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1 Introduction

The paired comparison of pairs of objects is the simplest and the most basic one of the cartwheel

methods for collecting similarity judgments (Coombs (1954)). Pairs of objects from a set 𝒪 of 𝑛
objects are compared, and the data indicate which of the two pairs is the most similar. Torgerson

(1958) (p. 261-262) calls this the method of tetrads, and we shall adopt this terminology by referring

to a pair of pairs of objects ((𝑜𝑖, 𝑜𝑗), (𝑜𝑘, 𝑜𝑙)) as a tetrad. This is of course not to be confused with
the use of “tetrads” in factor analysis.

In Torgerson’s method of tetrads we need replications over occasions (or subjects) to estimate the

probability of the (𝑜𝑖, 𝑜𝑗) ≲ (𝑜𝑘, 𝑜𝑙) judgments, which can then turned into scale values using
Thurstonian paired comparison methods. In the smacofPC method we discuss here no replications

are needed and we can apply MDS to the data from a single occasion without replications of tetrads.

In the MDS context the response that objects 𝑜𝑖 and 𝑜𝑗 are more similar than objects 𝑜𝑘 and 𝑜𝑙 means
that we require of our representation 𝑋 that 𝑑𝑖𝑗(𝑋) ≤ 𝑑𝑘𝑙(𝑋). smacofPC() finds an approximate
solution to this highly non-linear and highly non-convex system of inequalities.

smacofPC() is not limited to data collected as comparisons of pairs of objects. Many different

data collection methods produce data that are not directly of this form, but that can be coded as

such paired comparisons. Examples are the various versions of the method of triads, the method of

conditional rank orders, and the complete or partial ranking of all (𝑛
2) dissimilarities. In general the

comparison data for pairs of pairs do not require transitivity or symmetry and allow for replications

of some or all pairs of pairs.

There have been earlier versions of non-metric MDS methods based on comparisons of pairs of

objects. Around 1970 various people proposed the positive orthant method (POM) (De Leeuw

(1968), De Leeuw (1970), Hartmann (1979)), the absolute value principle (AVP) (Guttman (1969)),

and the pairwise nonmetric method (PNM) (Johnson (1973)). Guttman’s conference presentation

has been republished as Guttman (1979).

The POM, AVP, and PNM methods all use an implicitly normalized least squares loss function with

a numerator of the form

𝜆𝑁(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗,𝑘𝑙 𝜎𝑖𝑗,𝑘𝑙 sign(𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋))|𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋)|𝑞, (1)

where 𝑤𝑖𝑗,𝑘𝑙 ≥ 0 and 𝜎𝑖𝑗,𝑘𝑙 is either minus one, plus one, or zero. In most cases 𝜎𝑖𝑗,𝑘𝑙 is the
signature of the dissimilarities, i.e.

𝜎𝑖𝑗,𝑘𝑙 = sign(𝛿𝑖𝑗 − 𝛿𝑘𝑙), (2)

but that is not necessarily the case, if only because there may not be numerical dissimilarities. It is

useful, however, to keep this interpretation in mind. In Johnson’s PNM squared distances instead of

distances are used, but at the conceptual level that seems just a minor detail.

The denominator of the loss function in all three approaches is

𝜆𝐷(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗,𝑘𝑙|𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋))|𝑞, (3)
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and all three algorithms use gradient methods to minimize their loss functions 𝜆(𝑋) =
𝜆𝑁(𝑋)/𝜆𝐷(𝑋).

