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1 Introduction

In Multidimensional Scaling (MDS) the data consists of information about the similarity or dissimi-

larity between pairs of objects selected from a finite set 𝒪 = {𝑜1, ⋯ , 𝑜𝑛}.

In metric MDS we have numerical dissimilarity measures 𝛿 on a subset of 𝒪 × 𝒪 and we want to

map the objects 𝑜𝑖 into 𝑛 points 𝑥𝑖 of some metric space in such a way that the distances between
the points approximate the dissimilarities between the objects. In smacof, our framework for MDS

theory, algorithms, and computer programs, the metric space is ℝ𝑝, the space of all 𝑝-tuples of
real numbers, and the distance is the usual Euclidean distance. Thus we are looking for 𝑥𝑖, with
𝑖 = 1, ⋯ , 𝑛, such that

𝛿𝑖𝑗 ∶= 𝛿(𝑜𝑖, 𝑜𝑗) ≈ 𝑑𝑖𝑗(𝑋) ∶= √
𝑝

∑
𝑠=1

(𝑥𝑖𝑠 − 𝑥𝑗𝑠)2. (1)

(the symbol ∶= is used for definitions). Note that distance matrix completion (Fang and O’Leary

(2012)) is an example of metric MDS.

Besides metric MDS there is also something called non-metric MDS. The terms is ambiguous and

can mean either one of two things. One definition is that we do not have numerical information

about the dissimilarities, but only ordinal of nominal information. In the ordinal case we know

that some dissimilarities are larger or smaller than others, in the nominal case that the objects are

partitioned into groups and within-group distances are smaller than between-group distances. An

MDS analysis is also non-metric if we have numerical dissimilarities but we decide to use only the

ordinal or nominal information in the dissimilarities as data for our MDS analysis. The data are a

binary relation ⪯𝛿 on a subset of 𝒪 × 𝒪. There is a second binary relation ⪯𝑑 on ℝ+ × ℝ+. We

want to find the configuration 𝑋 such that

(𝑜𝑖, 𝑜𝑗) ⪯𝛿 (𝑜𝑘, 𝑜𝑙) ⇒ 𝑑𝑖𝑗(𝑋) ⪯𝑑 𝑑𝑘𝑙(𝑋). (2)

For most non-metric MDS problems both ⪯𝛿 and ≺𝑑 are partial orders, but for nominal data they

can be equivalence relations.

The term “non-metric” is sometimes also used in the case in which we do have numerical dissimi-

larities 𝛿𝑖𝑗, but the MDS problem is to find Euclidean distances which approximate some partially

unknown function of the dissimilarities. The function should be member of a well-defined class

of functions, for instance a third degree polynomial or a piecewise linear spline on a given knot

sequence. The MDS technique not only finds the map of 𝒪 into ℝ𝑝, but also chooses a function 𝑓
from the set 𝔇 to improve the approximation.

𝑓(𝛿𝑖𝑗) ≈ 𝑑𝑖𝑗(𝑋). (3)

Note that (3) implies that 𝑓 is applied to each dissimilarity separately. Thus 𝔇 consists of real-valued

functions of a single non-negative real variable.

To avoid confusion, we will refer to this class of MDS techniques as non-linear MDS. This choice

of terminology has the unfortunately side-effect that 𝔇 in non-linear MDS can be the set of all linear

transformations. One important example of this linear non-linear MDS is classical MDS with an
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additive constant (Messick and Abelson (1956)). And, as another consequence, 𝔇 can also be the

set of all monotone or all one-one transformations, in which case the non-linear MDS technique is

also a non-metric MDS technique. And finally the set 𝔇 can have only a single element, the identity

transformation, in which case non-linear MDS is metric MDS.

One way to solve this terminological dilemma is to simply define MDS as finding an approximate

solution (𝑋, Δ) to

Δ ∈ 𝔇, (4a)

𝑋 ∈ 𝔛, (4b)

𝐷(𝑋) = Δ, (4c)

where 𝐷(𝑋) is the matrix of Euclidean distances and 𝔇 is the set of transformed dissimilarities in

the non-linear case or the set of quantified dissimilarities in the non-metric case. We can then freely

discuss metric MDS, linear MDS, non-linear MDS, and non-metric MDS as special cases, defined

by different sets 𝔇.
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2 Types of Data

𝐼 is a set of 𝑛 row-objects, 𝐽 is a set of 𝑚 column-objects.

1. Numerical

• ℛℛ data, ⟨ℛ × ℛ, 𝛿⟩, real-valued function 𝛿 on a subset of ℛ × ℛ.

• 𝒞𝒞 data, ⟨𝒞 × 𝒞, 𝛿⟩, real-valued function 𝛿 on a subset of 𝒞 × 𝒞.
• ℛ𝒞 data, ⟨ℛ × 𝒞, 𝛿⟩, real-valued function 𝛿 on a subset of ℛ × 𝒞.

2. Ordinal

• XX data, partial order on a subset of 𝑋 × 𝑋
• XY data, partial order ≤ on the 𝑛 × 𝑚-element set 𝑋 × 𝑌

3. Nominal

• XX data, equivalence relation on a subset of 𝑋 × 𝑋
• XY data, equivalence relation on a subset of 𝑋 × 𝑌

Conditional Data + XX data, 𝑛 partial ≤ is the union of 𝑛 partial orders ≤𝑖 on the 𝑛 disjoint

𝑛-element sets 𝑥𝑖 × 𝑋 + XY data, the partial order ≤ is the union of 𝑛 partial orders ≤𝑖 on the 𝑛
disjoint 𝑚-element sets 𝑥𝑖 × 𝑌

Replicated Data

As ordinal, but the partial orders are equivalence relations.
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3 Loss Function

