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Chapter Two

Correspondence Analysis of 
Archaeological Abundance 

Matrices
By Jan de Leeuw

Introduction
vvvCorrespondence analysis (CA) is a technique used to analyze data 
matrices of non-negative numbers. CA is related to principal compo-
nent analysis (PCA) and multidimensional scaling (MDS), that is, it is 
a form of proximity analysis. CA is most frequently applied to rectan-
gular tables of frequencies, also known as cross tables or contingency 
tables, although applications to binary incidence or presence-absence 
matrices are also quite common.

The most often used statistical technique for analyzing cross tables 
computes and tests some measure of independence or homogeneity, such 
as chi-square. In the analysis of independence we investigate whether 
the body of the table is the product of the marginals. Or, if one prefers 
an asymmetric formulation, if the rows of the table differ only because 
they have different row totals (and the columns only differ because they 
have different column totals).

Pearson’s chi-square and related measures quantify how differ-
ent an observed table is from an expected table, based on the row and 
column totals. Pearson residuals are used to investigate deviations 
from independence. CA supplements this classical chi-square analysis 
because it makes both a decomposition and a graphical representation of 
the deviations from independence.
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History
CA has a complicated history, both in statistics and in archaeology. 
The prehistory of CA, starting with work by Pearson around 1900 and 
ending with the reinvention of the technique by Fisher and Guttman 
around 1940, is discussed in de Leeuw 1983. The technique has been 
re-reinvented under many different names, in many different countries, 
and in many scientific disciplines. New reincarnations still continue 
to appear, although at a slower pace than before, in the data mining 
and data analysis literature. Beh 2004 is a recent comprehensive biblio-
graphic review.

The history of CA in archaeology is discussed by Baxter (1994:133–
39). Although the literature contains some earlier applications of CA 
to archaeological examples, the credit for the introduction of the tech-
nique to archaeologists usually goes to Bølviken and others (1982). Early 
applications almost without exception came from archaeologists in 
Continental Europe, under the influence, no doubt, of the French anal-
yse des données school and the leadership of Benzécri (1973a, 1973b). A 
good overview of these various Continental archaeological applications 
of CA is found in, for example, Müller and Zimmerman 1997.

It is clear from Baxter’s discussion that archaeologists in Continen-
tal Europe were ahead of archaeologists in Great Britain, who came on 
board around 1990. Orton (1999:32), one of the deans of quantitative 
archaeology in Britain, argues that CA was the most important tech-
nique introduced into archaeology in the 1980s. From Britain archaeo-
logical CA migrated to the United States, where it arrived shortly before 
2000. Duff (1996:90) indicates in an influential article from the mid-
1990s that CA was “not well established in Americanist literature.” And 
very recently, Smith and Neiman (2007:55) have concurred: “CA has a 
long history of use by archeologists in continental Europe but its use by 
Americanist archeologists is both more recent and rare.”

There are several possible reasons why CA did not rapidly become 
popular in archaeology in Britain and the United States. Most impor-
tantly, perhaps, archaeological methodologists tend to look to statis-
ticians for guidance, and in statistics CA was not really known until 
about 1980, despite the work of Hill (1974). Except in France, of course, 
but French statistics was relatively isolated from that of the main-
stream. The dominant multivariate techniques applied in archaeology 
were MDS and PCA (sometimes in the disguise of factor analysis). The 
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most influential work in the area in the seventies was Hodson et al. 1971, 
which concentrated on the MDS techniques of Boneva, Kendall, and 
Kruskal. These are all forms of proximity analysis, but they differ from 
CA in various ways.

In a pioneering article, LeBlanc (1975:22) predicted, “Proximity 
analysis seems to hold a great deal of promise and will in all probability 
supplant all other seriation methods.” If we interpret this prediction 
narrowly, in terms of the methods that were available in 1975, it turned 
out to be incorrect, for reasons that are quite obvious in hindsight. 
Data, in archaeology and elsewhere, come in many different forms. 
Sometimes we deal with cross tables, sometimes with incidence matri-
ces, and sometimes with multivariate data that describe archaeological 
objects in terms of a number of qualitative or quantitative variables. 
There is no reason to expect that a technique designed for one particu-
lar type of data will also work, or even be appropriate, for another type 
of data. A data analysis technique must obviously take the nature of the 
data into account, and forcing all data into a common “proximity” for-
mat may not be an optimal strategy. But the basic advantages of prox-
imity analysis mentioned by LeBlanc (1975:22) are still very much on 
target: “In the past, the basic goal of seriation has been to order a series 
of cultural units on the basis of an assumed single underlying variable, 
usually time. It is now possible to seriate units according to two or more 
variables by using a form of proximity analysis or MDS. This increases 
the power of seriation greatly, and among other advantages, it gives a 
much better idea of the fit of data to one variable (e.g. time alone) than 
have previous methods.”

Because CA was rediscovered and reintroduced in different coun-
tries at different times, most authors in the field of archaeology feel 
obliged to give some sort of introduction to the technique, even in such 
recent articles such as Poblome and Groenen 2003 and Smith and Nei-
man 2007. Our discussion of CA differs in some respects from the ones 
traditionally encountered in archaeology. In other respects it is quite 
standard. First, and this is actually quite common, we do not present 
the technique exclusively as a seriation method. Archaeological sites 
may be similar or dissimilar for many different reasons, and, to quote 
Kruskal (1971), “time is not the only dimension.” Most CA plots are, 
of course, two-dimensional maps in the plane, which already suggests 
that more than one dimension may be relevant. Second, we discuss CA 
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both as an exploratory technique and as a method of fitting a particular 
statistical model. And finally, we relate the least squares fitting of the 
CA model to the maximum likelihood fitting of the exponential dis-
tance model (EDM). EDM can be considered to be an alternative, and 
closely related, form of correspondence analysis.

Types and Attributes
LeBlanc (1975) compares type seriation and attribute seriation (see also 
Duff 1996). We can discuss this comparison by distinguishing the dif-
ferent types of data that CA can be applied to. In a CA context, attri-
bute seriation corresponds to multiple correspondence analysis (MCA), 
which is treated in Gifi 1990:chap. 3, and type seriation corresponds 
to simple CA, treated in Gifi 1990:chap. 8. Or, to translate this into 
software, attribute seriation corresponds with the R package homals 
(de Leeuw and Mair 2009a), while type seriation corresponds with the 
package anacor (de Leeuw and Mair 2009b).