In both AVP and the more recent version of POM (De Leeuw (2018)) emphasis is on 𝑞 = 1, in
which case the loss function is

𝜆(𝑋) =
∑ ∑ 𝑤𝑖𝑗,𝑘𝑙 𝜎𝑖𝑗,𝑘𝑙(𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋))

∑ ∑ 𝑤𝑖𝑗,𝑘𝑙 |𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋)|
. (4)

This can be rewritten in the more compact and computationally more friendly rearrangement form

𝜆(𝑋) =
∑ 𝑟𝑖𝑗𝑑𝑖𝑗(𝑋)

max𝑟∈ℛ ∑ 𝑟𝑖𝑗𝑑𝑖𝑗(𝑋)
. (5)

Here ℛ is the set of all matrices of the form 𝑟𝑖𝑗 = ∑ 𝑤𝑖𝑗,𝑘𝑙𝜎𝑖𝑗,𝑘𝑙, with 𝜎𝑖𝑗,𝑘𝑙 varying over all
possible signatures (or, equivalently, over the convex set of all matrices with entries between minus

and plus one).

As we shall see, the loss function used in smacofPO is an explicitly normalized version of equation

(1) with 𝑞 = 2. The explicit normalization is a major difference with POM/AVP/PNM, which use

implicit normalization of stress with denominator (3). The loss function used for our initial estimate

is an explicitly normalized version of equation (1) that has 𝑞 = 1 and uses squared distances.

The MAXSCAL method for tetrads proposed by Takane (1978b), Takane (1978a) is very different

from the POM, AVP, PNM trio, and consequently also different from smacofPC. The loss function

is not least squares, at least not conceptually, but is based on the likelihood function for a simple

choice model for the tetrad responses. Computationally the negative likelihood is minimized by

using a Gauss-Newton approximation to the Hessian, which leads in the usual way to iterative

reweighted least squares.

Another recent excursion into scaling tetrads is Agarwal et al. (2007). They do not use a least

squares loss function and rely on semidefinite programming methods to find an approximate solution

to the system of inequalities.
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2 Loss Function

To introduce the smacofPO loss function we start with a general non-metric MDS problem with

loss function

𝜎(𝑋, 𝐷̂1, ⋯ , 𝐷̂𝑠) ∶=
𝑅

∑
𝑟=1

𝜎𝑟(𝑋, 𝐷̂𝑟), (6)

with

𝜎𝑟(𝑋, 𝐷̂𝑟) ∶=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤𝑖𝑗𝑟( ̂𝑑𝑖𝑗𝑟 − 𝑑𝑖𝑗(𝑋))2. (7)

As usual, the symbol ∶= is used for definitions. Our loss function is similar to the one used by

Roskam (1970) for the method of triads (article republished in Roskam (1979)).

The weights 𝑊𝑟 = {𝑤𝑖𝑗𝑟} are known non-negative numbers and𝐷(𝑋) ∶= {𝑑𝑖𝑗(𝑋)} is a matrix of
Euclidean distances between the rows of the 𝑛 × 𝑝 configuration 𝑋 = {𝑥𝑖𝑠}, which are interpreted
as 𝑛 points in ℝ𝑝.

Loss function (6) must be minimized over configurations 𝑋 and over the 𝑅 matrices of disparities

𝐷̂𝑟 = { ̂𝑑𝑖𝑗𝑟}. The minimization problem has some constraints, both on 𝑋 and on the 𝐷̂𝑟. We

require that 𝑋 ∈ 𝒳 ⊆ ℝ𝑛×𝑝. Here 𝒳 is the set of column-centered (columns add up to zero) 𝑛 × 𝑝
matrices that are normalized by

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑤⋆
𝑖𝑗𝑑2

𝑖𝑗(𝑋)) = 1, (8)

where

𝑤⋆
𝑖𝑗 ∶=

𝑅
∑
𝑟=1

𝑤𝑖𝑗𝑟. (9)

Roskam (1970) uses implicit normalization in his method of triads (and the MINITRI program) by

defining loss as the ratio of (7) and the sum of squares from (8). By Kruskal and Carroll (1969) and

De Leeuw (1975) this gives the same solution, up to a scale factor, as our explicit normalization.