In the pioneering papers Kruskal (1964a) and Kruskal (1964b) the MDS problem was formulated for

the first time as minimization of an explicit loss function or badness-of-fit function, which measures

the quality of the approximation of the dissimilarities by the distances. To be historically accurate,

we should mention that the non-metric MDS technique proposed by Shepard (1962a) and Shepard

(1962b) can be reformulated as minimization of an explicit loss function (see, for example, De

Leeuw (2017b)). And the classical Young-Householder-Torgerson MDS technique (Torgerson

(1952)) for metric MDS can be reformulated as minimizing an explicit least squares loss function

(De Leeuw and Heiser (1982)) as well. But neither of these two predecessors was formulated

originally as an explicit minimization problem for a specific loss function

3.1 Metric MDS

The loss function in least squares metric Euclidean MDS is called raw stress and is defined as

𝜎𝑅(𝑋) ∶= 1
2

∑ ∑
1≤𝑗<𝑖≤𝑛

𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2. (5)

The subscript R in 𝜎𝑅 stands for “raw”, because we will discuss other least squares loss functions

for which we will also use the symbol 𝜎, but with other subscripts.

In definition (5) the 𝑤𝑖𝑗 are known non-negative weights, the 𝛿𝑖𝑗 are the known non-negative

dissimilarities between objects 𝑜𝑖 and 𝑜𝑗, and the 𝑑𝑖𝑗(𝑋) are the distances between the corresponding
points 𝑥𝑖 and 𝑥𝑗. The summation is over all pairs (𝑖, 𝑗) with 𝑤𝑖𝑗 > 0. From now on we use “metric

MDS” to mean the minimization of 𝜎𝑅.

The 𝑛 × 𝑝 matrix 𝑋, which has the coordinates 𝑥𝑖 of the 𝑛 points as its rows, is called the

configuration, where 𝑝 is the dimension of the Euclidean space in which we make the map. The

metric MDS problem (of dimension 𝑝, for given 𝑊 and Δ) is the minimization of (5) over the 𝑛 × 𝑝
configurations 𝑋.

The weights 𝑤𝑖𝑗 can be used to quantify information about the precision or importance of the

corresponding dissimilarities. Some of the weights may be zero, which can be used to code missing

data. If all weights are positive we have complete data. If we have complete data, and all weights

are equal to one, we have unweighted metric MDS. The pioneering papers by Shepard, Kruskal, and

Guttman only consider the unweighted case. Weights were only introduced in MDS in De Leeuw

(1977).

We assume throughout that the weights are irreducible (De Leeuw (1977)). This means there is no

partitioning of the index set 𝐼𝑛 ∶= {1, 2, ⋯ , 𝑛} into subsets for which all between-subset weights

are zero. A reducible metric MDS problems decomposes into a number of smaller independent

metric MDS problems, so the irreducibility assumption causes no real loss of generality.

The fact that the summation in (5) is over all 𝑗 < 𝑖 indicates that the diagonal elements of Δ are not

used (they are assumed to be zero) and the elements above the diagonal are not used either (they are

assumed to be equal to the corresponding elements below the diagonal). The somewhat mysterious
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factor 1
2 in definition (5) is there because it simplifies some of the formulas in later sections of this

paper.

3.2 Non-linear MDS

Kruskal was not really interested in metric MDS and the “raw” loss function (5). His papers are really

about non-metric MDS, by which we mean least squares non-metric Euclidean MDS. Non-metric

MDS differs from metric MDS because we have incomplete information about the dissimilarities.

As we have seen, that if some dissimilarities are missing metric MDS can handle this by using zero

weights. In some situations, however, we only know the rank order of the non-missing dissimilarities.

We do not know, or we refuse to use, their actual numeric values. Or, to put it differently, even if we

have numerical dissimilarities we are looking for a transformation of the non-missing dissimilarities,

where the transformation is chosen from a set of admissible transformations (for instance from all

linear or monotone transformations). If the dissimilarities are non-numerical, for example rank

orders or partitionings, we choose from the set of admissible quantifications.

In non-metric MDS raw stress becomes

𝜎𝑅(𝑋, Δ) ∶= 1
2

∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2, (6)

where Δ varies over the quantified or transformed dissimilarities. In MDS parlance they are also

called pseudo-distances or disparities. Loss function (6) must be minimized over both configura-

tions and disparities, with the condition that the disparities Δ are an admissible transformation or

quantification of the data. In Kruskal’s non-metric MDS this means requiring monotonicity. In this

paper we will consider various other choices for the set of admissible transformations. We will use

the symbol 𝔇 for the set of admissible transformations

The most familiar examples of 𝔇 (linear, polynomial, splines, monotone) define convex cones

with apex at the origin. This means that if Δ ∈ 𝔇 then so is 𝜆Δ for all 𝜆 ≥ 0. But consequently
minimizing (6) over all Δ ∈ 𝔇 and over all configurations has the trivial solution Δ = 0 and

𝑋 = 0, corresponding with the global minimum 𝜎(𝑋, Δ) = 0. We need additional constraints to

rule out this trivial solution, and in non-metric MDS this is done by choosing a normalization that

keeps the solution away from zero.

Kruskal’s original solution is to define normalized stress as

𝜎(𝑋, Δ) ∶=
∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)

. (7)

To be precise, in Kruskal’s formulation there are no weights, and he actually takes the square root

of (7) to define Kruskal’s stress. The non-metric Euclidean MDS problem now is to minimize loss

function (7) over all 𝑛 × 𝑝 configurations 𝑋 and all admissible disparities Δ.
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3.3 Non-metric MDS

3.4 Normalization

Equation (7) is only one way to normalize raw stress. Some obvious alternatives are discussed in

detail in Kruskal and Carroll (1969) and De Leeuw (1975). In the terminology of De Leeuw (1975)

there are explicit and implicit normalizations.