LeBlanc (1975:24) carefully distinguishes the terms attribute, type, 
variable, and dimension. Actually, he uses variable and dimension 
interchangeably, but dimension is probably best reserved for the axes 
in multidimensional representations of data. A “variable” is then a for-
mally defined aspect of the group of objects in the study. Each variable 
is measured in terms of a scale, and the mutually exclusive character-
istics of the scale are called “attributes.” In the book by Gifi (1990), a 
variable is defined similarly as a mapping of the objects in a study into 
the categories of a variable. Defining a number of variables on a set of 
objects creates, in the terminology of the R software system (R Develop-
ment Core Team 2007), a “data frame.” More specific to archaeology is 
the notion of a “type,” which Leblanc (1975:24) defines as “the existence 
of a non-random association between the attributes of two or more 
dimensions.” Thus, types are aggregations of attributes over different 
variables, and consequently, they can be counted more easily and are 
more susceptible to be treated with frequency-based techniques.

This discussion also makes it possible to compare CA with MDS 
and PCA. In MDS the first step is usually to derive some symmetric 
matrix of similarities between the sites, assemblages, proveniences, or 
cultural units. Similarities can be defined in many ways, and often the 
choice of a particular similarity measure is somewhat arbitrary. More-
over, instead of computing similarities between sites, we could also 
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decide to compute similarities between the variables describing the 
artifacts found in sites. A commonly used similarity measure between 
variables is the correlation coefficient. However, it is unclear how the 
MDS analysis of the sites and the MDS analysis of the variables are 
related. In PCA we usually start with a correlation matrix between vari-
ables and then derive component loadings to describe the variables and 
component scores to describe the sites. This means PCA can be used to 
make a joint plot, also known as a biplot (Gower and Hand 1996). Bip-
lots are compelling ways to visualize multidimensional information, 
and as such they go beyond simple seriation.

One oft-mentioned disadvantage of PCA is that it assumes linear 
relations between the variables. This disadvantage, however, no longer 
applies to modern nonlinear versions of PCA, such as those reviewed in 
de Leeuw 2006. Moreover, nonlinear PCA and MCA are closely related, 
so closely, in fact, that nonlinear PCA can be carried out with the MCA 
package homals (de Leeuw and Mair 2009a).

The CA framework of Gifi 1990 gives one single class of techniques 
to analyze attribute matrices of artifacts by variables, frequency matri-
ces of types by sites, and incidence matrices of types by sites. It is basi-
cally, to use a term from Benzécri’s analyse des sonnées, all a matter of 
“codage.” One can code both types and sites as attributes of artifacts, 
and then the type by site frequency table is just the bivariate cross table 
of those two variables.

One important advantage of CA and MCA over MDS and PCA is 
that they stay as close as possible to the original data, no matter if the 
data are frequencies or incidences or variables with attributes. There is 
no need to first choose a measure of similarity or correlation, and there 
is no need to aggregate data into correlation or product matrices. It is 
true that CA can be presented in terms of a particular measure of dis-
similarity, the chi-square distance, and we will give such a presentation 
in this chapter. But it is only one interpretation of the technique, and 
the chi-square distances have close connections with the familiar chi-
squares that can be computed from the frequencies.

Typical Archaeological Applications
We will discuss some of the typical applications of CA to archaeology 
in more detail to illustrate where the technique may be appropriate and 
what archaeologists look at.
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Bølviken et al. 1982 uses three data sets from the Stone Age in north-
ern Norway. The first one, from Iversfjord, uses thirty-seven lithic types 
found in fourteen house site assemblages. Because of interpretational 
difficulties the analysis was repeated after grouping the thirty-seven 
types into nine tool categories. The joint plot in two dimensions of the 
house sites and tool categories is interpreted in terms of economic orien-
tation and settlement permanence. The second example is from the Early 
Stone Age in the Varanger Fjord area—data counts frequencies of sixteen 
functional tool types in forty-three sites. Two-dimensional plots give a 
refinement interpreted in terms of earlier qualitative archaeological 
hypotheses. The analysis was repeated after the tools were grouped into 
seven classes, which yielded less informative results. In the third example 
CA was used to establish a chronology. Data came from a farm mount on 
the island of Helgøy in Troms. Nineteen classes of artifacts were distrib-
uted over fifteen excavation layers, carbon dated from the fourteenth to 
the nineteenth centuries AD. The analysis shows the layers mapped on a 
two-dimensional, or arch, curve. Projections on the curve can be used to 
reorder the rows and columns of the data matrix, producing a seriation 
closely corresponding with the one based on carbon dating.

The article by Duff (1996) on micro-seriation compares attribute 
and type seriation, following LeBlanc (1975). But whereas LeBlanc used 
multidimensional scaling for the type seriation, Duff used CA. The data 
are counts of six ceramic types from forty proveniences in Pueblo de 
las Muertas, in the Zuni (Cíbola) region of New Mexico, from the thir-
teenth to the fourteenth century AD. The two-dimensional CA solution 
exhibits a weak arch, with lots of scatter around it, but produces essen-
tially the same ordering of the units as the MDS analysis of Leblanc.

Early on, Clouse (1999) applied CA to Americanist materials and 
used it to analyze artifacts found in excavations at the military settle-
ment in Fort Snelling, Minnesota. Sites include eight defense buildings, 
eleven support buildings, and eight habitation buildings. At all sites arti-
facts were counted and classified into fourteen groups, such as culinary, 
armament, commerce, and furniture. Separate abundance matrices are 
given for defense, support, and habitation buildings, and separate CAs 
are computed. Both joint plots, showing units and artifact groups in two 
dimensions, and unit plots, which only show the units, are presented. 
Groupings of the units conform to what is expected on the basis of 
the military site model but provide more detailed information. Clouse 
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(1999:105) argues that CA makes expected and unusual features more 
clearly visible than the numerical summary given by the table.

