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High-dimensional
Regression

In regression analysis, there are n observations y;
on a dependent variable (also known as outcome
or criterion) that are related to n corresponding
observations x; on p independent variables (also
known as inputs or predictors). Fitting regression
models of some form or another is by far the
most common uses of statistics in the sciences (see
Multiple Linear Regression).

Statistical theory tells us to assume that the
observed outcomes Yy, are realizations of n random
variables Y, We model the conditional expectation
of Y. given x;, or, to put it differently, we model the
expected value of y asa function of x;

E(y, | x) = F(x), 6]

where the function F must be estimated from the
data. Often the function F is known except for a
small number of parameters. This defines parametric
regression. Sometimes F' is unknown, except for the
fact that we know that has a certain degree of con-
tinuity or smoothness. This defines nonparametric
regression.

In this entry, we are specifically concerned with
the situation in which the number of predictors is
large. Through the years, the meaning of ‘large’ has
changed. In the early 1900s, three was a large num-
ber, in the 1980s 100 was large, and at the moment
we sometimes have to deal with situations in which
there are 10 000 predictors. This means, in the regres-
sion context, that we have to estimate a function F of
10000 variables. Modern data collection techniques
in, for example, genetics, environmental monitoring,
and consumer research lead to these huge datasets,
and it is becoming clear that classical statistical tech-
niques are useless for such data. Entirely different
methods, sometimes discussed under the labels of
‘data mining’ or ‘machine learning’, are needed [5]
(see Data Mining).

Until recently multiple linear regression, in
which F is linear, was the only practical alternative
to deal with a large number of predictors. Thus, we
specialize our model to

P
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It became clear rather soon that linear regression with
a large number of predictors has many problems. The
main ones are multicollinearity, often even singu-
larity, and the resulting numerical instability of the
estimated regression coefficients (see Collinearity).

An early attempt to improve this situation is using
variable selection. We fit the model
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where &, is either zero or one. In fitting this model,
we select a subset of the variables and then do a
linear regression. Although variable selection meth-
ods appeared relatively early in the standard statis-
tical packages, and became quite popular, they have
the major handicap that they must solve the com-
binatorial problem of finding the optimum selection
from among the 27 possible ones. Since this rapidly
becomes unsolvable in any reasonable amount of
time, various heuristics have been devised. Because
of the instability of high-dimensional linear regres-
sion problems, the various heuristics often lead
to very different solutions. Two ways out of the
dilemma, which both stay quite close to linear regres-
sion, have been proposed around 1980. The first is
principal component regression (see Principal Com-
ponent Analysis) or PCR, in which we have

q p
E(y, 1x)=) 8 [Z amxm} : “
=1 s=1

Here we replace the p predictors by ¢ < p principal
components and then perform the linear regression.
This tackles the multicollinearity problem directly,
but it inherits some of the problems of principal
component analysis. How many components do we
keep? And how do we scale our variables for the
component analysis?

The second, somewhat more radical, solution is
to use the generalized additive model or GAM
discussed by [6]. This means

p
E(y, | x) =) Bos (xis), )

s=1

where we optimize the regression fit over both 6 and
the functions (transformations) ¢. Usually we require
¢ € © where @ is some finite dimensional subspace
of functions, such as polynomials or splines with a
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given knot sequence. Best fits for such models are
easily computed these days by using alternating least
squares algorithms that iteratively alternate fitting 6
for fixed ¢ and fitting ¢ for fixed 6 [1]. Although
generalized additive models add a great deal of
flexibility to the regression situation, they do not
directly deal with the instability and multicollinearity
that comes from the very large number of predictors.
They do not address the data reduction problem, they
just add more parameters to obtain a better fit.

A next step is to combine the ideas of PCR and
GAM into projection pursuit regression or PPR [4].
The model now is

q p
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This is very much like GAM, but the transformations
are applied to a presumably small number of linear
combinations of the original variables. PPR regres-
sion models are closely related to neural networks, in
which the linear combinations are the single hidden
layer and the nonlinear transformations are sigmoids
or other squashers (see Neural Networks). PPR mod-
els can be fit by general neural network algorithms.

PPR regression is generalized in Li’s slicing
inverse regression or SIR [7, 8], in which the model
is
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For details on the SIR and PHD algorithms, we refer
to (see Slicing Inverse Regression).

Another common, and very general approach, is to
use a finite basis of functions kg, witht =1, ..., g;,
for each of the predictors x;. The basis functions can
be polynomials, piecewise polynomials, or splines,
or radical basis functions. We then approximate the
multivariate function F by a sum of products of these
basis functions. Thus we obtain the model

qp
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X Ry (xi1) X -0 X hpy (X)) (8)

This approach is used in multivariate adaptive regres-
sion splines, or MARS, by [3]. The basis functions
are splines, and they adapt to the data by locating the
knots of the splines.

A different strategy is to use the fact that any
multivariate function can be approximated by a multi-
variate step function. This fits into the product model,
if we realize that multivariate functions constant on
rectangles are products of univariate functions con-
stant on intervals. In general, we fit

q
E(y, | x) =) 61(x; €R)). ©)

t=1

Here, the R; define a partitioning of the p-
dimensional space of predictors, and the () are
indicator functions of the g regions. In each of the
regions the regression function is a constant. The
problem, of course, is how to define the regions.
The most popular solution is to use a recursive
partitioning algorithm such as Classification and
Regression Trees, or by the algorithm CART [2],
which defines the regions as rectangles in variable
space. Partitionings are refined by splitting along a
variable, and by finding the variable and the split
which minimize the residual sum of squares. If the
variable is categorical, we split into two arbitrary
subsets of categories. If the variable is quantitative,
we split an interval into two pieces. This recursive
partitioning builds up a binary tree, in which leaves
are refined in each stage by splitting the rectangles
into two parts.

It is difficult, at the moment, to suggest a best
technique for high-dimensional regression. Formal
statistical sensitivity analysis, in the form of standard
errors and confidence intervals, is largely missing.
Decision procedures, in the form of tests, are also in
their infancy. The emphasis is on exploration and on
computation. Since the data sets are often enormous,
we do not really have to worry too much about
significance, we just have to worry about predictive
performance and about finding (mining) interesting
aspects of the data.

References

[1] Breiman, L. & Friedman, J.H. (1985). Estimating opti-
mal transformations for multiple regression and correla-
tion, Journal of the American Statistical Association 80,
580-619.

[2] Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984).
Classification and Regression Trees, Wadsworth.

[3] Friedman, J. (1991). Multivariate adaptive regression
splines (with discussion), Annals of Statistics 19, 1-141.



High-dimensional Regression 3

[4]

[5]
[6]
(71

Friedman, J. & Stuetzle, W. (1981). Projection pursuit
regression, Journal of the American Statistical Association
76, 817-823.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The
Elements of Statistical Learning, Springer.

Hastie, T.J. & Tibshirani, R.J. (1990). Generalized Addi-
tive Models, Chapman and Hall, London.

Li, K.C. (1991). Sliced inverse regression for dimension
reduction (with discussion), Journal of the American
Statistical Association 86, 316-342.

[8]

Li, K.C. (1992). On principal Hessian directions for data
visualization and dimension reduction: another applica-
tion of Stein’s Lemma, Journal of the American Statistical
Association 87, 1025-1039.

JAN DE LEEUW