In implicit normalization we minimize either

𝜎(𝑋, 𝐷̂) ∶=
∑ 𝑤𝑖𝑗( ̂𝑑𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ 𝑤𝑖𝑗
̂𝑑2
𝑖𝑗

(8)

or

𝜎(𝑋, 𝐷̂) ∶=
∑ 𝑤𝑖𝑗( ̂𝑑𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)

(9)

over 𝑋 and Δ ∈ 𝔇.

As we have seen, Kruskal (1964a) chooses definition (9) and calls the explicitly normalized loss

function normalized stress. Note that we overload the symbol 𝜎 to denote any one of the least

squares loss functions. It will always be clear from the text which 𝜎 we are talking about.

In explicit normalization we minimize the raw stress 𝜎𝑅(𝑋, 𝐷̂) from (6), but we add the explicit

constraint

∑ 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋) = 1, (10)

or the constraint

∑ 𝑤𝑖𝑗
̂𝑑2
𝑖𝑗 = 1. (11)

Kruskal and Carroll (1969) and De Leeuw (2019) show that these four normalizations all lead to

essentially the same solution for 𝑋 and 𝐷̂, up to scale factors dictated by the choice of the particular

normalization. It is also possible to normalize both 𝑋 and 𝐷̂, either explicitly or implicitly, and

again this will give the same solutions, suitably normalized. These invariance results assume the

admissible transformations form a closed cone with apex at the origin, i.e. if 𝐷̂ is admissible and

𝜆 ≥ 0 then 𝜆𝐷̂ is admissible as well. The matrices of Euclidean distances 𝐷(𝑋) form a similar

closed cone as well. The non-metric MDS problem is to find an element of the 𝐷̂ cone 𝒟 and an

element of the 𝐷(𝑋) cone where the angle between the two is a small as possible.

In the R version of smacof (De Leeuw and Mair (2009), Mair, Groenen, and De Leeuw (2022)) we

use explicit normalization (11). This is supported by the result, also due to De Leeuw (1975), that

projection on the intersection of the cone of disparities and the sphere defined by (11) is equivalent

to first projecting on the cone and then normalizing the projection (see also Bauschke, Bui, and

Wang (2018)).

In the version of non-metric MDS discussed in this manual we need more flexibility. For algorithmic

reasons that may become clear later on, we will go with the original (7), i.e. with the implicitly

normalized Kruskal’s stress. For the final results the choice between normalizations should not

make a difference, but the iterative computations will be different for the different choices.
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3.5 Some thoughts on ALS

The formulation in equations (4a) and (4b) neatly separates the metric MDS part (4a) and the

transformation/quantification part (4b). This second part is also often called the optimal scaling

part.

Equations (4a) and (4b) corresponds with the way most iterative non-linear and non-metric MDS

techniques are implemented. The algorithms use Alternating Least Squares (ALS). There have

been quite a few ALS algorithms avant-la-lettre, but as far as I know both the name and ALS as

a general approach to algorithm construction were first introduced in De Leeuw (1968), and then

widely disseminated in a series of papers by De Leeuw, Young, and Takane in the 1970’s (work

summarized in Young, De Leeuw, and Takane (1980) and Young (1981)).

In the ALS implementation of MDS two sub-algorithms are used in each iteration: one to improve

the fit of the distances to the current disparities Δ and one to improve the fit of the disparities to

the current distances. The two sub-algorithms define one major iteration of the MDS technique.

In formulas (using superscript (𝑘) for major iteration number) we start with (𝑋(0), Δ(0)) and then
alternate the mimization problems

𝑋(𝑘+1) ∋ {𝜎(𝑋(𝑘+1), Δ(𝑘)) = min
𝑋∈𝔛

𝜎(𝑋, Δ(𝑘))}, (12a)

Δ(𝑘+1) ∋ {𝜎(𝑋(𝑘+1), Δ(𝑘+1)) = min
Δ∈𝔇

𝜎(𝑋(𝑘+1), Δ)}, (12b)

where ∋ is short for “such that”. In MDS it is more realistic not to minimize loss in the sub-steps

but merely to decrease it. Minimization in one or both of the two subproblems may itself require an

infinite iterative method, which we have to truncate anyway. Thus

𝑋(𝑘+1) ∈ 𝔛 ∋ {𝜎(𝑋(𝑘+1), Δ(𝑘)) < 𝜎(𝑋(𝑘), Δ(𝑘))}, (13a)

Δ(𝑘+1) ∈ 𝔇 ∋ {𝜎(𝑋(𝑘+1), Δ(𝑘+1)) < 𝜎(𝑋(𝑘+1), Δ(𝑘))}. (13b)

3.5.1 The Single-Phase approach

In Kruskal (1964a) defines

𝜎(𝑋) ∶= min
𝐷̂∈𝔇

𝜎(𝐷̂, 𝑋) = 𝜎(𝑋, 𝐷̂(𝑋)), (14)

where 𝜎(𝐷̂, 𝑋) is defined by (9). The minimum in (14) is over admissible transformations. In

definition (14)

𝐷̂(𝑋) ∶= argmin
𝐷̂∈𝔇

𝜎(𝑋, 𝐷̂). (15)

Normalized stress defined by (14) is now a function of 𝑋 only. Under some conditions, which are

true in Kruskal’s definition of non-metric MDS, there is a simple relation between the partials of (9)

and those of (14).

𝒟𝜎(𝑋) = 𝒟1𝜎(𝑋, 𝐷̂(𝑋)), (16)

where 𝒟𝜎(𝑋) are the derivatives of 𝜎 from (14) and 𝒟1𝜎(𝑋, 𝐷̂(𝑋)) are the partial derivatives of
𝜎 from (9) with respect to 𝑋. Thus the partials of 𝜎 from (14) can be computed by evaluating the
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partials of 𝜎 from (9) with respect to 𝑋 at (𝑋, 𝐷̂(𝑋)). This has created much confusion in the past.
The non-metric MDS problem in Kruskal’s original formulation is now to minimize 𝜎 from (14),

which is a function of 𝑋 alone.

