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1 Introduction: Categorical Data

In this chapter we shall analyze categorical data, with the following components.

• There are 𝑚 variables.

• Variable 𝑗 has 𝑘𝑗 > 1 categories.

• There are 𝑛 objects.

• Each object defines a partial order over the categories of each variable.

Thus the data are the 𝑛 × 𝑚 partial orders ≲𝑖𝑗.

We study minimization of the stress loss function

𝜎(𝑋, 𝑌1, ⋯ , 𝑌𝑚) ∶=
𝑚

∑
𝑗=1

𝑛
∑
𝑖=1

min
̂𝑑𝑗
𝑖∈Δ𝑗

𝑖

𝑘𝑗

∑
𝑙=1

𝑤𝑗
𝑖𝑙( ̂𝑑𝑗

𝑖𝑙 − 𝑑(𝑥𝑖, 𝑦𝑗
𝑙 ))2 (1)

over the 𝑛 × 𝑝 matrix of object scores 𝑋, the 𝑘𝑗 × 𝑝 matrices of category scores 𝑌𝑗, and the 𝑛 × 𝑘𝑗
transformations (or optimal scalings) Δ𝑗.

The 𝑤𝑗
𝑖𝑙 in (1) are non-negative weights. Formulas and derivations simplify if the data are row-

weighted, by which we mean that 𝑤𝑗
𝑖𝑙 = 𝑤𝑗

𝑖 . They simplify even more if weights are constant, i.e. if
all non-zero weights are equal to one.

The transformations in (1) are row-conditional, in the sense that for each 𝑖 a vector ̂𝑑𝑗
𝑖 of length

𝑘𝑗 is selected from the cone of admissible transformations Δ𝑗
𝑖 . Each row has its own cone. Note

that for each variable 𝑗 there are different matrices of category scores 𝑌𝑗, but there is only a single
matrix of object scores 𝑋. Also note that index 𝑗, for variables, is sometimes used as a subscript
and sometimes as a superscript, depending on what looks best.

We need a few words to discuss the meaning of the word “model” in this context, since it is used

frequently in data analysis. The model corresponding with a loss function is the set of parameter

values for which loss attains its global minimum (usually zero). Thus a model is a system of

equations and/or inequalities. In the case of loss function ??eq:snmu) the model is that the 𝑑(𝑥,𝑦
𝑗
𝑖𝑙)

with 𝑤𝑗
𝑖𝑙 > 0 satisfy the partial order ≲𝑖𝑗.

𝑤𝑗
𝑖𝑙𝑤

𝑗
𝑖𝜈𝜖𝑗

𝑖𝑙𝜈(𝑑𝑗
𝑖𝑙(𝑋, 𝑌 ) − 𝑑𝑗

𝑖𝜈(𝑋, 𝑌 )) ≥ 0

𝑤𝑗
𝑖𝑙𝑤

𝑗
𝑖𝜈𝜖𝑗

𝑖𝑙𝜈(−2𝑥′
𝑖(𝑦

𝑗
𝑙 − 𝑦𝑗

𝜈) + ‖𝑦𝑗
𝑙 ‖2 − ‖𝑦𝑗

𝜈‖2) ≥ 0

If the cones Δ𝑗
𝑖 contain the zero vector, then the global minimum of (1) is clearly equal to zero.

Collapsing all 𝑥𝑖 and all 𝑦𝑗
𝑙 into a single point makes all distances zero, and thus makes stress zero.

There is also zero stress if we collapse all 𝑥𝑖 into one point and all 𝑦𝑗
𝑙 into another points. There

are more subtle trivial solutions, however. Suppose the cones Δ𝑗
𝑖 contain the set of all constant

vectors (or all non-negative constant vectors). Collapse all 𝑥𝑖 into a single point, and place all 𝑦𝑗
𝑙

for variable 𝑗 on a sphere around this point. There can be different radii for different variables. This
makes all 𝑑(𝑥𝑖, 𝑦𝑗

𝑙 ) equal to the radius of the sphere and thus makes stress zero.
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It follows that we cannot define the purpose of our algorithms as finding the minimum of (1) over

all 𝑋 and 𝑌𝑗. Some constraints on the optimization problems are needed to prevent these trivial or
degenerate solutions.

