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1 Smacof Algorithm

1.1 First Phase: Update Configuration

1.1.1 Introduction to Majorization

Majorization, these days better known as MM (Lange (2016)), is a general approach for the con-

struction of minimization algorithms. There is also minorization, which leads to maximization

algorithms, which explains the MM acronym: minorization for maximization and majorization for

minimization.

Before the MM principle was formulated as a general approach to algorithm construction there were

some important predecessors. Major classes of MM algorithms avant la lettre were the EMAlgorithm

for maximum likelihood estimation of Dempster, Laird, and Rubin (1977), the Smacof Algorithm

for MDS of De Leeuw (1977), the Generalized Weiszfeldt Method of Vosz and Eckhardt (1980),

and the Quadratic Approximation Method of Böhning and Lindsay (1988). The first formulation of

the general majorization principle seems to be De Leeuw (1994).

Let’s start with a brief introduction to majorization. Minimize a real valued function 𝜎 over 𝑥 ∈ 𝕊,
where 𝕊 is some subset of ℝ𝑛. There are obvious extensions of majorization to functions defined
on more general spaces, with values in any partially ordered set, but we do not need that level

of generality in this manual. Also majorization applied to 𝜎 is minorization applied to −𝜎, so
concentrating on majorization-minimization and ignoring minorization-maximization causes no

loss of generality

Suppose there is a real-valued function 𝜂 on 𝕊 ⊗ 𝕊 such that

𝜎(𝑥) ≤ 𝜂(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝕊, (1)

𝜎(𝑥) = 𝜂(𝑥, 𝑥) ∀𝑥 ∈ 𝕊. (2)

The function 𝜂 is called a majorization scheme for 𝜎 on 𝑆. A majorization scheme is strict if

𝜎(𝑥) < 𝜂(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑆 withj 𝑥 ≠ 𝑦.

Define

𝑥(𝑘+1) ∈ argmin
𝑥∈𝕊

𝜂(𝑥, 𝑥(𝑘)), (3)

assuming that 𝜂(•, 𝑦) attains its (not necessarily unique) minimum over 𝑥 ∈ 𝕊 for each 𝑦. If
𝑥(𝑘) ∈ argmin𝑥∈𝕊 𝜂(𝑥, 𝑥(𝑘)) then we stop.

By majorization property (1)

𝜎(𝑥(𝑘+1)) ≤ 𝜂(𝑥(𝑘+1), 𝑥(𝑘)). (4)

Because we did not stop update rule (3) implies

𝜂(𝑥(𝑘+1), 𝑥(𝑘)) < 𝜂(𝑥(𝑘), 𝑥(𝑘)). (5)
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and finally by majorization property (1)

𝜂(𝑥(𝑘), 𝑥(𝑘)) = 𝜎(𝑥(𝑘)). (6)

If the minimum in (3) is attained for a unique 𝑥 then 𝜂(𝑥(𝑘+1), 𝑥(𝑘)) < 𝜂(𝑥(𝑘), 𝑥(𝑘)). If the

majorization scheme is strict then 𝜎(𝑥(𝑘+1)) < 𝜂(𝑥(𝑘+1), 𝑥(𝑘)). Under either of these two additional
conditions 𝜎(𝑥(𝑘+1)) < 𝜎(𝑥(𝑘)), which means that the majorization algorithm is a monotone descent

algorithm, and if 𝜎 is bounded below on 𝕊 the sequence 𝜎(𝑥(𝑘)) converges.

Note that we only use the order relation to prove convergence of the sequence of function values.

To prove convergence of the 𝑥(𝑘) we need stronger compactness and continuity assumptions to
apply the general theory of Zangwill (1969). For such a proof the argmin in update formula (3) can

be generalized to 𝑥(𝑘+1) = 𝜙(𝑥(𝑘)), where 𝜙 maps 𝕊 into 𝕊 such that 𝜂(𝜙(𝑥), 𝑥) ≤ 𝜎(𝑥) for all 𝑥.

We give a small illustration in which we minimize 𝜎 with 𝜎(𝑥) =
√

𝑥 − log𝑥 over 𝑥 > 0.
Obviously we do not need majorization here, because solving 𝒟𝜎(𝑥) = 0 immediately gives 𝑥 = 4
as the solution we are looking for.