The excellent paper by Smith and Neiman (2007) aims to compare 
frequency seriation, in the tradition of Ford (1952), with CA. They use 
two cases studies. The first case study is from the Gulf Coast area, near 
the Chattahoochee and Apalachicola Rivers in Alabama, Georgia, and 
Florida. Data are from the Middle and Late Woodland periods (100 BC 
to AD 900). Ceramic data were collected at many sites, of which twenty-
nine were selected because they had more than eighty painted sherds. 
The twenty-nine sites were subdivided into eighty-four assemblages, 
and the sherds were classified into eighteen pottery types. Obviously, the 
way in which artifacts and proveniences are grouped into the rows and 
columns of the table is important for the eventual outcome of the tech-
nique, and the CA of the eighty-four assemblages shows a very clear arch 
pattern, with a clear grouping of sites along the curve. “The CA results 
confirm what the clean seriation solution suggests: there is no significant 
source of variation in type frequencies other than time” (Smith and Nei-
man 2007:61). The analysis was repeated after removing some of the later 
assemblages. This smaller CA was validated (as a seriation method) by 
plotting CA scores against radiocarbon dates for selected sites.

The second case study in the Smith and Neiman article is from 
Kolomoki, a well-researched multimound site in southwestern Georgia, 
and is an intrasite analysis, not an analysis with multiple sites. The CA 
uses twenty assemblages and nine pottery types. Separate two-dimen-
sional plots for assemblages and types show no arch, but a significant 
and interpretable second dimension. The CA solution shows effects, for 
example spatial ones, not detectable by the inherently one-dimensional 
frequency seriation. The first CA dimension is again validated as time, 
using radiocarbon data. We will use the same Kolomoki data set as one 
of our illustrative examples in this chapter.

Seriation
There is an interesting parallel historical development of what could 
broadly be called “seriation methods” in psychometrics, ecology, and 
archaeology. The main steps in this development occured in the same 
order in each field but at different moments in time, not unlike archaeo-
logical artifacts in different sites. Let us look at psychometrics first.
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Psychometrics
In the 1940s at the war department, Guttman (1944) discovered scalo-
gram analysis, a method to simultaneously order attitude or achieve-
ment items (columns) and respondents (rows) with data in a binary data 
matrix. Initially scales were constructed by trial-and-error methods, in 
which row and columns of the binary data matrix were permuted to 
create the “consecutive ones” property. Normally, we look to order rows 
and columns in such a way that all ones are next to each other. This 
result was achieved manually with various ingenious devices. At the 
same time, the theory for principal components–based computations 
was already available (Guttman 1941, 1950). In fact, Guttman’s (1941) 
paper was the very first to rigorously define MCA, and he proves that 
the first MCA dimension provides the consecutive-one ordering for 
error-free data (1950). The monumental book by Coombs (1964) gives 
a systematic presentation of these heuristic pencil-and-paper tech-
niques applied to the various data matrices in proximity analysis. And 
although Coombs’s conceptual framework is still relevant, the tech-
niques had already been superseded by computerized methods at the 
time the book appeared.

Archaeology
Guttman’s methods were published around 1950, almost simultaneously 
with Robinson 1951. To discuss this work, we borrow some terminol-
ogy from Kendall 1969. An incidence matrix of, say, sites by types is a 
Petrie matrix or P-matrix if in each column all ones occur consecutively. 
A non-negative symmetric matrix is a Robinson matrix or R-matrix if 
rows and columns are unimodal and attain their maximal values on the 
diagonal. By unimodal we mean that entries increase to a maximum and 
then decrease again. Similarities between sites whose incidence matrix 
is a P-matrix often form an R-matrix. Again, there is an interesting con-
nection with psychometrics here. In the original definition of the Spear-
man model for general intelligence, dating back to 1904, a battery of 
tests satisfied the model if their correlation matrix was an R-matrix.

The notion of a P-matrix can be generalized to abundance matri-
ces, that is, to any matrix with non-negative entries. An abundance 
matrix is a Q-matrix if its columns are unimodal. That is the same as 
saying that the columns of the abundance matrix can be represented as 
a series of battleship plots, as defined in Ford 1952 or Smith and Neiman 
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2007. Many of the original archaeological seriation techniques take an 
incidence or abundance matrix and permute the sites in such a way 
that that it becomes a P-matrix or a Q-matrix. The permutation that is 
found then orders the sites in time, that is, it is a seriation. Ultimately, 
however, finding optimal permutations, especially for large matrices, is 
what is known in computer science as NP-hard, which basically means 
that the optimization problem, although finite, cannot be solved in a 
practical amount of time, even by the fastest computers (Arlif 1995).

One way around the impractical computations involved with per-
mutations is to use other related definitions of optimality. As we noted, 
Guttman already proved in 1950 that CA can be used to find the opti-
mal permutation to a P-matrix in the error-free case (for abundance 
matrices, see also Gifi 1990:chap. 9 or Schriever 1983). In fact, these pub-
lications prove more. They also show that in the error-free case, the sec-
ond dimension of the CA will be a quadratic function of the first—that 
plotting the sites in the plane will show a quadratic curve.

Kendall (1971) and others later developed the well-known HORSHU 
program, which applies MDS to similarities derived from abundance 
matrices and then derives the order from the projection of the sites on 
the horseshoe or arch. “We view the arch as a relatively benign indicator 
that the underlying data do, in fact, contain battleship-shaped curves,” 
write Smith and Neiman (2007:60).

Ecology
In ecology the key concept is that of a “gradient.” The emphasis in the 
data analysis is not on time, as in archaeology, but on environmen-
tal characteristics. What is called “seriation” in archaeology is called 
“ordination” in ecology (Gauch 1982). Plant and animal species do 
well under certain circumstances and do best at some optimum level 
of, for example, humidity or altitude. Different species need different 
altitudes and/or different degrees of humidity. The major advantage of 
ecology, of course, is that environmental gradients such as altitude can 
be directly measured, unlike in psychometrics, where aptitude and atti-
tude are theoretical constructs, and archaeology, where direct informa-
tion about the origin in time of an artifact is usually missing. Ecologists 
use direct gradient analysis and plot frequencies of species as a function 
of the gradient. In many cases the result is unimodal distributions, that 
is, the abundance matrix is a Q-matrix.
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Initially, as in psychometrics and archaeology, ordination tech-
niques in ecology required pencil-and-paper methods to reorder the 
rows and columns of the abundance matrix or of derived similarity 
matrices with a Robinson structure (Whittaker 1978). These methods 
changed with the advent of the computer, and, like archaeologists and 
psychometricians, ecologists turned to PCA and MDS for ordination 
and to a host of measures of resemblance or similarity.