Guttman (1968) calls this the single-phase approach. A variation of Kruskal’s single-phase approach

defines

𝜎(𝑋) = ∑ 𝑤𝑖𝑗(𝑑
#
𝑖𝑗 (𝑋) − 𝑑𝑖𝑗(𝑋))2, (17)

where the 𝑑#
𝑖𝑗 (𝑋) are Guttman’s rank images, i.e. the permutation of the 𝑑𝑖𝑗(𝑋) that makes them

monotone with the 𝛿𝑖𝑗 (Guttman (1968)). Or, alternatively, define

𝜎(𝑋) ∶= ∑ 𝑤𝑖𝑗(𝑑%
𝑖𝑗 (𝑋) − 𝑑𝑖𝑗(𝑋))2, (18)

where the ̂𝑑%
𝑖𝑗 (𝑋) are Shepard’s rank images, i.e. the permutation of the 𝛿𝑖𝑗 that makes them

monotone with the 𝑑𝑖𝑗(𝑋) (Shepard (1962a), Shepard (1962b), De Leeuw (2017b)).

Minimizing the Shepard or Guttman single-phase loss functions is computationally more complicated

than Kruskal’s monotone regression approach, mostly because the rank-image transformations are

not differentiable, and there is no analog of (16) and of the equivalence of the different implicit and

explicit normalizations.

3.5.2 The Two-Phase Approach

The two-phase approach or alternating least squares (ALS) approach alternates minimization of

𝜎(𝐷̂, 𝑋) over 𝑋 for our current best estimate of 𝐷̂ with minimization of 𝜎(𝐷̂, 𝑋) over Δ ∈ 𝔇 for

our current best value of 𝑋. Thus an update from iteration 𝑘 to iteration 𝑘 + 1 looks like

𝐷̂(𝑘) = argmin
𝐷̂∈𝔇

𝜎(𝐷̂, 𝑋(𝑘)), (19a)

𝑋(𝑘+1) = argmin
𝑋

𝜎(𝐷̂(𝑘), 𝑋). (19b)

This ALS approach to MDS was in the air since the early (unsuccessful) attempts around 1968 of

Young and De Leeuw to combine Torgerson’s classic metric MDS method with Kruskal’s monotone

regression transformation. All previous implementations of non-metric smacof use the two-phase

approach, and we will do the same in this paper.

As formulated, however, there are some problems with the ALS algorithm. Step (19a) is easy to carry

out, using monotone regression. Step (19b) means solving a metric scaling problem, which is an

iterative proces that requires an infinite number of iterations. Thus, in the usual implementations, step

(19a) is combined with one of more iterations of a convergent iterative procedure for metric MDS,

such as smacof. If we take only one of these inner iterations the algorithm becomes indistinguishable

from Kruskal’s single-phase method. This has also created much confusion in the past.

In the usual implementations of the ALS approach we solve the first subproblem (19a) exactly,

while we take only a single step towards the solution for given 𝐷̂ in the second phase (19b). If

we have an infinite iterative procedure to compute the optimal 𝐷̂ ∈ 𝔇 for given 𝑋, then a more

balanced approach would be to take several inner iterations in the first phase and several inner
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iterations in the second phase. How many of each, nobody knows. In our current implementation of

smacof we take several inner iteration steps in the first phase and a single inner iteration step in the

second phase.
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4 Smacof Notation and Terminology

We discuss some standard MDS notation, first introduced in De Leeuw (1977). This notation is

useful for the second phase of the ALS algorithm, in which solve the metric MDS problem of we

minimizing unnormalized 𝜎(𝑋, 𝐷̂) over 𝑋 for fixed 𝐷̂. We will discuss the first ALS phase later

in the paper.

Start with the unit vectors 𝑒𝑖 of length 𝑛. They have a non-zero element equal to one in position 𝑖,
all other elements are zero. Think of the 𝑒𝑖 as the columns of the identity matrix.

Using the 𝑒𝑖 we define for all 𝑖 ≠ 𝑗 the matrices

𝐴𝑖𝑗 ∶= (𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)′. (20)

The 𝐴𝑖𝑗 are of order 𝑛, symmetric, doubly-centered, and of rank one. They have four non-zero
elements. Elements (𝑖, 𝑖) and (𝑗, 𝑗) are equal to +1, elements (𝑖, 𝑗) and (𝑗, 𝑖) are −1.

The importance of 𝐴𝑖𝑗 in MDS comes from the equation

𝑑2
𝑖𝑗(𝑋) = tr 𝑋′𝐴𝑖𝑗𝑋. (21)

In addition we use the fact that the 𝐴𝑖𝑗 form a basis for the 𝑏𝑖𝑛𝑜𝑚𝑛2-dimensional linear space of
all doubly-centered symmetric matrices.

Expanding the square in the definition of stress gives

𝜎(𝑋) = 1
2

{∑ 𝑤𝑘𝛿2
𝑘 − 2 ∑ 𝑤𝑘𝛿𝑘𝑑𝑘(𝑋) + ∑ 𝑤𝑘𝑑2

𝑘(𝑋)}. (22)

It is convenient to have notation for the three separate components of stress from equation (22).