The disparities 𝐷̂𝑟 = { ̂𝑑𝑖𝑗𝑟} are required to satisfy 𝐷̂𝑟 ∈ 𝒞𝑟. The 𝒞𝑟 are polyhedral convex cones,
which are subcones of the cone of non-negative matrices. Each of the cones is defined by partial

orders ≤𝑟 over the elements of the 𝐷̂𝑟. In general, neither the (known) weight matrices 𝑊𝑟 nor the

(unknown) disparity matrices 𝐷̂𝑟 need to be symmetric and/or hollow (i.e. have zero diagonal).

The data of the MDS problem are the weights 𝑊𝑟 and the cones 𝒞𝑟. Each pair (𝑊𝑟, 𝒞𝑟) is called
a slice of the data. Comparisons of pairs are only within slices. In the MDS literature this is also

known as conditional rank orders. The unknowns or parameters of the problem are 𝑋 ∈ 𝒳 and the

𝐷̂𝑟 ∈ 𝒞𝑟.

To minimize loss over 𝑋 ∈ 𝒳 for the current best value of the 𝐷̂𝑟. This subproblem is simplified

by using the least squares partitioning

𝜎(𝑋, 𝐷̂1, ⋯ , 𝐷̂𝑠) =
𝑅

∑
𝑟=1

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑤𝑖𝑗𝑟( ̂𝑑𝑖𝑗𝑟 − ̂𝑑⋆
𝑖𝑗)2 +

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑤⋆
𝑖𝑗( ̂𝑑⋆

𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2, (10)
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where

̂𝑑⋆
𝑖𝑗 =

∑𝑅
𝑟=1 𝑤𝑖𝑗𝑟

̂𝑑𝑖𝑗𝑟

∑𝑅
𝑟=1 𝑤𝑖𝑗𝑟

. (11)

2.1 Slice-Independence

We will assume throughout that 𝑤𝑖𝑗𝑟 = 𝑤𝑖𝑗𝜖𝑖𝑗𝑟, where 𝜖𝑖𝑗𝑟 = 1 is either zero or one. If 𝜖𝑖𝑗𝑟 is one,
we say that pair (𝑖, 𝑗) participates in slice 𝑟. Thus 𝜖𝑖𝑗𝑟 = 0 for all pairs that do not particpate. We

refer to the assumption 𝑤𝑖𝑗𝑟 = 𝑤𝑖𝑗𝜖𝑖𝑗𝑟 on the weights as the slice-independent case.

To see the consequences of slice-independence for our equations we define

ℐ𝑟 ∶= {(𝑖, 𝑗) ∣ 𝜖𝑖𝑗𝑟 = 1} (12)

so that

𝜎𝑟(𝑋, 𝐷̂1, ⋯ , 𝐷̂𝑠) =
𝑠

∑
𝑟=1

∑
(𝑖,𝑗)∈ℐ𝑟

𝑤𝑖𝑗( ̂𝑑𝑖𝑗𝑟 − 𝑑𝑖𝑗(𝑋))2 (13)

Equation (9) gives 𝑤⋆
𝑖𝑗 = 𝑤𝑖𝑗𝜖⋆

𝑖𝑗, where 𝜖⋆
𝑖𝑗 is the number of times pair (𝑖, 𝑗) occurs in the 𝑅 slices.

A set of slices is balanced if all 𝜖⋆
𝑖𝑗 are equal. Also, from (11),

̂𝑑⋆
𝑖𝑗 =

∑𝑅
𝑟=1 𝜖𝑖𝑗𝑟

̂𝑑𝑖𝑗𝑟

∑𝑅
𝑟=1 𝜖𝑖𝑗𝑟

(14)

which does not depend on the 𝑤𝑖𝑗.