CA was introduced in ecology by Hill (1974) as “reciprocal aver-
aging.” Ter Braak (1985) showed how CA was related to the unimodal 
response model without going into precise mathematical detail. Ecolo-
gists initially were worried about the arch because they considered it 
an artifact without any empirical significance. We now know more 
precisely where the arched structures come from, and we know that 
they indicate strong unidimensional effects (see in particular Schriever 
1985 or Van Rijckevorsel 1987). We consequently tend to be pleased if we 
see a clear arch, especially in archaeology, where we have more reason 
perhaps to expect unidimensionality. (We will discuss the relationship 
between unimodal response models, in particular the Gaussian model 
of Ihm and Van Groenewoud [1975], in more detail when we discuss the 
exponential distance model.)

Abundance Matrices
We now formalize some of the concepts we mentioned in the introduc-
tion. Consider an r × c table N with counts. Rows correspond with r 
sites, columns with c types. Frequency indicates how often type j was 
found in site i. Such a matrix with counts N is called an abundance 
matrix. We also define the row sums and column sums of the table. The 
grand total is the sum of all the counts in the table, which we will also 
abbreviate simply as n.

It should perhaps be mentioned that presence-absence matrices or 
incidence matrices are a special case of abundance matrices in which all 
entries of the table are either zero or one. An entry merely indicates if 
a type is present in a site or not, which means our discussion of abun-
dance matrices also covers presence-absence matrices.

A more general type of data matrix is also quite common in archae-
ology. Suppose the observation unit is an artifact such as a pottery sherd, 
a piece of obsidian, or maybe a fish bone. The units can be described in 
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terms of a number of variables that can be either qualitative (categori-
cal) or quantitative (numerical). The abundance matrix is a very special 
case in which only two categorical variables are used to describe the 
units, namely site and type.

The abundance data N can be coded as an n × 2 matrix, where n is 
the grand total of the table, the first column is site, and the second is 
type. The table N is then the cross table, or the contingency table, of the 
two variables. But clearly, in a more general case, variables such as size, 
color, weight, or composition could be used as well. For these more gen-
eral multivariate data we need a technique such as MCA, also known as 
homogeneity analysis (Gifi 1990; Greenacre and Blasius 2006). Since the 
data analyzed in this book are all of the simpler bivariate contingency 
table format, we shall not discuss MCA any further. As we mentioned 
in the introduction, MCA is the perfect technique for attribute-based 
seriation in the sense of LeBlanc 1975, in which data are not aggregated 
to types and assemblages or to counts in a cross table.

Examples
Throughout the chapter we shall use two examples to illustrate the con-
cepts of CA. The first example of an abundance matrix comes from a 
much larger matrix of sherd counts for sites by pottery types. All sam-
ples are from surface collections made around 1940 in Jalisco, Mexico, 
by Kelly (1945).

This example is not a realistic application of CA because it is too 
small and too simple. The results of CA do not really add anything to 
what we can easily see by just looking at the table, but this very fact 
makes the example useful as an illustration of the basic concepts and 
calculations (table 2-1).

The second example is pottery data from the Kolomoki burial 
mounts in Georgia (Pluckhahn 2003; Sears 1956), analyzed previously 
with CA by Smith and Neiman (2007). We have already discussed these 
data in the introduction; they include twenty assemblages and nine 
pottery types.

Associated Matrices
With the abundance matrix we can associate several other matrices. 
First is the matrix P of proportions, whose elements are defined by

Nance_txt.indd   73 8/19/13   11:54 AM



Chapter two  /  74

pij =
nij
n··

.

The matrix with proportions shows more clearly how the counts are 
distributed over the cells. Again, the row marginals are pi *, and the 
column marginals are p* j (table 2-2).

Independence
We say that the row variable (site) and the column variable (type) are 
independent if pij = pi * p* j . Independence can be interpreted to mean 
that the body of the table does not give additional information, that 
in fact all the information is contained in the marginals. If we know 
the relative frequencies of the sites and the types, then we can predict 
perfectly how many of each type will be in each site.

We measure independence by what is called inertia in CA, borrow-
ing a term from physics, and define the table Z of Pearson residuals with

Table 2-1: Abundance matrix from Kelly data

Type
Site AutPol MiReBr AuWhRe AltRed

21 8 14 0 0 22
34 19 35 0 0 54
23 138 6 0 1 145
37 299 11 0 2 312
9 102 12 22 271 407
7 34 14 59 246 520

600 92 81 520 1293

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for Autlan 

Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan 
White on Red, and AltRed for Altillos Red Ware. Site 21 (Cofradía No. 1) and Site 34 
(Hacienda Nueva) are included in the Cofradía Complex (early); Site 23 (Cofradía 

No. 3) and Site 37 (Amilpa) are included in the Mylpa Complex (intermediate); and 
Site 9 (Altillos) and Site 7 (Mezquitlan) are included in the Autlan Complex (late). 

Nance_txt.indd   74 8/19/13   11:54 AM



Jan de Leeuw  /  75

zij =
pij - pi·p·j

pi·p·j

.

The elements of Z show the deviation between the observed propor-
tion and the expected proportion on the hypothesis of independence 
(corrected for the standard error of the proportion). Positive elements 
indicate that we see more in the corresponding cell than we expect, and 
negative elements mean that we see less. The inertia is defined simply as

X 2 =
i=1

r

å
j=1

c

å zij
2.

In the Kelly (1945) example the inertia is 0.9338, and the Pearson residu-
als are shown in table 2-3.