Define

𝜂2
𝐷̂ = ∑ 𝑤𝑖𝑗

̂𝑑2
𝑖𝑗, (23)

𝜌(𝑋) = ∑ 𝑤𝑖𝑗
̂𝑑𝑖𝑗𝑑𝑖𝑗(𝑋), (24)

𝜂2(𝑋) = ∑ 𝑤𝑖𝑗𝑑𝑖𝑗(𝑋)2. (25)

which lead to

𝜎(𝑋) = 1
2

{𝜂2
𝐷̂ − 2𝜌(𝑋) + 𝜂2(𝑋)} . (26)

We also need

𝜆(𝑋) = 𝜌(𝑋)
𝜂(𝑋)

. (27)

Using the 𝐴𝑖𝑗 makes it possible to give matrix expressions for 𝜌 and 𝜂2. First

𝜂2(𝑋) = tr 𝑋′𝑉 𝑋, (28)

with

𝑉 ∶= ∑ 𝑤𝑖𝑗𝐴𝑖𝑗. (29)
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In the same way

𝜌(𝑋) = tr 𝑋′𝐵(𝑋)𝑋, (30)

with

𝐵(𝑋) ∶= ∑ 𝑤𝑖𝑗𝑟𝑖𝑗(𝑋)𝐴𝑖𝑗, (31)

with

𝑟𝑖𝑗(𝑋) ∶= {
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋) if 𝑑𝑖𝑗(𝑋) > 0,
0 if 𝑑𝑖𝑗(𝑋) = 0.

(32)

Note that 𝐵 is a function from the set of 𝑛 × 𝑝 configurations into the set of symmetric doubly-

dentered matrices of order 𝑛. All matrices of the form ∑ 𝑥𝑖𝑗𝐴𝑖𝑗, where summation is over all pairs
(𝑖, 𝑗) with 𝑗 < 𝑖, are symmetric and doubly-centered. They have −𝑥𝑖𝑗 as off-diagonal elements

while the diagonal elements (𝑖, 𝑖) are ∑𝑛
𝑗=1 𝑥𝑖𝑗.

Because 𝐵(𝑋) and 𝑉 are non-negative linear combinations of the 𝐴𝑖𝑗 they are both positive semi-
definite. Because 𝑊 is assumed to be irreducible the matrix 𝑉 has rank 𝑛 − 1, with only vectors
proportional to the vector 𝑒 with all elements equal to one in its null-space (De Leeuw (1977)).

Summarizing the results so far we have

𝜎(𝑋) = 1
2

{𝜂2
𝐷̂ − tr 𝑋′𝐵(𝑋)𝑋 + tr 𝑋′𝑉 𝑋}. (33)

Next we define the Guttman transform of a configuration 𝑋, for given 𝑊 and Δ, as

𝐺(𝑋) = 𝑉 +𝐵(𝑋)𝑋, (34)

with 𝑉 + the Moore-Penrose inverse of 𝑉. In our computations we use

𝑉 + = (𝑉 + 1
𝑛

𝑒𝑒′)−1 − 1
𝑛

𝑒𝑒′ (35)

Also note that in the unweighted case with complete data 𝑉 = 𝑛𝐽, where 𝐽 is the centering matrix

𝐼 − 1
𝑛𝑒𝑒′, and thus 𝑉 + = 1

𝑛𝐽. The Guttman transform is then simply 𝐺(𝑋) = 𝑛−1𝐵(𝑋)𝑋.
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5 Intermezzo: Explicit Normalization

𝜎(𝑋, 𝐷̂) = 1
2

∑ 𝑤𝑖𝑗( ̂𝑑𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)

Majorize

𝜎(𝑋, 𝐷̂) ≤ 1
2

𝜂2(𝐷̂) − 2tr 𝑋′𝑉𝑌 + tr 𝑋′𝑉 𝑋
tr 𝑋′𝑉 𝑋

= 𝜔(𝑋, 𝑌 )
𝜂2(𝑋)

Stationary equations

𝜂2(𝑋)(𝑉 𝑋 − 𝑉 𝐺(𝑌 )) − 𝜔(𝑋, 𝑌 )𝑉 𝑋 = 𝑉 {(𝜂2(𝑋) − 𝜔(𝑋, 𝑌 ))𝑋 − 𝜂2(𝑋)𝑌}

So at a minimum 𝑋 is proportional to 𝑌 or 𝑋 = 𝛼𝑌 for some 𝛼. For … to be zero we must have

𝛼(𝛼2𝜂2(𝑌) − (𝜂2(𝐷̂) − 2𝛼𝜂2(𝑌) + 𝛼2𝜂2(𝑌)) = 𝛼2𝜂2(𝑌)

which works out to be

𝛼 = 𝜂2(𝐷̂)
𝜂2(𝑌)

𝑋̂ = 𝜂2(𝐷̂)
𝜂2(𝑌)

𝑌

The minimum is equal to

− (𝜂2(𝑌))2

𝜂2(𝐷̂)
+ 𝜂2(𝑌)

𝜂2(𝑌)
= 1 − 𝜂2(𝑌)

𝜂2(𝐷̂)
Use homogeneity of the Guttman transform.

More generally suppose we update with

𝑋 = 𝑌 + 𝛼(𝑌 − 𝑌)

Write

𝜔(𝑋, 𝑌 ) = 𝜂2(𝐷̂) + tr (𝑋 − 𝑌)′𝑉 (𝑋 − 𝑌) − 𝜂2(𝑌)
Thus if 𝑋(𝛼) = 𝑌 + 𝛼(𝑌 − 𝑌) we have

𝜔(𝛼) = 𝜂2(𝐷̂) + 𝛼2tr (𝑌 − 𝑌)′𝑉 (𝑌 − 𝑌) − 𝜂2(𝑌)

and

𝜂2(𝛼) = 𝜂2(𝑌) + 2𝛼tr (𝑌 − 𝑌)′𝑉𝑌 + 𝛼2tr (𝑌 − 𝑌)′𝑉 (𝑌 − 𝑌)