It follows that in our computations we have to deal with various different sets of weights. There are

the 𝑤𝑖𝑗𝑟, the 𝑤⋆
𝑖𝑗, the 𝑤𝑖𝑗, and the 𝜖⋆

𝑖𝑗. In the first ALS subproblem where we minimize over the

𝐷̂𝑟 for fixed 𝑋 we use equation (13), i.e. we use the 𝑤𝑖𝑗. If we minimize over 𝑋 for fixed 𝐷̂𝑟 we

use (10), which means we use 𝑤⋆
𝑖𝑗 = 𝑤𝑖𝑗𝜖⋆

𝑖𝑗 and
̂𝑑⋆
𝑖𝑗 given by (14). Of course this all simplifies if

𝑤𝑖𝑗 = 1 for all pairs (𝑖, 𝑗) (the unweighted case).

2.2 Initial Configuration

In metric and non-linear MDS the default initial configuration is the classical Torgerson metric

MDS solution. That is not available for smacofPC, because there are no numerical dissimilarities.

In De Leeuw (1970) (section 5.1) and De Leeuw (1973) (republished as De Leeuw (1984)), chapter

4, a different eigenvalue-eigenvector based initial solution is proposed. We discuss a somewhat

modernized version here. It is sometime known as the maximum sum method. The data are an order

over a number of tetrads.

𝜔(𝑋) ∶= ∑ ∑
(𝑖,𝑗)≺(𝑘,𝑙)

(𝑑2
𝑖𝑗(𝑋) − 𝑑2

𝑘𝑙(𝑋)), (15)

where (𝑖, 𝑗) ≺ (𝑘, 𝑙) means that we want 𝑑𝑖𝑗(𝑋) ≤ 𝑑𝑘𝑙(𝑋). We want all terms in 𝜔(𝑋) to be
positive, but for purposes of the initial configuration we relax this to wanting their sum to be large.

This explains the “maximum sum” name.

6



The sum (15) can be written as the quadratic form 𝜔(𝑋) = tr 𝑋′𝐴⋆𝑋, with

𝐴⋆ ∶= {∑
(𝑖,𝑗)

∑
(𝑘,𝑙)

(𝐴𝑖𝑗 − 𝐴𝑘𝑙)} (16)

Note that 𝐴⋆ is symmetric and doubly-centered. Moreover its trace is zero, and consequently it has

one zero, some negative, and some positive eigenvalues.

Because 𝑋 is column centered we have 𝜔(𝑋) = tr 𝑋′(𝐴⋆ + 𝜃𝐽)𝑋 where 𝐽 is the centering matrix

𝐼 − 𝑛−1𝑒𝑒′ and 𝜃 is arbitrary. For the non-zero eigenvalues we have 𝜆𝑠(𝐴⋆ + 𝜃𝐽)) = 𝜆𝑠(𝐴⋆) + 𝜃,
and thus for 𝜃 ≥ −𝜆min(𝐴⋆) the matrix 𝐴⋆ + 𝜃𝐽 is positive semi-definite.

Of course maximizing 𝜔 over all 𝑋 does not make sense, because by making 𝑋 larger we make 𝜔
larger. Thus the supremum over all 𝑋 is +∞ and the maximum is not attained. We need some kind

of normalization. The obvious choice is tr 𝑋′𝑋 = 1, but unfortunately that does not work. It gives
a rank-one solution with all columns of 𝑋 equal to the eigenvector corresponding with the dominant

eigenvalue of 𝐴⋆. Instead we use tr (𝑋′𝑋)2 = 1. This gives the solution 𝑋 = 𝐾Λ1
2 with Λ the

largest 𝑝 eigenvalues of 𝐴⋆ (assumed to be non-negative) and 𝐾 the corresponding normalized

eigenvectors. This is our version of the Torgerson initial solution for non-metric MDS.

We have been deliberately vague about what to do if the number of positive eigenvalues of 𝐴⋆ is
less than 𝑝, which is of course a problem the Torgerson metric MDS solution has as well. In the

program we simply choose 𝜃 equal to −𝜆𝑝(𝐴⋆) if 𝜆𝑝(𝐴⋆) < 0. We expect the problem to be rare,

and the actual choice of 𝜃 to be fairly inconsequential.