Table 2-2: Proportions matrix from Kelly data

Type
Site AutPol MiReBr AuWhRe AltRed

21 0.006 0.011 0.000 0.000 0.017
34 0.015 0.027 0.000 0.000 0.041
23 0.107 0.005 0.000 0.001 0.112
37 0.231 0.009 0.000 0.002 0.241
9 0.079 0.009 0.017 0.210 0.315
7 0.026 0.011 0.046 0.190 0.273

0.464 0.071 0.063 0.402 1.000

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for Autlan 

Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan 
White on Red, and AltRed for Altillos Red Ware. Site 21 (Cofradía No. 1) and Site 34 
(Hacienda Nueva) are included in the Cofradía Complex (early); Site 23 (Cofradía No. 
3) and Site 37 (Amilpa) are included in the Mylpa Complex (intermediate); and Site 9 

(Altillos) and Site 7 (Mezquitlan) are included in the Autlan Complex (late). 
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Table 2-3: Pearson residuals from Kelly data

Type
Site AutPol MiReBr AuWhRe AltRed
21 -0.02 +0.28 -0.03 -0.08
34 -0.03 +0.44 -0.05 -0.13
23 +0.24 -0.04 -0.08 -0.21
37 +0.35 -0.07 -0.12 -0.31
9 -0.18 -0.09 -0.02 +0.23
7 -0.28 -0.06 +0.22 +0.24

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for 
Autlan Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, 

AuWhRe for Autlan White on Red, and AltRed for Altillos Red Ware. 
Site 21 (Cofradía No. 1) and Site 34 (Hacienda Nueva) are included in the 
Cofradía Complex (early); Site 23 (Cofradía No. 3) and Site 37 (Amilpa) 
are included in the Mylpa Complex (intermediate); and Site 9 (Altillos) 

and Site 7 (Mezquitlan) are included in the Autlan Complex (late). 

Table 2-4: Z-scores from Kelly data

Type
Site AutPol MiReBr AuWhRe AltRed
21 -0.69 +9.94 -1.17 -2.97
34 -1.21 +15.90 -1.83 -4.66
23 +8.62 -1.34 -3.01 -7.50
37 +12.81 -2.38 -4.42 -11.02
9 -6.32 -3.15 -0.69 +8.39
7 -10.14 -2.22 +7.84 +8.73

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for Autlan 

Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan 
White on Red, and AltRed for Altillos Red Ware. Site 21 (Cofradía No. 1) and 
Site 34 (Hacienda Nueva) are included in the Cofradía Complex (early); Site 
23 (Cofradía No. 3) and Site 37 (Amilpa) are included in the Mylpa Complex 

(intermediate); and Site 9 (Altillos) and Site 7 (Mezquitlan) are included in the 
Autlan Complex (late). 
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If the data are a random sample, and if types and sites are inde-
pendent, then X 2  is distributed as a chi-square random variable with 
(r - 1)(c - 1) = 15 degrees of freedom. In our example, X 2  equals 1207.508. 
Moreover, each zij  is approximately standard normal; that is, it is what 
is commonly known as a z-score, and it can be tested for significance in 
the usual way. The z-scores are listed in table 2-4.

In the Kelly example the total inertia is clearly far too big, the 
z-scores are mostly hugely significant, and the two variables site and type 
are very far from being independent. Of course, in most archaeological 
applications data are very far from being a random sample because we 
generally enumerate and classify all the artifacts found in the site. Nev-
ertheless, we can still take inertia as a guideline to indicate how much 
structure there is in the data or, more precisely, how much structure 
there is in the data that cannot be predicted from the marginals.

Conditioning on Rows and Columns
In archaeological studies the hypothesis of independence is not the 
most natural way to look at abundance matrices. Independence is the 
appropriate concept if the contingency table results from a random 
sample from a discrete bivariate distribution, that is, if we sample both 
sites and types. Usually, however, sites are not sampled. They are fixed 
either by design or by geographical circumstances.

What really interests us is a comparison of the distribution of types 
in the different sites that we have selected. Thus, we are mainly inter-
ested in comparing the rows of the abundance matrix because each 
row defines a distribution over types. Fortunately, the hypothesis of 
homogeneity of rows is mathematically equivalent to the hypothesis of 
independence. We can most easily see this equivalence by normalizing 
the rows—dividing each row by its row sum.

To keep our treatment symmetrical, we also consider the case (less 
common in archaeology) in which it may be interesting or appropriate 
to also compare the columns. Using the row and column sums, we can 
normalize the frequency table (or, equivalently, the table with propor-
tions) by dividing the entries of the table by their row or column mar-
ginals. This process defines two new tables, the first one conditioned by 
rows, the second conditioned by columns. The elements are defined by
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pj |i =
nij
ni·

=
pij
pi·

,

pi| j =
nij
n·j

=
pij
p·j

.

The hypothesis of independence can now be written in the two 
equivalent forms

pj |i = p·j,
pi| j = pi*,

which we can call homogeneity of rows and homogeneity of columns. 
Homogeneity of rows says that the probability distribution of types is 
the same for all sites. Homogeneity of columns says that the probability 
distribution of sites is the same for all types, which in our context seems 
a less natural way of expressing the same basic mathematical fact.

Table 2-5 shows the distribution of types over each of the sites and 
within the last row the distribution of types over all sites, that is, the 
p* j . We have homogeneity if and only if all rows of the table, including 

the last row, are the same. Table 2-6 shows the distribution of sites over 
each of the types and within the last column the distribution of sites 
over all types, that is, the pi* . We have homogeneity if and only if all 
columns of the table, including the last column, are the same.

We can define appropriate measures of homogeneity of the rows 
and columns. These are again called inertias in CA, and one inertia 
exists for each row and each column. They are defined by

Xi*
2 =

j=1

c

å
(pj |i - p* j )

2

p* j

.

X* j
2 =

i=1

r

å
(pi| j - pi*)2

pi*
.

Rows with a large inertia differ from the average row, that is, the 

and

and

and
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vector of column marginal proportions. And columns with a large 
inertia differ from the average column.

Previously, we have defined the total inertia. Because of the simple 
relationship

X 2
=

i=1

r

å
j=1

c

å
(pij - pi·p·j )

2

pi·p·j

== pi*Xi*
2

i=1

r

å = p* j
j=!

c

å X* j
2 .

the total inertia is the weighted sum of the row and column inertias.
Under the hypothesis of random sampling from sites and homoge-

neity of rows, the nXi*
2  are distributed as chi-squares with c - 1 degrees 

of freedom. If we have random sampling and homogeneity of columns, 
the nX* j

2  are distributed as chi-squares with r - 1 degrees of freedom.