To arrive at this solution using majorization we start with

√
𝑥 ≤ √𝑦 + 1

2
𝑥 − 𝑦
√𝑦

, (7)

which is true because a differentiable concave function such as the square root is majorized by its

tangent everywhere. Inequality (7) implies

𝜎(𝑥) ≤ 𝜂(𝑥, 𝑦) ∶= √𝑦 + 1
2

𝑥 − 𝑦
√𝑦

− log𝑥. (8)

Note that 𝜂(•, 𝑦) is convex in its first argument for each 𝑦. We have 𝒟1𝜂(𝑥, 𝑦) = 0 if and only if
𝑥 = 2√𝑦 and thus the majorization algorithm is

𝑥(𝑘+1) = 2√𝑥(𝑘) (9)

The sequence 𝑥(𝑘) converges monotonically to the fixed point 𝑥 = 2
√

𝑥, i.e. to 𝑥 = 4. If 𝑥(0) < 4
the sequence is increasing, if 𝑥(0) < 4 it is decreasing. Also, by l’Hôpital,

lim
𝑥→4

2
√

𝑥 − 4
𝑥 − 4

= 1
2

(10)

and thus convergence to the minimizer is linear with asymptotic convergence rate 1
2 . By another

application of l’Hôpital

lim
𝑥→4

𝜎(2√𝑥)) − 𝜎(4)
𝜎(𝑥) − 𝜎(4)

= 1
4

, (11)

and convergence to the minimum is linear with asymptotic convergence rate 1
4 . Linear convergence

to the minimizer is typical for majorization algorithms, as is the twice-as-fast linear convergence to

the minimum value.
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This small example is also of interest, because we minimize a DC function, the difference of two

convex functions. In our example the convex functions are minus the square root and minus the

logarithm. Algorithms for minimizing DC functions define other important subclasses of MM

algorithms, the DC Algorithm of Tao Pham Dinh (see Le Thi and Tao (2018) for a recent overview),

the Concave-Convex Procedure of Yuille and Rangarajan (2003), and the Half-Quadratic Method of

Donald Geman (see Niikolova and Ng (2005) for a recent overview). For each of these methods there

is a huge literature, with surprisingly little non-overlapping literatures. The first phase of the smacof

algorithm, in which we improve the configuration for given disparities, is DC, concave-convex, and

half-quadratic.

In the table below we show convergence of (9) starting at 𝑥 = 1.5. The first column show how far

𝑥(𝑘) deviates from the minimizer (i.e. from 4), the second shows how far𝜎(𝑥(𝑘)) deviates from the

minimum (i.e. from 2 − log 4). We clearly see the convergence rates 1
2 and 1

4 in action.

## itel 1 2.5000000000 0.2055741244
## itel 2 1.5505102572 0.0554992066
## itel 3 0.8698308399 0.0144357214
## itel 4 0.4615431837 0.0036822877
## itel 5 0.2378427379 0.0009299530
## itel 6 0.1207437506 0.0002336744
## itel 7 0.0608344795 0.0000585677
## itel 8 0.0305337787 0.0000146606
## itel 9 0.0152961358 0.0000036675
## itel 10 0.0076553935 0.0000009172
## itel 11 0.0038295299 0.0000002293
## itel 12 0.0019152235 0.0000000573
## itel 13 0.0009577264 0.0000000143
## itel 14 0.0004788919 0.0000000036
## itel 15 0.0002394531 0.0000000009

The first three iterations are shown in the figure below. The vertical lines indicate the value of 𝑥,
function is in red, and the first three majorizations are in blue.
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1.1.2 Majorizing Stress

1.2 Second Phase: Update Transformation

1.2.1 Spline Basis Details

Splines of degree 𝑑 on a closed interval [𝑎, 𝑏] are piecewise polynomials of degree 𝑑. The endpoints
of the interval are the boundary knots. In the interval there are a number of inner knots. For smacof

we suppose the inner knots are distinct. There is a polynomial piece between all consecutive pairs

of knots. Although the pieces can be parts of different polynomials splines are required to have a

certain degree of smoothness. In fact at the interior knots a spline has 𝑑 − 1 continuous derivatives.