𝜔(𝑌 , 𝑌 ) = 𝜂2(𝐷̂) + tr (𝑌 − 𝑌)′𝑉 (𝑌 − 𝑌) − 𝜂2(𝑌)
𝜔(𝛼)
𝜂2(𝛼)

≤ 𝜎(𝑌 )
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6 Properties of Smacof Loss

6.1 Derivatives

The Euclidean distance function 𝑑𝑖𝑗 from … is not differentiable at configurations 𝑋 with 𝑥𝑖 = 𝑥𝑗.
If 𝑑𝑖𝑗(𝑋) > 0 then

𝒟𝜎(𝑋) = 1
𝑑𝑖𝑗(𝑋)

𝐴𝑖𝑗𝑋

If 𝑑𝑖𝑗(𝑋) = 0 then

𝐷+𝑑𝑖𝑗(𝑋, 𝑌 ) = lim
𝜖↓0

𝑑𝑖𝑗(𝑋 + 𝜖𝑌 ) − 𝑑𝑖𝑗(𝑋)
𝜖

= 𝑑𝑖𝑗(𝑌 )

which is non-linear in 𝑌, showing non-differentiability.

𝐷+𝜎(𝑋, 𝑌 ) = tr 𝑌 ′(𝑉 − 𝐵(𝑋))𝑋 + ∑{𝑤𝑖𝑗𝛿𝑖𝑗𝑑𝑖𝑗(𝑌 ) ∣ 𝑑𝑖𝑗(𝑋) = 0}
This form of the directional derivative is used by De Leeuw (1984) to show that two independent

necessary conditions for a local minimum are (𝑉 − 𝐵(𝑋))𝑋 = 0 and 𝑑𝑖𝑗(𝑋) > 0 for all (𝑖, 𝑗)
with 𝑤𝑖𝑗𝛿𝑖𝑗 > 0.

6.1.1 Gradient

𝒟𝜎(𝑋) = (𝑉 − 𝐵(𝑋))𝑋
At a stationary point 𝐵(𝑋)𝑋 = 𝑉 𝑋 or 𝑉 +𝐵(𝑋)𝑋 = 𝑋. Thus a necessary condition for a local

minimum is that 𝑉 +𝐵(𝑋) has at least 𝑝 eigenvalues equal to one. De Leeuw (2014) has shown

that if 𝑉 +𝐵(𝑋) ≲ 𝐼 then actually 𝑋 is a global minimizer of stress.

𝜌(𝑋) = ∑ 𝑤𝑖𝑗𝛿𝑖𝑗(𝑋)

∇𝑑𝑖𝑗(𝑋) =

⎡
⎢
⎢
⎢
⎢
⎣

0
𝑥𝑖−𝑥𝑗
𝑑𝑖𝑗(𝑋)

0
− 𝑥𝑖−𝑥𝑗

𝑑𝑖𝑗(𝑋)
0

⎤
⎥
⎥
⎥
⎥
⎦

𝜕𝑑𝑖𝑗(𝑋) =

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

0
𝑦
0

−𝑦
0

⎤
⎥
⎥
⎥
⎦

∣ 𝑦′𝑦 ≤ 1

⎫}}
⎬}}⎭

.
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6.1.2 Hessian

The results on the Hessian of stress are largely unpublished. So we summarize them here in this

manual, so they’ll be even more unpublished.

𝐻𝑠𝑡(𝑋) ∶= ∑ 𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋)
{

𝐴𝑖𝑗𝑥𝑠𝑥′
𝑡𝐴𝑖𝑗

𝑑2
𝑖𝑗(𝑋)

}

𝐻𝑠𝑡(𝑋) = ∑ 𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑3
𝑖𝑗(𝑋)

(𝑥𝑖𝑠 − 𝑥𝑗𝑠)(𝑥𝑖𝑡 − 𝑥𝑗𝑡)𝐴𝑖𝑗

𝒟𝑠𝑡𝜎(𝑋) = {𝐻𝑠𝑡(𝑋) if 𝑠 ≠ 𝑡,
𝑉 − 𝐵(𝑋) + 𝐻𝑠𝑡 if 𝑠 = 𝑡.

If 𝐼𝑝 is the identity matrix of order 𝑝, and ⊗ is the Kronecker product, then

𝒟2𝜎(𝑋) = 𝐼𝑝 ⊗ (𝑉 − 𝐵(𝑋)) + 𝐻(𝑋)

𝑝

∑
𝑠=1

𝑝

∑
𝑡=1

𝑦′
𝑠𝐻𝑠𝑡𝑦𝑡 = ∑ 𝑤𝑖𝑗

𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋)
{

(tr 𝑌 ′𝐴𝑖𝑗𝑋)2

𝑑2
𝑖𝑗(𝑋)

} ≤ ∑ 𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋)
tr𝑌 ′𝐴𝑖𝑗𝑌 = tr𝑌 ′𝐵(𝑋)𝑌 .

Thus

0 ≲ 𝐻 ≲ 𝐼𝑝 ⊗ 𝐵(𝑋),
and

𝐼𝑝 ⊗ (𝑉 − 𝐵(𝑋)) ≲ 𝒟2𝜎(𝑋) ≲ 𝐼𝑝 ⊗ 𝑉
At a local minimum of 𝜎

0 ≲ 𝒟2𝜎(𝑋) ≲ 𝐼𝑝 ⊗ 𝑉

In comparing the lower bounds on 𝒟2𝜎(𝑋) in… and…De Leeuw (2014) shows that 𝑉 −𝐵(𝑋) ≳
0 is sufficient for a global minimum of stress (but far from necessary).

Also
𝑝

∑
𝑡=1

𝐻𝑠𝑡𝑦𝑡 = ∑ 𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋)
{
tr 𝑌 ′𝐴𝑖𝑗𝑋

𝑑2
𝑖𝑗(𝑋)

} 𝐴𝑖𝑗𝑥𝑠

If 𝑌 = 𝑋 then 𝐻(𝑋)𝑦 = (𝐼𝑝 ⊗ 𝐵(𝑋))𝑥 and thus

𝒟2𝜎(𝑋)𝑥 = (𝐼𝑝 ⊗ 𝑉 )𝑥.