In the context of non-metric unfolding there has been much work on avoiding trivial and degenerate

solutions. This started as soon as Kruskal-Guttman-type iterative MDS techniques using data

transformation became available. Early contributions were Roskam (1968) and Kruskal and Carroll

(1969). For valuable summaries of more recent work, mostly by Willem Heiser and his students,

we refer to the dissertations of Van Deun (2005) and Busing (2010).
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2 Homogeneity Analysis

The Gifi System (Gifi (1990), Michailidis and De Leeuw (1998), De Leeuw and Mair (2009))

implements non-linear or non-metric versions of the classical linear multivariate analysis techniques

(regression, analysis of variance, canonical analysis, discriminant analysis, principal component

analysis). The non-linear versions are introduced as special cases of Homogeneity Analysis, which

is better known as Multiple Correspondence Analysis.

In this section we present homogeneity analysis as a technique for minimizing the loss function

(1) when the data are 𝑛 × 𝑘𝑗 indicator matrices 𝐺𝑗, with 𝑗 = 1, ⋯ , 𝑀. This is a non-standard

presentation, because usually homogeneity analysis is related to principal component analysis, and

not to multidimensional scaling (see, for example, De Leeuw (2014) or De Leeuw (1923)).

In homogeneity analysis the data are (or are coded as) 𝑚 indicator matrices 𝐺𝑗, where 𝐺𝑗 is 𝑛 × 𝑘𝑗.
Indicator matrices are binary matrices, with rows that add up to one or to zero. Thus each row has

either a single element equal to one and the rest zeroes, or it has all elements equal to zero. Indicator

matrices are used to code our categorical variables. Rows corresponds with objects (or individuals),

columns with the categories (or levels) of a variable. Element 𝑔𝑗
𝑖𝑙 is one if object 𝑖 is in category 𝑙

of variable 𝑗, and all other elements in row 𝑖 are zero. If an object is missing on variable 𝑗 then the
whole row is zero.

Homogeneity analysis makes joint maps in 𝑝 dimensions of objects and categories, both represented

as points. A joint map for variable 𝑗 has 𝑛 object points 𝑥𝑖 and 𝑘𝑗 category points 𝑦𝑗
𝑖𝑙. In a

homogeneous solution the object points are close to the points of the categories that the objects

score in, i.e, to those 𝑦𝑗
𝑖𝑙 for which 𝑔𝑗

𝑖𝑙 = 1. If there is only one variable then it is trivial to make
a perfectly homogeneous map. We just make sure the object points coincide with their category

points. But there are 𝑗 > 1 indicator matrices, corresponding with 𝑚 categorical variables, and

there is only a single set of object scores. The solution is a compromise trying to achieve as much

homogeneity as possible for all variables simultaneously.

In loss function (1) applied to homogeneity analysis the sets Δ𝑗
𝑖 are defined in such a way that

̂𝑑𝑗
𝑖𝑙 is

zero if 𝑖 is in category 𝑙 of variable 𝑗. There are no constraints on the other ̂𝑑’s in row 𝑖 of variable 𝑗.
Thus for zero loss we want an object to coincide with all 𝑚 categories it is in. With this definition

of the Δ𝑗
𝑖 we have

min
̂𝑑𝑗
𝑖∈Δ𝑗

𝑖

𝑘𝑗

∑
𝑙=1

𝑤𝑗
𝑖𝑙( ̂𝑑𝑗

𝑖𝑙 − 𝑑(𝑥𝑖, 𝑦𝑗
𝑙 ))2 = 𝑓𝑖𝑗𝑑2

𝑖𝑗(𝑋, 𝑌 ), (2)

where

𝑑𝑖𝑗(𝑋, 𝑌 ) ∶=
𝑘𝑗

∑
𝑙=1

𝑔𝑗
𝑖𝑙𝑑(𝑥𝑖, 𝑦𝑗

𝑙 ), (3a)

𝑓𝑖𝑗 ∶=
𝑘𝑗

∑
𝑙=1

𝑤𝑗
𝑖𝑙𝑤

𝑗
𝑖𝑙. (3b)

Note that the 𝑤𝑗
𝑖𝑙 for which 𝑔𝑗

𝑖𝑙 = 0 play no role in homogeneity analysis. In the usual implemen-

tations of homogeneity analysis and multiple correspondence analysis 𝑓𝑖𝑗 is either zero or one,
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depending on whether observation 𝑖 on variable 𝑗 is missing or non-missing.

Using indicator matrices we can write loss function (2) as

𝜎(𝑋, 𝑌1, ⋯ , 𝑌𝑚) =
𝑚

∑
𝑗=1

tr (𝑋 − 𝐺𝑗𝑌𝑗)′𝐹𝑗(𝑋 − 𝐺𝑗𝑌𝑗), (4)

The 𝐹𝑗 are diagonal matrices with the 𝑓𝑖𝑗 from (3b) on the diagonal.