Maximizing the maximum sum loss function is equivalent to minimizing the loss function 𝜆𝑁(𝑋)
in (1) with 𝑤𝑖𝑗,𝑘𝑙 = 1 and 𝑞 = 1 (and with squared distances instead of distances). The maximum
sum method was proposed, together with POM, in De Leeuw (1968). The inspiration came mostly

from Guttman (1946), so it is no surprise that Guttman (1969) proposes essentially the same initial

configuration for his AVP technique.

The method for the special case in which there are numerical (dis)similarities has been around

even longer. It is discussed in the one-dimensional case as the “fourth method of quantification”

in Hayashi (1952). Suppose Δ is a symmetric non-negative matrix of dissimilarities. Then, in the

multidimensional extension proposed in Okamoto and Isogai (1978), we maximize

∑ ∑ 𝛿2
𝑖𝑗𝑑2

𝑖𝑗 = tr 𝑋′𝐵𝑋, (17)

with explicit normalization of 𝑋. Here

𝐵 ∶= ∑ ∑ 𝛿2
𝑖𝑗𝐴𝑖𝑗. (18)

Thus 𝐵 is positive semi-definite, and if Δ is irreducible it is of rank 𝑛 − 1. Okamoto and Isogai
(1978) observe in their Theorem 3, as we have above. that requiring tr 𝑋′𝑋 = 1 generally leads
to a one dimensional solution. Only if the largest eigenvalue of 𝐵 has multiplicity 𝑟 > 1 an

r-dimensional solution is possible. We removed this problem by using the explicit normalization

tr (𝑋′𝑋)2 = 1.
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We should emphasize that in Hayashi’s method similarities in stead of dissimilarities are used,

and that the (dis)similarities are not squared. It seems natural to use squares dissimilarities in ..,

also because Okamoto and Isogai (1978) refer to earlier results (in Japanese), where Hayashi’s

fourth method compares unfavorably with the Torgerson classical MDS solution which is of course

based on squared dissimilarities. Also note again that in the tetrad case we do not need a numerical

measure of similarity or dissimilarity.

2.3 Pairwise Monotone Regression

Suppose datum 𝑟 says that that (𝑖, 𝑗) ≺ (𝑘, 𝑙). In the slice independent case 𝑤𝑖𝑗𝑟 = 𝑤𝑖𝑗 and
𝑤𝑘𝑙𝑟 = 𝑤𝑘𝑙 can be non-zero and all other elements of 𝑊𝑟 are zero.

If (𝑖, 𝑗) ≺ (𝑘, 𝑙)

𝜎𝑟(𝑋, 𝐷̂𝑟) = 𝑤𝑖𝑗( ̂𝑑𝑖𝑗𝑟 − 𝑑𝑖𝑗(𝑋))2 + 𝑤𝑘𝑙( ̂𝑑𝑘𝑙𝑟 − 𝑑𝑘𝑙(𝑋))2 (19)

Loss (19) must be minimized over ̂𝑑𝑖𝑗𝑟 ≤ ̂𝑑𝑘𝑙𝑟. If 𝑑𝑖𝑗(𝑋) ≤ 𝑑𝑘𝑙(𝑋) then ̂𝑑𝑖𝑗𝑟 = 𝑑𝑖𝑗(𝑋) and
̂𝑑𝑘𝑙𝑟 = 𝑑𝑘𝑙(𝑋). Otherwise

̂𝑑𝑖𝑗𝑟 = ̂𝑑𝑘𝑙𝑟 =
𝑤𝑖𝑗𝑑𝑖𝑗(𝑋) + 𝑤𝑘𝑙𝑑𝑘𝑙(𝑋)

𝑤𝑖𝑗 + 𝑤𝑘𝑙
. (20)