Table 2-5: Conditioning on the rows in Kelly data

Type
Site AutPol MiReBr AuWhRe AltRed
21 0.36 0.64 0.00 0.00 4.98
34 0.35 0.65 0.00 0.00 0.04
23 0.95 0.04 0.00 0.01 0.11
37 0.96 0.03 0.00 0.01 0.24
9 0.25 0.03 0.05 0.52 0.31
7 0.10 0.04 0.17 0.47 0.27

0.46 0.07 0.06 0.40 0.93

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for Autlan Polychrome, 
MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan White on Red, and 
AltRed for Altillos Red Ware. Site 21 (Cofradía No. 1) and Site 34 (Hacienda Nueva) are 

included in the Cofradía Complex (early); Site 23 (Cofradía No. 3) and Site 37 (Amilpa) are 
included in the Mylpa Complex (intermediate); and Site 9 (Altillos) and Site 7 (Mezquitlan) 

are included in the Autlan Complex (late). 
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Exploratory Correspondence Analysis
The basic purpose of exploratory CA is to make a map of the types and 
a map of the sites. By a “map” we mean a low-dimensional geometric 
representation. If we choose dimensionality equal to two, for instance, 
a map of the types consists of c points in the plane, with one point cor-
responding to each type. If we choose dimensionality three, then a map 
of the sites consists of r points in three-dimensional space. Sometimes 
even a one-dimensional map, which puts all sites on a straight line, is 
already enough to present the essential information in the table.

The location of the points in the map is not arbitrary, of course. If 
we make a two-dimensional map of the types, for example, we want the 
distances between the c points in the plane to be approximately equal to 
the distances between the c columns of the abundance matrix N. And 
similarly for the map of the sites and the rows of N.

Distance on the map is defined in the usual way, “as the crow flies.” 
In other words, it is ordinary Euclidean distance. But distance between 

Table 2-6: Conditioning on the columns in Kelly data
Type

Site AutPol MiReBr AuWhRe AltRed
21 0.01 0.15 0.00 0.00 0.02
34 0.03 0.38 0.00 0.00 0.04
23 0.23 0.07 0.00 0.00 0.11
37 0.50 0.12 0.00 0.00 0.24
9 0.17 0.13 0.27 0.52 0.31
7 0.06 0.15 0.73 0.47 0.27

0.64 4.06 1.18 0.68 0.93

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column headers, are AutPol for Autlan 

Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan 
White on Red, and AltRed for Altillos Red Ware. Site 21 (Cofradía No. 1) and Site 34 
(Hacienda Nueva) are included in the Cofradía Complex (early); Site 23 (Cofradía No. 
3) and Site 37 (Amilpa) are included in the Mylpa Complex (intermediate); and Site 9 

(Altillos) and Site 7 (Mezquitlan) are included in the Autlan Complex (late). 
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columns of the abundance matrix depends on weights that take into 
account the statistical stability of the cell counts. Specifically, in CA we 
use chi-square distances (Gifi 1990; in de Leeuw and Mair 2009a we use 
Benzécri distances instead). The squared chi-square distance between 
row i and row k of table N is given by

dik
2 =

j=1

m

å
(pj|i - pj |k )2

p·j

,

and the squared chi-square distance between column j and column l of 
table N is

djl
2 =

i=1

n

å
(pi| j - pi|l )

2

pi·
.

We give the squared chi-square distances for the rows and columns 
in the Kelly example in tables 2-7 and 2-8.

If we look more closely at table 2-7 we can already predict what CA 
will do. If we want a geometric representation in which the distances 
approximate the chi-square distances, then it is pretty clear how such 
a representation would look. The chi-square distances between sites 21 
and 34 and between sites 23 and 37 are almost zero. Thus, in a map 
sites 21 and 34 will coincide, and sites 23 and 37 will also coincide. Sites 
9 and 7 are close as well, and 21/34 is about equally distant from the 
two groups 7/9 and 23/37. A two-dimensional map will thus look like 
an isosceles triangle with the three groups of sites at the edges. The 
shorter side is somewhere around 2  or 3 , and the two longer sides 
are around 6 . We also see that it will in general be impossible to 
map the distance information on a straight line because in that case we 
would have to let 7/9 coincide with 23/37. In this small example we can 
easily see what a map would look like, but in a larger example, such as 
the Kolomoki one, this map becomes much more complicated. That is 
why we have CA, which approximates the chi-square distances to the 
Euclidean distances in a precise way on the map.

In CA we approximate chi-square distances from below. Let me 
explain this concept. In any CA map of the sites, for instance, we will 

,
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always have dik £dik , where dik  is Euclidean distance between points 
i and k on the map. More precisely, CA constructs a sequence of maps: 
the first one has only one dimension, the second has two, and so on. 
The final map has t = min (r - 1, c - 1) dimensions, that is, three in the 
Kelly example and eight in the Kolomoki example. The maps are nested 
in the sense that the projection on the first dimension of all the maps is 
identical to the one-dimensional map, the projection on the plane of the 

Table 2-7: Squared Benzécri distances, rows (sites)

21 34 23 37 9 7
21 0.000
34 0.002 0.000
23 5.721 5.950 0.000
37 5.841 6.072 0.001 0.000
9 6.353 6.550 2.188 2.208 0.000
7 6.812 6.999 3.207 3.233 0.259 0.000

Source: Data come from Kelly 1945.
Note: Site 21 (Cofradía No. 1) and Site 34 (Hacienda Nueva) are included in the Cofradía 
Complex (early); Site 23 (Cofradía No. 3) and Site 37 (Amilpa) are included in the Mylpa 
Complex (intermediate); and Site 9 (Altillos) and Site 7 (Mezquitlan) are included in the 

Autlan Complex (late). 

Table 2-8: Squared Benzécri distances, columns (types)

AutPol MiReBr AuWhRe AltRed
AutPol 0.000
MiReBr 4.921 0.000

AuWhRe 3.221 6.203 0.000
AltRed 2.539 5.780 0.436 0.000

Source: Data come from Kelly 1945.
Note: The codes for the types, used as column and row headers, are AutPol for Autlan 

Polychrome, MiReBr for Miscellaneous Red on Brown/Buff, AuWhRe for Autlan White on 
Red, and AltRed for Altillos Red Ware. 
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first two dimensions of all maps with at least two dimensions is equal 
to the two-dimensional map, and so on. If 

· 

dik
(s)

 represents the distances 
on the s-dimensional map, with 1 ≤ s ≤t, then

dik
(1) £dik

(2) £... £dik
(t) =dik.

Thus, the t-dimensional map has distances exactly equal to the chi-
square distances. Maps in fewer dimensions approximate the distances, 
and the approximation becomes better for each of the distances when 
the dimensionality increases. Approximation is from below because map 
distances are always smaller than chi-square distances, no matter what 
the dimensionality of the map is. Of course the same reasoning applies 
to chi-square distances between columns and the CA map for types.

