 
X and Y are "observed", while E is "unobserved". In general, all blocks of 
variables have both known and unknown elements, and subsets of both X and 
Y can be "unobserved" as well. 

7 .3.2 Factor Analysis Again, the notation is adapted to fit the problem. As in 
regression, we can take two approaches to residuals. We can make them "as 
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small as possible", and we can make them "as unsystematic as possible". First 
we explore making residuals unsystematic. 

The system, in matrix form, is 

or Y = ur +Ell., where U' E = 0, U'U = I, and E' E = I, and where 6. is 
diagonal. U is n x f, where f is the number of common factors. 

Minimizing the least squares loss function is a form of factor analysis, but 
the loss function is not the familiar one. In "classical" least squares factor 
analysis, as described in Young [1940], Whittle [1952] and J<>reskog [1962], 
the unique factors E are not parameters in the loss function. Instead the unique 
variances are used to weight the residuals of each observed variable (as sug­
gested by maximum likelihood). 

Our loss function, which is 

u(Y, u, E, r, ~) = IIY- ur- E6.112 

can be better understood by defining the ( m + f) x m matrix 

and by observing that 

min u(Y, U, E, r, .6.) 
U,E 

T=[~], 

m 

= L: [AJ(Y) + AJ(T) - 2Aj(YT')] 
i=l 

m 
~ L:(Aj(Y)- Aj(T))2 . 

j=l 

(1) 

Here the >.i ( •) are the ordered singular values of their matrix argument. 
See the Appendix, and for the inequality use the theorem on the singular values 
of a matrix product [Hom and Johnson, 1991 Theorem 3.3.14]. Thus we see 
that our loss function is just one (orthogonally invariant) way to measure how 
similar Y'Y is to T'T = r'r + ~2. 

There is another conceptual problem that has prevented the straightforward 
use of our least squares loss function, although it seems such a natural choice 
in the alternating least squares framework of Takane, Young and DeLeeuw 
[Young, 1981] or the nonlinear multivariate analysis framework of Gifi [1990]. 
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Factor score indeterminacy implies that generally the solution of U and E will 
not be unique, even for fixed loadings r and uniquenesses .::l. For that reason, 
Takane et al. [1979] go out of their way to redefine the least squares loss 
function in terms of the correlation matrix of the observed variables. This 
makes the algorithm quite complicated, with as a consequence several errors, 
and several proposed corrections to fix it [Mooijaart, 1984, Nevels, 1989, Kiers 
et al., 1993]. 

But non-uniqueness of factor scores is not really a problem from the al­
gorithmic point of view. Because all solutions to the augmented Procrustus 
problem are in a closed set in matrix space, we still have convergence of our 
majorization algorithm [Zangwill, 1969], and accumulation points of the se­
quences we generate will still be stationary points. 

Implementation is quite straightforward. In fact, we can think of two obvi­
ous ways to implement the part of the algorithm that updates the common and 
unique factor scores. In the first we update the U and E blocks successively, 
in the second we update them simultaneously by treating them as a single or­
thonormal block. In the first case we alternate solving the Procrustus problems 
for (Y- E.::l)r' and (Y- Ur).::l, in the second case we solve the augmented 
Procrustus problem for YT'. Updating loadings and uniquenesses is simple, 
because the optimal r is simply U'Y and the optimal .::l is diag(E'Y). It is 
also easy, in this algorithm, to incorporate the types of constraints typical for 
confirmatory factor analysis. 

We can also apply the "ignoring errors" strategy to factor analysis. Remove 
E and we have 

or Y = U A, where U'U = I. Minimizing the least squares loss function is 
principal component analysis with optimal scaling, as implemented in PRIN­
CALS [Gift, 1990], CATCPA [Meulman and Heiser, 1999], PRINQUAL [SAS, 
1992], or MORACE [Koyak, 1987]. From our viewpoint the two techniques 
are quite close, the difference is incorporating the residuals in the loss func­
tion and requiring them to be an orthoblock, or minimizing the residuals and 
maybe looking at them after the analysis is done. It is of some interest that 
requiring the matrix of unique variances .::l to be scalar in our least squares 
factor analysis algorithm does not lead to principal component analysis. 

7.4MIMIC 

Regression and factor analysis are relatively simple systems. The first step 
towards making life more complicated is the MIMIC system [Joreskog and 



130 JanDe Leeuw 

Goldberger, 1975]. It is 

0 -8 

I 0 

[X IY I u I E I F] -r I = 0, 

-~ 0 

0 -n 

or 

y = Ur+E~, 
u =X8+Fn. 

There are presumably various additional assumptions, which make (ElF) or 
even (UIEIF) into an orthoblock, and which make~ and n diagonal. Many 
variations are possible, in particular the familiar variations which "ignore the 
errors" E and/or F. We will not go into implementation details here, but just 
point out the flexibility and the painless incorporation of transformations of the 
observed variables or imputations of the missing data. 

Of course systems of this form, and more complicated ones along the usual 
structural equations lines, can have identification problems. This does not pre­
vent the algorithm from doing its work properly, but it still remains a valid 
topic to be studied, at least if one is interesting in interpreting and using the 
computed coefficients. 