In homogeneity analysis we minimize (4) using the explicit normalization 𝑋′𝐹⋆𝑋 = 𝐼, where 𝐹⋆
is the sum of the 𝐹𝑗. The solution is given by the singular value equations

𝑋Λ = 𝐹 −1
⋆

𝑚
∑
𝑗=1

𝐹𝑗𝐺𝑗𝑌𝑗, (5a)

𝑌𝑗 = (𝐺′
𝑗𝐹𝑗𝐺𝑗)−1𝐺′

𝑗𝐹𝑗𝑋, (5b)

where Λ is a symmetric matrix of Lagrange multipliers.

In homals (Gifi (1980), De Leeuw and Mair (2009)) alternating least squares is used to solve the

equations (5a) and (5b). We start with some initial 𝑋, then compute the corresponding 𝑌𝑗 using
(5b), then for these new 𝑌𝑗 we compute a new corresponding 𝑋 from (5a), and so on. Computations

are efficient, because only diagonal matrices need to be inverted and matrix multiplication with

an indicator matrix is not really multiplication but simply selection of a particular row or column.

Alternating least squares thus becomes reciprocal averaging. Equation (5b) says that the optimal

category point is the weighted averages of the objects points in the category, and (5a) says that,

except for rescaling with the Lagrange multipliers, the optimal object point is the weighted average

of the category points that the object scores in.

Alternative methods of computation (and interpretation) are possible if we substitute (5b) in (5a) to

eliminate the 𝑌𝑗 and obtain an equation in 𝑋 only. This gives

𝐹⋆𝑋Λ =
𝑚

∑
𝑗=1

𝐹𝑗𝐺𝑗(𝐺′
𝑗𝐹𝑗𝐺𝑗)−1𝐺′

𝑗𝐹𝑗𝑋, (6)

which is a generalized eigenvalue equation for 𝑋. If we substitute (5a) in (5b) we obtain generalized

eigenvalue equations for 𝑌.

(𝐺′
𝑗𝐹𝑗𝐺𝑗)𝑌𝑗Λ =

𝑚
∑
ℎ=1

𝐺′
𝑗𝐹𝑗𝑊 −1

⋆ 𝐹ℎ𝐺ℎ𝑌ℎ. (7)

If 𝑘⋆, the sum of the 𝑘𝑗, is not too large then finding the 𝑝 largest non-trivial eigenvalues with

corresponding eigenvectors from (7) may be computationally efficient. The largest “trivial” eigen-

value is always equal to one, no matter what the 𝐺𝑗 and 𝑊𝑗 are, and we can safely ignore it. The
trivial solution with all distances equal to zero mentioned in section ?? corresponds with this largest

eigenvalue.

Homogeneity analysis can be most convincingly introduced using the concept of a star plot. For

variable 𝑗 we plot 𝑘𝑗 category points and 𝑛 object points in a single joint plot. We then draw a line
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from each category point to the points of the objects in that category. This creates 𝑘𝑗 groups of
lines and points in ℝ𝑝, and each of these groups is called a star. The sum of squares of the line

lengths of a star is the loss of homogeneity for category 𝑙 of variable 𝑗, and the total sum of squares

of all line lengths in the 𝑘𝑗 stars is the loss (4) for variable 𝑗. Homogeneity analysis chooses 𝑋
and the 𝑌𝑗 such that 𝑋 is normalized by 𝑋′𝐹⋆𝑋 = 𝐼 and the stars are as small or as compact as
possible, measured by the squared line lengths. For given 𝑋 the stars are as small as possible by

choosing the category points 𝑌𝑗 as the centroids of the object points in the category, as in equation
(5b). That explains the use of the word “star”, because now the stars really look like stars. In graph

theory a star is a tree with one internal node (the category point) and 𝑘 leaves (the object points).

Thus, given the optimum choice of the 𝑌𝑗 as centroids, we can also say that homogeneity analysis
quantifies the 𝑛 objects in such a way that the resulting stars are as small as possible.
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3 Multidimensional Structuple Analysis MSA

The Guttman-Lingoes series of programs (Lingoes (1973)) discusses, among many others, several

techniques for analyzing a number of indicator matrices. They have the acronyms MSA-I, MSA-II,

MSA-III, and MSA-IV, where MSA is short for either Multidimensional Scalogram Analysis or

Multidimensional Structuple Analysis. Unfortunately the techniques are rather poorly documented

in the mainstream literature. I rely on Lingoes (1968b), Lingoes (1968a), Lingoes (1972), Lingoes

(1979), and the various short program descriptions Lingoes published in Behavioural Science.