The map does not only approximate chi-square distances between 
sites or types, it also approximates the inertias of the sites and the types. 
In the sites map, for instance, the inertia is approximated (from below, 
as usual) by the distance of the site to the origin of the map. Or, equiv-
alently, by the length of the vector corresponding with the site. This 
means that a site that differs little from the average site, and thus has a 
small inertia, will be close to the origin of the map. And sites that are 
different from the others will be tend to be in the periphery of the map. 
As a consequence, the center of the map, the area near the origin, can 
quite easily be cluttered with sites that are similar to the average site.

A CA program (we use anacor by de Leeuw and Mair [2009b]) 
typically takes the abundance matrix and the desired dimensionality 
of the map as its arguments. It then outputs coordinates for the maps 
of the row objects (sites) and the column objects (types). In addition it 
can provide a variety of plots, and it provides a decomposition of the 
inertia. This type of decomposition is familiar from PCA. Consider the 
weighted squared length of the projections of the site points on the first 
dimension, on the second dimension, and so on. This decomposes the 
total inertia of the vectors into a component due to the first dimension, 
the second dimension, and so on. By dividing the components by the 
total, we can say that a certain percentage of the inertia is “explained” by 
the first dimension, another smaller percentage by the second dimen-
sion, and so on. Ultimately, there are t = min (r - 1, c - 1) dimensions, 
and each of them takes care of a certain decreasing percentage of the 
total inertia.
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CA can also make joint maps or biplots in which we basically take 
the site plot and the type plot and put them on top of each other. We 
then have a plot in which types will tend to be close to sites in which 
they occur more frequently than one would expect on the basis of the 
marginals. We say “tend to” because there is no chi-square distance 
defined between a site and a type, and thus there is no approximation in 
some well-defined mathematical sense. The CA program anacor basi-
cally lets the user make four choices for the joint plot. The first one is to 
put the two Benzécri plots on top of each other. Distances between sites 
and distances between types approximate chi-square distances, but 
distances between sites and types have no simple relation to the data. 
The second option, which is called Goodman scaling in the program, 
is to adjust the length of the site and type vectors in such a way that 
their inner product approximates the Pearson residual. Unfortunately, 
this result invalidates the interpretation of site and type distances as 
approximations of chi-square distances. The last two options use the 
centroid principle. We can take the Benzécri map for the sites and 
then plot the types by taking weighted averages (centroids) of the sites 
using the frequencies of the types in those sites as weights. This process 
produces a joint plot in which site distances approximate chi-square 
distances. The locations of the types in the plot again only differ in vec-
tor length from the locations in the Benzécri type plot. Type distances 
cannot be interpreted as approximating chi-square distances between 
types anymore, but they do have a clear geometric interpretation as 
weighted averages of site points. By symmetry, there is a second cen-
troid principle in which we use the Benzécri type plot and then plot the 
sites as weighted averages of types.

The centroid principle can also be used to fit passive sites or types 
into the plots. Suppose an additional site, not used in the analysis, is 
excavated, and the objects are classified using the same typology as the 
one used in the analysis. The type scores from the analysis can be used 
to compute the score for this new additional site just by calculating the 
average CA score of the site on each of the dimensions. In the same way 
we could use the site scores to add additional types to the analysis, for 
example if we decided to split one original type into two new types. Of 
course, the alternative is to repeat the CA with the additional sites and 
types, which then would actively determine the overall CA solution.
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The Kelly Example
Let us illustrate exploratory CA with the small Kelly example. The two-
dimensional maps for sites and types from CA are shown in figure 2-1.

As expected, in the sites map we see the three clusters of points at 
the vertices of a triangle, and as we know, the one-dimensional map is 
simply the projection of all points on the horizontal axis.

In figure 2-2a we see the approximation of the chi-square distances 
between sites in one dimension and in Figure 2-2b in two dimensions. 
Chi-square distances are on the horizontal axis, Euclidean map dis-
tances on the vertical axis. Approximation from below means that all 
points are below the 45-degree line of perfect fit. But as we can see, fit in 
two dimensions is already almost perfect. In one dimension some of the 
larger chi-square distances, in particular those between 21/34 and 23/37 
are seriously underestimated.

We finally show the chi-square decomposition for the Kelly exam-
ple (table 2-9). Not surprisingly, the two first dimensions account for 
97 percent of the total inertia, and the third dimension is of very little 
importance.

The Kolomoki Example
We now apply CA to the Kolomoki data, our more realistic example. 
The chi-square decomposition is given in table 2-10. Two dimensions 
account for 80 percent of the inertia, three dimensions for almost 90 
percent. The CA maps for the types in two and three dimensions are 
given in figures 2-3 and 2-4. Again, the two-dimensional map is just 
the projection of the three-dimensional map onto the horizontal plane 
(except for a possible rotation). Note that the points in the two-dimen-
sional maps are the centers of ellipses of varying sizes. These ellipses 
represent 95 percent confidence regions for the points. Confidence 
region computations, which are shown in de Leeuw and Mair 2009b, 
are based on the assumption that the abundances are a large random 
sample from a population. As with chi-squares, this assumption may 
not be appropriate in archaeological examples, but also as with chi-
squares, the sizes of the ellipses do give a useful representation of vari-
ability. Without the random sampling assumption they measure how 
the location of the points in the plot changes with small perturbations 
of the data. We see larger ellipses for outlying points, which generally 
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(a) Sites

(b) Types

Figure 2-1. A two-dimensional CA map 
of the Kelly data.
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(a) One Dimension

(b) Two Dimensions

Table 2-9: Chi-square decomposition of Kelly data

% Cum %
1 787.9 0.65 0.65
2 390.0 0.32 0.97
3 29.6 0.03 1.00

Total 1207.5

Source: Data come from Kelly 1945.

Figure 2-2. An approximation of the Benzécri distances for the Kelly data.
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Figure 2-3. CA maps of the Kolomoki data.
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Figure 2-4. A three-dimensional map of the Kolomoki data.

correspond with smaller abundances, and we see examples of overlap-
ping ellipses for sites or types that cannot really be distinguished.

For the interpretation of the two-dimensional Kolomoki results, 
we refer to the experts Smith and Neiman (2007). The third dimension 
does not add much (only 9 percent of the total inertia), but it does allow 
us to better approximate some of the larger chi-square distances. In 
particular, the third dimension emphasizes the differences between the 
outliers T9 and T1/T18.