Also, as we mentioned above, systems can be manipulated algebraically 
and rewritten as equivalent but different systems. Suppose, for example, that 
F = 0, for simplicity. Then we substitute U = X8, and rewrite the system as 

where 3 = er. This is now reduced rank regression, or redundancy analysis 
[Reinsel and Velu, 1998]. Our majorization algorithm can be used to minimize 
IIY- X3- E~ll 2 with X' E = 0 and E' E = I. In this case optimizing 
over regression coefficients must of course take the rank restrictions on 3 into 
account. Again the loss function is different from previous ones, because it 
explicitly treats residuals as additional parameters in the matrix decomposition. 
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It is clear that the approach we have illustrated here on the MIMIC system 
can be extended to even more complicated systems studied in LISREL and 
related techniques. Nothing essential really changes, although implementation 
details and lists of possible options and variations may become quite messy 

7.5 Nonlinear Multivariate Analysis 

Let us now switch to systems studied in nonlinear multivariate analysis [Gifi, 
1990]. The system for a general form of homogeneity analysis is 

I I I I 

0 0 0 

[ X I Ql I ' · · I Qm ] =0, 
0 0 

o o -ra o 

or X = Qiri for j = 1, · · ·, m. Then x s matrix X and each of then x ri 
matrices Qi is an orthoblock. Moreover all columns of Qi are assumed to be in 
the same subspace C; of Rn. This is because the orthoblock Qi corresponds 
with a single variable in the original data, which we allow to have multiple 
quantifications. The rank of the quantification for variable j is ri, which is 
usually either one (single quantification) or s (multiple quantification). 

By writing the system in this way, we cover both HOMALS (a.k.a. mul­
tiple correspondence analysis, in which the Qi are known and quantifications 
are multiple) and PRINCALS (a.k.a nonlinear principal component analysis, 
in which the Qi are partially known and all quantifications are single). See 
Bekker and De Leeuw [1988] for further details on this. In fact a slight mod­
ification also allows us to include generalized canonical correlation analysis 
OVERALS, in which each column of the coefficient matrix has more than one 
non-zero r matrix, although each row still only has a single non-zero r matrix. 
Thus there is a partition of the indices 1, · · · , m into sets of variables J1, · · · , lt 
such that 

X= L:: Q;r;, 
jEJ11 

for allv = 1, · · ·, l. As explained in Gifi [1990], this makes it easy to include 
canonical analysis and canonical discriminant analysis as special cases. 
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The actual majorization algorithm from OVERALS is implemented in R 
by DeLeeuw and Ouwehand [2003]. The implementation has one additional 
feature, to deal with ordinal variables in the case of multiple quantifications. 
We can require Qi to be an orthoblock, with all its columns in the subspace 
Lj, but with, in addition, its first column in a cone ICj U Lj. Thus we can re­
quire the leading quantification of a variable to be ordinal, while the remaining 
quantifications are orthogonal to the leading one. 

If all variables are single, then homogeneity analysis becomes principal 
component analysis. Combining this with the ideas from the previous section 
show how explicit orthoblocks or errors can be introduced into the technique, 
so that we obtain versions of factor analysis or canonical analysis with orthog­
onal error. 
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Appendix. 
Augmented Procrustus 

Suppose X is ann x m matrix of rank r. Consider the problem of maximizing 
tr U' X over then x m matrices U satisfying U'U =I. This is known as the 
Procrustus problem, and it is usually studied for the case n 2: m = r. We want 
to generalize ton 2: m 2: r. For this, we use the singular value decomposition 

X= [ Kt nxr 
[ 

A 
K rxr 

nx(n°-r) ] 0 

(n-r)xr 

0 
rx(m-r) 

0 
(n-r)x(m-r) 

Theorem 1 The maximum ojtr U' X overn x m matrices U satisfying U'U = 
I is tr A, and it isattainedforany U of the form U = K1 L~ + K 0 VL0, where 
Vis any (n- r) x (m- r) matrix satisfying V'V =I. 

ProofVsing a symmetric matrix of Lagrange multipliers leads to the stationary 
equations X = UM, which implies X'X = M 2 or M = ±(X'X)112. It 
also implies that at a solution of the stationary equations tr U' X = ±tr A. 
The negative sign corresponds with the minimum, the positive sign with the 
maximum. 

Now 

l [ M = [ ::~r Lo 
mx(m-r) 

If we write U in the form 

U = [ Kt nxr 

A 
rxr 

0 
(m-r)xr 

Ko 
nx(n-r) 

0 
rx(m-r) 

ll 0 
(m-r)x(m-r) 

u. l rxm 

Uo 
(n-r)xm 

then X = U M can be simplified to 

UILI =I, 

UoL1 = 0, 

L' 

l 
I 

rxm 

L' 0 
(m-r)xm 

with in addition, of course, U{ U1 + U0U0 = I. It follows that U1 = L~ and 

u0 v L0 
= ' (n- r) x m (n- r) x (m- r) (m- r) x m 

with V'V = I. Thus U = K 1 L~ + K 0 V L0. 