A spline of degree zero is a step function, stepping to a different level at each knot. A spline of

degree one is piecewise linear, where the line segments are joined continuously at the inner knots.

A spline of degree two is piecewise quadratic and continuously differentiable at the knots. And so

on. There is no limit on the number of inner knots and on the degree of the spline, although the

number of interior knots must be greater than or equal to the degree minus one. The flexibility of

the spline (as opposed to the rigidity of a polynomial on [𝑎, 𝑏] of the same degree) comes from the

number and placement of the interior knots, not so much from the degree of the spline.

1.2.2 B-splines

1.2.3 Berstein PolynomiaLS
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Table 1: B spline parameters

degree order ninner nknots span

0 1 4 6 5

1 2 4 8 6

2 3 4 10 7

3 4 4 12 8

4 5 4 14 9

∑
𝑖

𝐵𝑖,𝑘(𝑥) = 1

M-splines

𝑀𝑖,𝑘(𝑥) = 𝑘 + 1
𝑡𝑖+𝑘+1 − 𝑡𝑖

𝐵𝑖,𝑘(𝑋)

then

∫ 𝑀𝑖,𝑘(𝑥)𝑑𝑥 = 1

I-splines

𝐼𝑖,𝑘+1(𝑧) = ∫
𝑧

−∞
𝑀𝑖,𝑘(𝑥)𝑑𝑥

When is a B-spline increasing ?

𝒟𝐵𝑖,𝑘(𝑥) =
Thus if

𝒟
𝑑+𝑚

∑
𝑖=1

𝛼𝑖𝐵𝑖,𝑘(𝑥) =

It is sufficient that 𝛼𝑖 ≤ 𝛼𝑖+1

Integral, I-splines

1.2.4 Ordinal MDS

1.2.5 Interval and Ratio MDS

Additive constant
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1.2.6 Cyclic Coordinate Decent

In the non-linear least squares (NNLS) problem the data are an 𝑛 × 𝑝 matrix 𝑋, a vector 𝑦 with 𝑛
elements, and a positive semi-definite diagonal matrix 𝑊. We want to minimize

𝜎(𝛽) ∶= 1
2

(𝑋𝛽 − 𝑦)′𝑊(𝑋𝛽 − 𝑦)

over 𝛽 ≥ 0. In data analysis and statistics the problem is often solved by active set methods,

implemented in R for example by NNLS (Mullen and van Stokkum (2023)) and FNNLS (Bro

and De Jong (1997)). Active set methods are finitely convergent dual methods. While iterating

the intermediate solutions are not feasible (i.e. non-negative). In fact in dual methods we reach

feasibility and optimality at the same time. Also the number of iterations, although theoretically

finite, can be very large.

In each smacof iteration we need an NNLS solution. Especially in the early iterations the solution

does not have to be very precise. Also the solution from the previous NNLS problem will generally

provide a very good starting value for the next iteration (each NNLS problem has a “hot start”).

And finally, we would like all internediate solutions to be feasible. These considerations have lead

us to using cyclic coordinate descent (CCD).

Suppose the current best feasible solution in CCD iteration 𝑘 is 𝛽(𝑘). The next CCD iteration

changes each of the 𝑝 coordinates of 𝛽(𝑘) in turn, maintaining feasibility, while keeping the other
𝑝 −1 coordinates fixed at their current values. Thus within a CCD iteration 𝑘 we create intermediate
solutions 𝛽(𝑘,1), ⋯ , 𝛽(𝑘,𝑝), where each of the intermediate solutions 𝛽(𝑘,𝑟) differs from the previous

one 𝛽(𝑘,𝑟−1) in a single coordinate. For consistency we define 𝛽(𝑘,0) ∶= 𝛽(𝑘). After the iteration is
finished we set 𝛽(𝑘+1) = 𝛽(𝑘,𝑝).