In the unweighted case this means that 𝑋 is an eigenvector of 𝒟2𝜎(𝑋) with eigenvalue 𝑛. Inequal-
ities … show that this is actually the largest eigenvalue. Or (𝐼𝑝 ⊗ 𝑉 )+𝒟2𝜎(𝑋) ≲ 𝐼.

If 𝑌 = 𝑋𝑇 with 𝑇 anti-symmetric then tr 𝑌 ′𝐴𝑖𝑗𝑋 = 0 then thus 𝐻(𝑋)𝑦 = 0. Thus
𝑝

∑
𝑡=1

𝒟𝑠𝑡𝜎(𝑋)𝑦𝑡 = (𝑉 − 𝐵(𝑋))𝑦𝑡
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which is zero if 𝒟𝜎(𝑋) is zero. Thus at a stationary point of stress 𝒟𝜎(𝑋) has 1
2𝑝(𝑝 − 1) zero

eigenvalues.

There are several ways to think of the Hessian. The simplest one (perhaps) is as an 𝑛𝑝 × 𝑛𝑝
symmetric matrix (corresponding to

column-major R vector of length 1
2𝑛𝑝(𝑛𝑝 + 1)). This is what we would use for a straightforward

version of Newton-Raphson.

It is more elegant, however, to think of 𝐻 as a symmetric super-matrix of order 𝑝, with as elements
𝑛 × 𝑛 matrices. And, for some purposes, such as the pseudo-confidence ellipsoids in De Leeuw

(2017a), as a super-matrix of order 𝑛 with as elements 𝑝 × 𝑝 matrices. Both the super-matrix

interpretations lead to four-dimensional arrays, the first a 𝑝 × 𝑝 × 𝑛 × 𝑛 array, the second an

𝑛 × 𝑛 × 𝑝 × 𝑝 array. The different interpretations lead to different ways to store the Hessian in

memory, and to different ways to retrieve its elements. Of course we can write routines to transform

from one interpretation to another.

6.2 Lagrangian

In our implementation of the smacof algorithm we minimize stress over configurations with 𝜂(𝑋) =
1, or, equivalently, ∑ 𝑤𝑖𝑗𝑑2

𝑖𝑗(𝑋) = 1. This means we do not look for 𝑋 with 𝒟𝜎(𝑋) = (𝑉 −
𝐵(𝑋))𝑋 = 0, but we look for solutions of

(𝑉 − 𝐵(𝑋))𝑋 − 𝜆𝑉 𝑋 = 0, tr 𝑋′𝑉 𝑋 = 1.

At the solution

𝜆 = 1 − 𝜌(𝑋)
and

𝑋 = Γ(𝑋)
𝜂(Γ(𝑋))

Also it is necessary for a local minimum that

Γ(𝑋) = 𝜌(𝑋)𝑋

Because the Guttman transform is homogeneous of degree zero this implies

Γ(Γ(𝑋) = Γ(𝑋),

so although 𝑋 is not a fixed point of the Guttman transform, Γ(𝑋) is.

The second order necessary condition is that

𝐻(𝑋) ≳ 𝐼𝑝 ⊗ (𝜌(𝑋)𝑉 − 𝐵(𝑋))

is positive

6.2.1 Kuhn-Tucker Points

bozo
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7 Smacof Algorithm

7.0.1 Introduction to Majorization

Majorization, these days better known as MM (Lange (2016)), is a general approach for the con-

struction of minimization algorithms. There is also minorization, which leads to maximization

algorithms, which explains the MM acronym: minorization for maximization and majorization for

minimization.

Before the MM principle was formulated as a general approach to algorithm construction there were

some important predecessors. Major classes of MM algorithms avant la lettre were the EMAlgorithm

for maximum likelihood estimation of Dempster, Laird, and Rubin (1977), the Smacof Algorithm

for MDS of De Leeuw (1977), the Generalized Weiszfeldt Method of Vosz and Eckhardt (1980),

and the Quadratic Approximation Method of Böhning and Lindsay (1988). The first formulation of

the general majorization principle seems to be De Leeuw (1994).

Let’s start with a brief introduction to majorization. Minimize a real valued function 𝜎 over 𝑥 ∈ 𝕊,
where 𝕊 is some subset of ℝ𝑛. There are obvious extensions of majorization to functions defined
on more general spaces, with values in any partially ordered set, but we do not need that level

of generality in this manual. Also majorization applied to 𝜎 is minorization applied to −𝜎, so
concentrating on majorization-minimization and ignoring minorization-maximization causes no

loss of generality

Suppose there is a real-valued function 𝜂 on 𝕊 ⊗ 𝕊 such that

𝜎(𝑥) ≤ 𝜂(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝕊, (36)

𝜎(𝑥) = 𝜂(𝑥, 𝑥) ∀𝑥 ∈ 𝕊. (37)

The function 𝜂 is called a majorization scheme for 𝜎 on 𝑆. A majorization scheme is strict if

𝜎(𝑥) < 𝜂(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑆 withj 𝑥 ≠ 𝑦.

Define

𝑥(𝑘+1) ∈ argmin
𝑥∈𝕊

𝜂(𝑥, 𝑥(𝑘)), (38)

assuming that 𝜂(•, 𝑦) attains its (not necessarily unique) minimum over 𝑥 ∈ 𝕊 for each 𝑦. If

𝑥(𝑘) ∈ argmin𝑥∈𝕊 𝜂(𝑥, 𝑥(𝑘)) then we stop.