Thus loss component (19) is zero if the order of 𝑑𝑖𝑗(𝑋) and 𝑑𝑘𝑙(𝑋) is the same as the order dictated
by the data and

𝑤𝑖𝑗𝑤𝑘𝑙

𝑤𝑖𝑗 + 𝑤𝑘𝑙
(𝑑𝑖𝑗(𝑋) − 𝑑𝑘𝑙(𝑋))2 (21)

So far we have only considered the forced-choice situation in which the data is a choice of one of

the two pairs. If we allow for the alternative that (𝑖, 𝑗) and (𝑘, 𝑙) are equally similar then we can
choose between two different approaches. In the primary approach we incur no loss for this pair,

no matter what 𝑑𝑖𝑗(𝑋) and 𝑑𝑘𝑙(𝑋) are. In the secondary approach we require that ̂𝑑𝑖𝑗𝑟 = ̂𝑑𝑘𝑙𝑟 and
consequently we use equation (20) and add to the loss if 𝑑𝑖𝑗𝑋) ≠ 𝑑𝑘𝑙(𝑋).

From equation (21) we see that the minimum of the loss function over 𝐷̂ for given 𝑋 is the same as

the numerator of Johnson’s PM loss function (except that for PM all weights are one).
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3 Program

3.1 Parameters

The smacofPC function in R has the following parameters (with default values).

smacofPC <- function(data,
nobj = max(data),
ndim = 2,
wmat = NULL,
xold = NULL,
labels = NULL,
width = 15,
precision = 10,
itmax = 1000,
eps = 1e-10,
verbose = TRUE,
kitmax = 5,
keps = 1e-10,
kverbose = 0,
init = 1,
ties = 0)

• If xold is non-null then an initial configuration matrix must be provided.

• If labels is non-null then a character vector of plot labels must be provided.

• width and precision are relevant for the format of (optional) major iteration output.

• itmax and eps determine when the major iterations stop.

• If verbose = TRUE itel and stress for each major iteration are written to stdout.

• kitmax and keps determine the number of inner Guttman transform iterations between two

monotone regressions.

• If kverbose = TRUE then itel and stress for each inner iteration are written to stdout.

• If init = 1 the maximum sum initial configuration is computed, if init = 2 a random initial

configuration is used.

• Ties is either 0, 1, or 2. If ties = 0 the data are forced choice, no ties are allowed. If ties = 1 or

ties = 2 the the primary or secondary approach to ties is used.

3.2 Input

The data are either a four column (if ties = 0) or a five column (if ties = 1 or ties = 2) matrix (or data

frame). Here is an example of a data matrix with ties = 2 from the hoogeveen example (see below).

The first four columns are indices. Row one, for example, tells us that 𝛿23 ≤ 𝛿34. Row two has an

entry in the fifth column and tells us that 𝛿23 = 𝛿45, and that we are supposed to use the second

approach to ties, i.e. require ̂𝑑23 = ̂𝑑45.

## V1 V2 V3 V4 V5
## 1 2 3 3 4 0
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## 2 2 3 4 5 2
## 3 2 3 3 5 0
## 4 2 3 2 4 0
## 5 4 5 1 2 0
## 6 2 5 1 2 2
## 7 3 5 4 5 0
## 8 1 3 1 2 0
## 9 1 2 2 4 0
## 10 2 5 2 4 0
## 11 3 5 3 4 0
## 12 1 3 2 3 0
## 13 1 2 2 5 0
## 14 3 5 2 5 0
## 15 1 5 1 4 0
## 16 1 3 3 4 0
## 17 3 5 1 2 0
## 18 1 5 1 4 0
## 19 3 5 2 3 2
## 20 2 5 2 4 0

• The data can have replications of some or all comparisons.

• The data are not necessarily consistent with any partial order, i.e. there can be intransivities

and asymmetries.

• It is possible to use the secondary approach to ties for some comparisons and the primary

approach for others.