If we continue to add dimensions, we will probably see each new 
dimension take care of a group of the large chi-square distances, which 
are still seriously underestimated in three dimensions. See the Benzécri 
plots in figure 2-5.
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(a) Two Dimensions

(b) Three Dimensions
Figure 2-5. An approximation of the Benzécri distances for the Kolomoki data.
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Variations of Correspondence Analysis
Several variations of CA are also used. We have not applied them in 
our example, but we briefly mention them for completeness. One may 
wonder, for example, if approximation from below is such a good idea. 
It seems obvious that a better approximation of the chi-square dis-
tances is possible if we allow some of the map distances to overestimate 
and others to underestimate. This idea is exploited in de Leeuw and 
Meulman 1986. The idea, basically, is to compute chi-square distances 
first and then apply multidimensional scaling to these distances.

A second question is whether there are suitable alternatives to the 
chi-square distances. Remember that chi-square distances are used 
because we correct the proportions for their standard errors, on the 
assumption of independence. Chi-square distances have a natural 
connection to chi-square, to the weighted sum of squares, and thus 
to Euclidean distance. Alternative methods for weighting the propor-
tions are indeed possible, as in the spherical CA of Domingues and 
Volle (1980), but generally the connection with Euclidean geometry 
becomes less transparent.

And finally, we can get away from the interpretation of abundance 
matrices in terms of relative frequencies. Instead, we can think of them 

Table 2-10: Chi-square decomposition of Kolomoki data

% Cum %
1 1018.8 0.63 0.63
2 261.6 0.16 0.79
3 144.7 0.09 0.88
4 128.0 0.08 0.96
5 38.6 0.02 0.98
6 17.9 0.01 0.99
7 9.0 0.01 1.00
8 3.8 0.00 1.00

Total 1622.5

Source: Data come from Kelly 1945.
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as compositional data. Each row is a vector of proportions adding up to 
one, but the proportions may come from a chemical analysis of samples 
and may not come from counts. Compositional data are very common 
in chemometrics and the earth sciences and are also quite common in 
archaeology. Variations of principal component analysis for composi-
tional data similar to, but not identical with, CA are discussed in the 
monograph by Aitchison (2003).

Exponential Distance Models
In ecology (Ihm and Van Groenewoud 1975; Ter Braak 1985), and to 
some extent in archaeology, much attention has been paid to the Gauss-
ian ordination model (GOM). The model says that for site i and species 
j the expected value of the abundance is

E ( fij ) = a ib j exp(-1
2

xi - yj

sj

æ

è
çç

ö

ø
÷÷

2

).

Thus, sites and types can be scaled on a common one-dimensional 
scale. Abundance fij  is, except for the marginal row and column effects 
a i  and bj , related to the distance between the scale value of site i and 
the scale value of type j. More precisely, a type will be abundant in sites 
whose scale value is close to the type’s scale value, and it will be largest 
if type and site coincide on the scale. Rows of the abundance matrix will 
be unimodal: they have a single peak and then level off in both direc-
tions. Or, to use Kendall’s terminology, they are Q-matrices. Again, 
except for the marginal effects, the same thing is true for the columns. 
Thus, if the model fits we can reorder the sites and types in such a way 
that both rows and columns of the abundance matrix are unimodal.

The GOM can be generalized easily to more than one dimension.

E ( fij ) = a ib j exp(-1
2 s=1

p

å (xis - yjs )
2 ).

For obvious reasons we call this the exponential distance model 
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(EDM). The EDM is unimodal in a more general geometrical sense. 
The response curves in the plane, if p = 2, have a single peak and level 
off in all directions. There are many ways in which the EDM can be 
fitted to abundance matrices. Most of them are based on multinomial 
maximum likelihood, and thus they naturally come with large-sample 
significance tests and confidence regions. Not surprisingly, contribu-
tions have been made by both psychometricians and ecologists. For a 
recently proposed technique, and a good overview of earlier work, see 
De Rooij and Heiser 2005.

We can simplify the EDM, by expanding the square and collecting 
terms, to the equivalent form

E ( fij ) = a ib j exp(
s=1

p

å xisyjs ).

· 

This equation shows how we expand the abundances into the product 
of marginal effects and an interaction term, which is an inner prod-
uct of row and column effects and is actually quite close to CA. In the 
social sciences this is often referred to as the row-column or RC-model. 
For small arguments we have exp(x) ≈ 1 + x and consequently

E ( fij ) »a ib j (1+
s=1

p

å xisyjs ).

This model is fitted by CA, using weighted least squares. Thus, 
we see that CA can be interpreted as a convenient and inexpensive 
approximation to EDM but also as a model in its own right in which 
the multiplicative (exponential) interactions are replaced by additive 
ones. Besides this relationship, of course, both EDM and CA can be 
discussed as data reduction and data representation methods, without 
necessarily referring to a statistical model.

The two-dimensional Kolomoki EDM solution is given in figure 
2-6. We will not give an interpretation of the result but merely point 
out that there are some differences from the CA solution. The group-
ing of sites and types is approximately the same, but the EDM solution 
displays less of an arch, and this is typical.
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Discussion
This chapter could be called “The Many Faces of Correspondence 
Analysis,” and in it we have tried to provide various interpretational 
frameworks to look at CA plots in terms of distances, centroids, asso-
ciation models, and chi-square. It also shows how the same models and 
techniques appear in many different disciplines, often under different 
names, and that combining ideas from these disciplines gives us addi-
tional possibilities for interpretation.

We have also discussed the EDM model in its various disguises as 
the GOM or the RC-model. It can be used to embed a form of CA into 
a maximum likelihood framework and to shift the emphasis from mul-
tivariate exploration to model testing.

Archaeologists not familiar with CA can use this chapter to look 
at previous examples in their discipline and to think in a different way 
about abundance and incidence matrices. We have tried to emphasize 
the continuity between CA and previous seriation methods used in 
archaeology.

As we have indicated, convenient, free R packages are available 
for CA. We mentioned homals and anacor, but in de Leeuw and Mair 
2009b other available packages are discussed as well. All standard sta-
tistical systems, such as SAS, SPSS, and Stata, also have CA methods as 
either built-ins or add-ons.
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(a) Rows

(b) Columns

Figure 2-6. EDM maps of the Kolomoki data.
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