Note that in smacof each iteration modifies the coordinates in the order 1, ⋯ , 𝑝, which explains
why the method is called “cyclic”. There are variations of CCD in which the order within an

iteration is random or greedy (choose the coordinate which gives the largest improvement) or

zig-zag 1, ⋯ , 𝑝, 𝑝 − 1, ⋯ , 1. We have not tried out these alternatives in smacf, but we may in the

future.

The effect of changing a single coordinate on the loss function is

𝜎(𝛽 + 𝜖𝑒𝑗) = 𝜎(𝛽) + 𝜖 𝑔𝑗(𝛽) + 1
2

𝜖2𝑠𝑗𝑗,

where 𝑒𝑗 is the unit vector corresponding with the coordinate we are changing, 𝑔(𝛽) ∶= 𝒟𝜎(𝛽) =
𝑋′𝑊𝑟(𝛽) is the gradient at 𝛽, and 𝑟(𝛽) ∶= 𝑋𝛽 − 𝑦 is the residual. Also 𝑆 ∶= 𝑋′𝑊𝑋. Note that

if 𝑠𝑗𝑗 = 0 then also 𝑔𝑗(𝛽) = 0 and thus 𝜎(𝛽 + 𝜖𝑒𝑗) = 𝜎(𝛽). In each CCD cycle we simply skip

updating coordinate 𝑗.

If 𝑠𝑗𝑗 > 0 then 𝜎(𝛽 + 𝜖𝑒𝑗) is a strictly convex quadratic in 𝜖, which we must minimize under the
constraint 𝛽𝑗 + 𝜖 ≥ 0 or 𝜖 ≥ −𝛽𝑗. Define ̂𝜖 to be the solution of this constrained minimization
problem.

The quadratic … has its minimum at

̃𝜖 = −
𝑔𝑗(𝛽)
𝑠𝑗𝑗
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If 𝛽 + ̃𝜖 is feasible then it is the update we are looking for. Thus ̂𝜖 = ̃𝜖. If 𝛽 + ̃𝜖 < 0 then the

contrained minimum is attained at the boundary, i.e. ̂𝜖 = −𝛽𝑗 and the updated 𝛽𝑗 is zero. Thus, in
summary, ̂𝜖 = max( ̃𝜖, −𝛽𝑗).

One of the nice things about CCD is that

𝑟( ̂𝛽) = 𝑟(𝛽) + ̂𝜖𝑥𝑗

𝑔( ̂𝛽) = 𝑔(𝛽) + ̂𝜖𝑠𝑗

It follows that ̂𝜖 = 0 if and only if either 𝛽𝑗 = 0 and 𝑔𝑗(𝛽) ≥ 0 or if 𝑔𝑗(𝑏𝑒𝑡𝑎) = 0 and 𝑏𝑒𝑡𝑎𝑗 > 0.

If 𝑔𝑗(𝛽) < 0 then ̃𝜖 > 0, and thus ̂𝜖 > 0 and 𝜎( ̂𝛽) < 𝜎(𝛽). Thus we must have 𝑔𝑗(𝛽) ≥ 0.

If 𝛽𝑗 > 0 and 𝑔𝑗(𝛽) ≠ 0 then there is an 𝜖 such that 𝜎(𝛽 + 𝜖𝑒𝑗) < 𝜎(𝛽). Thus if 𝛽𝑗 > 0 we must
have 𝑔𝑗(𝛽) = 0.

In summary at the minimum of 𝜎 over 𝛽 ≥ 0 we must have 𝛽𝑗 ≥ 0, 𝑔𝑗(𝛽) ≥ 0, and 𝛽𝑗𝑔𝑗(𝛽) = 0
for all 𝑗 (complementary slackness).

𝜎(𝛽 + 𝜖𝑒𝑗) = 𝜎(𝛽) + 𝜖 𝑔𝑗(𝛽) + 1
2

𝜖2𝑠𝑗𝑗,

where 𝑆 ∶= 𝑋′𝑊𝑋.

Now suppose we minimize 𝜎 over 𝛽 ≥ 0.