• For more information on data generation see section 4 on utilities.

3.3 Algorithm

The smacofPO algorithm is standard alternating least squares, with one or more Guttman transforms

alternated with pairwise monotone regression.

3.4 Output

h <- list(
nobj = nobj,
ndim = ndim,
snew = snew,
itel = itel,
xnew = xnew,
dhat = dhat,
dmat = dmat,
wmat = wmat,
esum = esum,
wsum = wsum,
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labels = labels
)

The member that may not be obvious are esum and wsum. esum is a matrix with the 𝜖⋆
𝑖𝑗, and wsum

is the elementwise product of esum and wmat.
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4 Utilities

4.1 Data Generation and Collection

Let us first address the elephant in the room. Even for moderate 𝑛 there are a lot of tetrads, and in

behavioural science it quickly becomes impossible to present all of them to a subject, even if that

subject is paid or is an undergraduate psychology student.

If we only consider distinct pairings of distinct pairs there are already ((𝑛
2)
2 ) tetrads, which is of the

order 1
4𝑛4. Here is a little table.

## 3 3
## 4 15
## 5 45
## 6 105
## 7 210
## 8 378
## 9 630
## 10 990
## 11 1485
## 12 2145
## 13 3003
## 14 4095
## 15 5460
## 16 7140
## 17 9180
## 18 11628
## 19 14535
## 20 17955

There are a number of ways to deal with this fundamental problem. If we take the psychophysical

point of view that subjects are merely replications then we can use multiple subjects, each handling

a subset of the tetrads. Alternatively, we can select a random subset of the total set of tetrads. Or

we could use a design to select a preferably balanced subset. If the data are not behavioural and

machine generated a complete set of tetrads may be feasible.

Two utility functions are included in the package to collect data and organize them into the

appropriate format. They are smacofMakeAllPairs <- function(names, ties = 0) and

smacofMakeRandomPairs <- function(names, nrandom, ties = 0).

Since 1897 Dutch children were taught to read using a leesplankje (reading board), named after

its originator, primary school teacher M.B. Hoogeveen. It was still in use when I went to primary

school in the nineteen fifties. It probably has been replaced by more modern tools by now, and

leesplankjes are now collectors items for boomers. A prototypical example is in figure 1.

For our stimulus set we selected the five humans Wim, Zus, Jet, Teun, Gijs. Starting smacof-

MakeAllPairs() generates a sequence of tetrads on stdout, giving the subject an opportunity to
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Figure 1: Hoogeveen’s Leesplankje.

choose the most similar pair (or to decide that both pairs are equally similar). On stdout we see

(with responses)

> smacofMakeAllPairs(names)
(Gijs,Teun) and (Gijs,Wim)
most similar pair: 2
(Teun,Wim) and (Gijs,Jet)
most similar pair: 2
(Gijs,Zus) and (Jet,Zus)
most similar pair: 2
(Wim,Jet) and (Gijs,Wim)
most similar pair: 1
(Teun,Zus) and (Teun,Jet)
most similar pair:

At the same time the same pairs are show on the graphics device, in the form shown in figure 2.

Figure 2: A Tetrad
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This continues until all tetrads are shown (in the case of smacofMakeAllPairs()) or a given number

of random pairs (without replacement) has been shown (in the case of smacofMakeRandomPairs()).

As we discussed in the introduction smacofPC() is not limited to data collected as tetrads. After

suitable manipulation it can also handle data collected by the method of triads or by conditional

or complete rank orders. In particular if we have a matrix of dissimilarities between 𝑛 objects

we can convert it to a large number of comparisons of tetrads. This is done by the function

smacofMakePairsFromDelta <- function(delta, ties = 1).

Alternatively we can code the order of dissimilarities using only (𝑛
2) − 1 tetrads, by using only those

pairs that are consecutive in the ordering of pairs. This is done by smacofOrderPairsFromDelta
<- function(delta, ties = 1).