By majorization property (36)

𝜎(𝑥(𝑘+1)) ≤ 𝜂(𝑥(𝑘+1), 𝑥(𝑘)). (39)

Because we did not stop update rule (38) implies

𝜂(𝑥(𝑘+1), 𝑥(𝑘)) < 𝜂(𝑥(𝑘), 𝑥(𝑘)). (40)

and finally by majorization property (36)

𝜂(𝑥(𝑘), 𝑥(𝑘)) = 𝜎(𝑥(𝑘)). (41)
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If the minimum in (38) is attained for a unique 𝑥 then 𝜂(𝑥(𝑘+1), 𝑥(𝑘)) < 𝜂(𝑥(𝑘), 𝑥(𝑘)). If the

majorization scheme is strict then 𝜎(𝑥(𝑘+1)) < 𝜂(𝑥(𝑘+1), 𝑥(𝑘)). Under either of these two additional
conditions 𝜎(𝑥(𝑘+1)) < 𝜎(𝑥(𝑘)), which means that the majorization algorithm is a monotone descent

algorithm, and if 𝜎 is bounded below on 𝕊 the sequence 𝜎(𝑥(𝑘)) converges.

Note that we only use the order relation to prove convergence of the sequence of function values.

To prove convergence of the 𝑥(𝑘) we need stronger compactness and continuity assumptions to
apply the general theory of Zangwill (1969). For such a proof the argmin in update formula (38) can

be generalized to 𝑥(𝑘+1) = 𝜙(𝑥(𝑘)), where 𝜙 maps 𝕊 into 𝕊 such that 𝜂(𝜙(𝑥), 𝑥) ≤ 𝜎(𝑥) for all 𝑥.

We give a small illustration in which we minimize 𝜎 with 𝜎(𝑥) =
√

𝑥 − log𝑥 over 𝑥 > 0.
Obviously we do not need majorization here, because solving 𝒟𝜎(𝑥) = 0 immediately gives 𝑥 = 4
as the solution we are looking for.

To arrive at this solution using majorization we start with

√
𝑥 ≤ √𝑦 + 1

2
𝑥 − 𝑦
√𝑦

, (42)

which is true because a differentiable concave function such as the square root is majorized by its

tangent everywhere. Inequality (42) implies

𝜎(𝑥) ≤ 𝜂(𝑥, 𝑦) ∶= √𝑦 + 1
2

𝑥 − 𝑦
√𝑦

− log𝑥. (43)

Note that 𝜂(•, 𝑦) is convex in its first argument for each 𝑦. We have 𝒟1𝜂(𝑥, 𝑦) = 0 if and only if

𝑥 = 2√𝑦 and thus the majorization algorithm is

𝑥(𝑘+1) = 2√𝑥(𝑘) (44)

The sequence 𝑥(𝑘) converges monotonically to the fixed point 𝑥 = 2
√

𝑥, i.e. to 𝑥 = 4. If 𝑥(0) < 4
the sequence is increasing, if 𝑥(0) < 4 it is decreasing. Also, by l’Hôpital,

lim
𝑥→4

2
√

𝑥 − 4
𝑥 − 4

= 1
2

(45)

and thus convergence to the minimizer is linear with asymptotic convergence rate 1
2 . By another

application of l’Hôpital

lim
𝑥→4

𝜎(2√𝑥)) − 𝜎(4)
𝜎(𝑥) − 𝜎(4)

= 1
4

, (46)

and convergence to the minimum is linear with asymptotic convergence rate 1
4 . Linear convergence

to the minimizer is typical for majorization algorithms, as is the twice-as-fast linear convergence to

the minimum value.

This small example is also of interest, because we minimize a DC function, the difference of two

convex functions. In our example the convex functions are minus the square root and minus the

logarithm. Algorithms for minimizing DC functions define other important subclasses of MM

algorithms, the DC Algorithm of Tao Pham Dinh (see Le Thi and Tao (2018) for a recent overview),
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the Concave-Convex Procedure of Yuille and Rangarajan (2003), and the Half-Quadratic Method of

Donald Geman (see Niikolova and Ng (2005) for a recent overview). For each of these methods there

is a huge literature, with surprisingly little non-overlapping literatures. The first phase of the smacof

algorithm, in which we improve the configuration for given disparities, is DC, concave-convex, and

half-quadratic.

In the table below we show convergence of (44) starting at 𝑥 = 1.5. The first column show how far

𝑥(𝑘) deviates from the minimizer (i.e. from 4), the second shows how far𝜎(𝑥(𝑘)) deviates from the

minimum (i.e. from 2 − log 4). We clearly see the convergence rates 1
2 and 1

4 in action.

## itel 1 2.5000000000 0.2055741244
## itel 2 1.5505102572 0.0554992066
## itel 3 0.8698308399 0.0144357214
## itel 4 0.4615431837 0.0036822877
## itel 5 0.2378427379 0.0009299530
## itel 6 0.1207437506 0.0002336744
## itel 7 0.0608344795 0.0000585677
## itel 8 0.0305337787 0.0000146606
## itel 9 0.0152961358 0.0000036675
## itel 10 0.0076553935 0.0000009172
## itel 11 0.0038295299 0.0000002293
## itel 12 0.0019152235 0.0000000573
## itel 13 0.0009577264 0.0000000143
## itel 14 0.0004788919 0.0000000036
## itel 15 0.0002394531 0.0000000009

The first three iterations are shown in the figure below. The vertical lines indicate the value of 𝑥,
function is in red, and the first three majorizations are in blue.

1 2 3 4 5

0.
6

0.
7

0.
8

0.
9

1.
0

x

y
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7.0.2 Majorizing Stress

8 MDS topics not covered

• asymmetric MDS

• Non-Euclidean Distances

• Non-Least-Squares Loss Functions

• Rank Images

• Shepard

• McGee
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