Our best solution so far is 𝛽(𝑘) ≥ 0. Minimize 𝜎(𝛽(𝑘)+𝜖𝑒1) over 𝜖 on the condition that 𝛽(𝑘)
1 +𝜖 ≥ 0

or 𝜖 ≤ −𝛽(𝑘)
1 . If 𝑠11 = 0 then also 𝑔1(𝛽) = 0 and we set 𝛽(𝑘+1,1) = 𝛽(𝑘,1). If 𝑠11 > 0 we

compute

̃𝜖 = −𝑔1(𝛽)/𝑠11

If

𝛽(𝑘)
1 + ̃𝜖 ≥ 0

then

𝛽(𝑘+1,1) = 𝛽(𝑘)
1 + ̃𝜖

If

𝛽(𝑘)
1 + ̃𝜖 < 0

we set

𝛽(𝑘+1,1) = 0.
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2 Smacof Program

2.0.1 Front-end

The front-end for both smacofBS and smacofRC is written in R. The analysis is started in the user’s

working directory by the command smacofBS(foo) or smacofRC(foo), where foo is a user-chosen

name (without quotes).

Two text files need to be present in the working directory. The first is fooParameters.txt, where of

course you substitute the user-chosen name for foo. The second file is fooDelta.txt, which has the

dissimilarities below the diagonal in row-major order.

The parameter file has key-value format. Here is an example.

nobj 9
ndim 3
init 2
width 10
precision 6
haveweights 0
itmax 1000
epsi 10
verbose 1
ditmax 5
depsi 6
dverbose 0
kitmax 5
kepsi 6
kverbose 0
degree 3
haveknots 3
ninner 5
ordinal 1
anchor 0
intercept 1

The parameter file is read first, using the R function read.table(). There is one key-value pair on

each line, at the start of the line. The order of the lines does not matter. There can be additional

comments or other text on each line after the value field, as long as that text is space-separated from

the value field. Additional key-value lines with non-existing parameters can be added at will.

Values of the parameters are put the local environment using R function assign(), which means they

are available to R throughout the smacof run. Of course if we choose smacofRC the front-end needs

to pass them to C using C(), but they will be available again for the back-end.

The Delta file, and any subsequent optional input files, are read with the R function scan(). Values

are separated by spaces. They can be on a single line, or laid out as a lower-triangular matrix, or

10



whatever. The function scan() only stops reading if it reaches the end-of-file.

We’ll now discuss the parameters one by one. Note that all parameters are integers. The first two are

obvious: nobj is the number of objects and ndim the number of dimensions. These two parameters

have no default or recommended values, because they deyermined by the data. All other parameters

in our example parameter file are set to reasonable values in our example parameter file. But the

whole idea is to experiment with various combinations of parameter values, so “reasonable” is

weaker than “recommended” and “recommended” is weaker than “default”.

The init parameter can have values 1, 2, or 3. If init equals 1 the program reads an initial configuration

from the file fooXinit.txt in the working directory. The file has nobj * ndim numbers, the initial

configuration, in row-major format. If init = 2 then the classical Torgerson initial estimate will be

computed. If init = 3 a random initial estimate will be used.

width and precision are parameters for the output of the values of stress during iterations.

haveweights is either zero or one. If zero there are no weights, which is equivalent to all weights

equal to one. If one then we will read a file fooWeights.txt, which has the lower-diagonal 1
2𝑛(𝑛−1)

weights in row-major order.

As explained in previous sections there are three iterative running in smacof. There are two inner

iterations: one for the configuration for fixed disparities, and one for the disparities for fixed

configuration. The two inner iteration loops are nested in one outer iteration loop. Each of the

iterations has three parameters: one for the maximum number of iterations, one for the stopping

criterion, and one for the verbosity of the iteration output. For the outer loop the parameters are

itmax, ieps, and verbose. For the inner configuration loop they are kitmax, keps, and kverbose. And

the inner transformation loop they are ditmax, deps, and dverbose. If the verbose parameter is one,

then each iteration prints out the stress before and the stress after update. If verbose is zero, nothing

is printed. The stopping parameters check if the change in stress in an iteration is less than epsilon,

where epsilon is 10^-ieps, 10^-keps, or 10^-deps.