4.2 Plots

smacofPC does not have a Shepard plot, because there are no dissimilarities to put on the horizontal

axes. We do have

smacofConfigurationPlot <-
function(h,

main = "ConfigurationPlot",
dim1 = 1,
dim2 = 2,
pch = 16,
col = "RED",
cex = 1.0)

and

smacofDistDhatPlot <- function(h,
fitlines = TRUE,
colline = "RED",
colpoint = "BLUE",
main = "Dist-Dhat Plot",
cex = 1.0,
lwd = 2,
pch = 16)
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5 Examples

5.1 Hoogeveen

A single subject (me) ran smacofMakeAllPairs() on the five leesplankje names. This produced 45

tetrads.

Convergence is to stress 3.1647986 × 10−9 in 296 iterations. The curved solution Teun-Gijs-

Wim-Jet-Zus goes from old-male to young-female. The 45 inequalities in the data can be satisfied

exactly.

INSERT FIGURE 3 ABOUT HERE

INSERT FIGURE 4 ABOUT HERE

5.2 Parties

I left The Netherlands in 1987 and have not followed their local political news. So I am not really

an expert on current Dutch politics. Nevertheless I was the only subject generating the data (50

random tetrads) for this example. The ten parties I used are

• SP Socialists

• GL Greens

• PvdD Party for the Animals

• PvdA Labour

• D’66 Neither fish nor fowl

• CDA Christian Democrats

• VVD European-style Liberals

• CU More Christian Democrats

• SGP Right-wing Christians

• FVD Right-wing Populists

For more details, see this Wikipedia article.

Convergence is to stress 1.1150739×10−9 in 135 iterations. The solution is in an almost equilateral
triangle with the three extremes (FVD, SP, SGP) in the vertices. The interior of the triangle shows a

social democratic (PvdA, PvdD, GL), a liberal (VVD, D’66), and a christian democrat (ARP, CU,

CDA) cluster, roughly ordered from left-wing on the right of the plot to right-wing on the left of the

plot. Again, all 50 inequalities can be fitted exactly.

We can check how sparse and balanced the randomly generated “design” is by printing the 𝜖⋆
𝑖𝑗.

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0 2 3 3 2 4 2 1 0 2
## [2,] 2 0 2 3 1 2 1 4 3 1
## [3,] 3 2 0 3 3 3 4 2 1 0
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## [4,] 3 3 3 0 0 3 1 4 4 2
## [5,] 2 1 3 0 0 2 0 3 2 6
## [6,] 4 2 3 3 2 0 2 0 4 5
## [7,] 2 1 4 1 0 2 0 1 2 1
## [8,] 1 4 2 4 3 0 1 0 2 2
## [9,] 0 3 1 4 2 4 2 2 0 2
## [10,] 2 1 0 2 6 5 1 2 2 0

with row sums 19, 19, 21, 23, 19, 25, 14, 19, 20, 21. For an all-pairs-of-pairs design the elements of

this matrix would have been 44. So the random “design” is very sparse but decently balanced.

INSERT FIGURE 5 ABOUT HERE

INSERT FIGURE 6 ABOUT HERE

5.3 Ekman (1954)

The ekman data are dissimilarities between 14 colors. This means they can be expanded into 4095

tetrads, which can then be analyzed by smacofPC(). We do not necessarily recommend this practice,

because the pairwise coding involves a great deal of dependence and redundancy. The smacofPC()

program is really intended for sequences of independent tetrads judgments. Nevertheless we will

use these expanded ekman dissimilarities as an example.

Convergence is to stress 0.0087145 in 82 iterations. The solution is the familiar color circle, except

that, for some reason that I do not understand yet, the circle is crumpled at the high frequency end.

INSERT FIGURE 7 ABOUT HERE

INSERT FIGURE 8 ABOUT HERE
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6 Figures
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