The final five parameters are used to define the nature of the spline space for the transformations.

degree is the degree of the piecewise polynomials. The haveknots parameter can be 0, 1, 2, or 3. If it

is zero, there are no inner knots and we use the Bernstein polynomial basis. If haveknots is one, the

inner knots are read in from fooKnots.txt in the usual way. If haveknots is two the knots are equally

spaced between zero and one, and if it is three the knots are equally spaced on the precentile scale

(so that the number of data points between knots is approximately the same). The ninner parameter

determines the number of knots in the case that haveknots is either two or three. If haveknots is

zero, then ninner should be zero, if haveknots is one it should be equal to the number of knots in

fooKnots.txt.

The three final spline parameters are ordinal, anchor, and intercept. If ordinal is one the fitted spline

is constrained to be monotone. If intercept is zero then the first spline coefficient is constrained

to be zero (which means the first column is deleted from the basis). This means that the spline is

constrained to be zero at the lower boundary knot. If intercept is one there is no such constraint,

and the spline can be anything at the lower boundary (subject to monotonicity of ordinal is one). If

anchor is one then the boundary knots are set to zero and the maximum dissimilarity, if anchor is

zero the boundary knots are the minimum and maximum dissimilarity. Thus if intercept is zero and

11



anchor is one the spline goes through the origin.

The computations in the frontend are straightforward. We first transform the dissimilarities linearly

so that the smallest becomes zero and the largest becomes one. This is not strictly necessary but it

makes the spline computations slightly easier.

Initial Estimates for 𝑋 Spline Basis

2.0.2 Engine

ALS First Phase Second Phase

2.0.3 Back-end

The back-end consists of a number of R functions that have the list returned by smacofBS or

smacofRC as an argument. They can be used to make plots, compute derivatives, convert matrices to

an easily printable format, do sensitivity analysis, and so on. The philosophy is that in the backend

the main computing is finished and we just create different representations of the results.

2.0.3.1 Plotting There are two main plot functions in the backend: smacofShepardPlot() and

smacofConfigurationPlot(). A smacofShepardPlot has the dissimilarities (un-normalized) on the

horizontal axes and it has the distances and the disparities on the vertical axis. It draws the spline,

and shows where the fitted disparities are on the spline. It also plots the (delta, dist) pairs as points,

to show how far they deviate from the spline. Optionally smacofShepardPlot() can draw vertical

lines at the inner knots (argument knotlines = TRUE), and optionally it can connect the (delta, dhat)

points on the spline to the (delta, dist) points with lines (argument fitlines = TRUE).

It must be emphasized that smacofShepardPlot() draws the spline over the whole interval, which is

either (deltamin, deltamax) if anchor = 0 and (0, deltamax) if anchor = 1. It does this by recomputing

the spline at a large number of uniformly spaced points in the interval, where the number of points

is given by the smacofShepardPlot() parameter resolution. Thus we do not use only the data points

(delta,dhat) and then let the R plot function interpolate linearly. That can be misleading. It is

especially misleading if degree is zero (step function) or if there are consecutive inner knots with

no data values between the knots. Degree zero is handled by the special purpose step function

plotting routine smacofPlotStepFunction(), which makes sure the spline is drawn as a horizontal

segment from one knot to the next knot. In addition smacofShepardPlot() can set some base R plot

parameters such as col, cex, lwd, and pch (see the R documentation).

The smacofConfigurationPlot() function is much simpler than smacofShepardPlot(). It sets pch,

col, and cex. It uses the smacofBS/RC labels parameter to decide how to label the points in the

configuration. If labels = 1 it reads a character vector of labels from fooLabels.txt, where foo is of

course the name of the run. If labels = 2 the points are numbered, if labels = 3 plotting uses the pch

symbol for all points. If the dimension 𝑝 is larger than two, smacofConfigurationPlot() uses the
parameters dim1 and dim2 to select the dimensions to plot.

2.0.3.2 Writing
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2.0.3.3 Checking

2.0.3.4 Derivatives

2.0.3.5 Sensitivity Perturbation regions

Parametric Bootstrap

Jacknife
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3 Examples

3.1 ekman

The Ekman (1954) color circle similarities have been used in many, if not most, multidimensional

scaling textbooks and review articles. See, for example, Borg and Groenen (2005), p 63-68. Its

popularity is due, no doubt, to its astonishing good two-dimensional fit and its easy interpretability.

In brief, Ekman used what he called theMethod of similarity analysis. The stimuli were fourteen

color filters, transmitting light of wave lengths 434 𝑚𝜇 mp to 674 𝑚𝜇. The subjects were 31
students with normal color vision. They judged the similarity between all 91 pairs of colors on

a five-point rating scale with categories 0-4. The similarity judgments were then averaged over

students and the average was divided by four to create similarties 𝑠𝑖𝑗 between zero and one. For
MDS purposes we set 𝛿𝑖𝑗 = 1 − 𝑠𝑖𝑗.

We start with a metric analysis in two dimensions. In all analyses in this section of the manual we

start with the Torgerson initial configuration, and we iterate until the change in stress from one outer

iteration to the next is less than or equal to 1e-10.

After 32 iterations we find a minimum stress of 0.5278528. The Shepardplot in the left panel of

figure 1 shows a reasonably good fit, but strongly suggests making a non-linear transformation to

improve the fit.

It is known that if we use 𝛿𝑖𝑗 = (1 − 𝑠𝑖𝑗)3 then the two-dimensional solution computed by smacof
is the global minimum of stress for all dimensions 𝑝 ≥ 2 (De Leeuw (2014), De Leeuw (2019)).

So we repeated the metric analysis using the cubic transformation. After 17 iterations we find

stress 0.2426954 and the Shepardplot in the right panel of figure 1. A better fit, and the deviations

from linearity are what one expects from least squares: overestimation of the smaller dissimilarities

and underestimation of the larger ones. Nevertheless, the configurations for the two solutions in

figure 2 are remarkably similar, showing once again that configurations tend to be more stable than

Shepardplots.

INSERT FIGURE 1 ABOUT HERE

INSERT FIGURE 2 ABOUT HERE

We present four additional non-metric analyses, using the seven-digit coding illustrated in table

2. The stress values in the table cannot be compared directly with those of the metric solutions,

because in the non-metric analysis the dissimilarities are normalized and thus the stress scales are

different. We can compare within the table, however, and compare all Shepard plots.

INSERT TABLE 2 ABOUT HERE

INSERT FIGURE 3 ABOUT HERE
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INSERT FIGURE 4 ABOUT HERE

3.2 gruijter

The ekman examples had a really good fit. We use the data from De Gruijter (1967) for an example

with a rather bad fit in two dimensions. Dissimilarity judgments between nine Dutch political

parties were collected in 1966 by the complete method of triads. Results were averaged over 100

students. Averaging over a heterogeneous population will cause regression to the mean, and thus

dissimilarities will tend to be more equal than they should be on the basis of the individual results.

This means there should be a substantial difference in fit between the “ratio” and the “interval”

options (i.e. between the interval parameter equal to one or zero).

3.3 morse

4 Tables

Table 2: Analyses of the ekman example

ninner degree haveknots ordinal intercept anchor ndim stress itel

0 3 0 1 0 1 2 0.08686091 118

5 3 3 1 0 1 2 0.07869019 2944

50 0 3 1 0 1 2 0.04675950 1296

50 0 2 1 0 1 2 0.05895210 885

Table 3: Analyses of the gruijter example

ninner degree haveknots ordinal intercept anchor ndim stress itel

0 1 0 0 0 1 3 0.23524290 42

0 1 0 0 1 0 3 0.06099819 43

0 3 0 1 0 1 2 0.34953364 106

0 3 0 1 0 1 3 0.07248619 115

5 3 3 1 0 1 2 0.34082527 667

5 3 3 1 0 1 3 0.04823789 614
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5 Figures
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Figure 1: ekman example, metric
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Figure 2: ekman example, metric
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Figure 3: ekman example, cubic analysis
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Figure 4: ekman example, pseudo-nonmetric analysis
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Figure 5: gruijter example, linear analysis
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Figure 6: gruijter example, linear analysis
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Figure 7: gruijter example, cubic polynomial
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Figure 8: gruijter example, cubic spline analysis
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