Unfortunately I currently have no access to Lingoes (1973).

All MSA programs start their iterations with MAC-II. MAC stands for Multivariate Analysis of

Contingencies, and the technique implements the equations from Guttman (1941). In other words,

MAC is homogeneity analysis or multiple correspondence analysis. Thus the MSA programs have

the same starting configuration as our smacof programs for categorical data.

The publications on MSA do not pay much attention to the existence of trivial solutions and to the

speed of convergence of the iterations.

3.1 MSA-I

The most interesting member of the MSA sequence is MSA-I.

The logic of MSA-I was worked out by Guttman as a creative reaction to a number of

objections to other proposed solutions for multidimensional scalogram analysis raised

bymembers of his course onmultidimensional analysis during his visit to TheUniversity

of Michigan (1964-1965). Some of the computational details and the programming of

the technique were done by the author. (Lingoes (1968a), p. 76)

The most complete description of MSA-I is probably Zvulun (1978). There are also some computa-

tional details in Lingoes (1968a). So what is this MSA-I model ?

Partition the object points corresponding to any category A into inner and outer points. Take any

point not in A and find the closest point in A to that point. Such a closest point is called an outer

point of category A. Go through all points not in A to find all outer points of A. The points of A that

are not outer points of A are inner points of A. Category A is contiguous if each inner point of A is

closer to an outer point of A than to any other outer point. Since the closest point in B to an inner

point of A is by definition an outer point of B we have also contiguity if and only if each inner point

of A is closer to some outer point of A than to any point outside A.

In MSA-I there are no category points, only object points. This makes comparison with the

partitioning by Voronoi regions complicated. In the same way there is no obvious connection with

the convex hulls of the object points in a category. Separations and partitions can be quite irregular

and in the various small examples I have seen are mostly done after the fact by hand.

The algorithm to optimize contiguity is described in (lingoes_68?). I will try to reconstruct it.
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3.2 MSA-II

Unlike MSA-I, MSA-II, which seems to be mostly due to Lingoes, is pretty straightforward. The

model, as taken fromLingoes (1968a), is that there is a 𝜌 > 0 such that 𝑔𝑗
𝑖𝑙 = 1 implies 𝑑(𝑥𝑖, 𝑦𝑗

𝑙 ) ≤ 𝜌
and 𝑔𝑗

𝑖𝑙 = 1 implies 𝑑(𝑥𝑖, 𝑦𝑗
𝑙 ) ≥ 𝜌. Geometrically:

• circles with center 𝑥𝑖 and radius 𝜌 contain all categories object 𝑖 scores in, all other category
points are outside the circle

• circles with center 𝑦𝑗
𝑙 and radius 𝜌 contain all objects that score in category 𝑙 of variable 𝑗, all

other object points are outside the circle.

Computionally we interpret the 𝑛×𝑘⋆ binary supermatrix (𝐺1 ∣ ⋯ ∣ 𝐺𝑚) as a matrix of similarities
and apply a non-metric MDS technique. The data consist of two tie-blocks, the ones and the zeroes,

and we use the primary approach to ties. Observe there is no row-conditionality here and there is

only a single radius 𝜌.

The loss function for MSA-II is simply Kruskal’s stress formula one, implicitely normalized by the

sum of all 𝑛 × 𝑘⋆ distances, with monotone regression replaced by rank images.

This use of rank images, by the way, is somewhat problematic. There are 𝑛𝑚 smallest distances,

corresponding with the elements of 𝐺 equal to one, and 𝑛(𝑘⋆ − 𝑚) largest distances. But how do

we define the rank images within the two tie blocks ? Lingoes ranks the distances within the tie

blocks from small to large, which seems rather arbitrary.

3.3 MSA-III

MSA-III is closer to our smacofHO method.
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4 The smacofHO Loss Function

The smacofHO technique solves the closely related problem in which we do not require, as in

homogeneity analysis, that
𝑘𝑗

∑
𝑙=1

𝑔𝑗
𝑖𝑙

̂𝑑𝑗
𝑖𝑙 = 0 (8a)

for all 𝑖 and 𝑗, but we impose the weaker condition that for all 𝑖 and 𝑗
𝑘𝑗

∑
𝑙=1

𝑔𝑗
𝑖𝑙

̂𝑑𝑗
𝑖𝑙 ≤ ̂𝑑𝑗

𝑖𝜈 (8b)

for all 𝜈 = 1, ⋯ , 𝑘𝑗. In homogeneity analysis the geometric interpretation of loss is that we want
objects to coincide with all categories they score in. The geometric interpretation of loss function

… is that we want objects to be closer to the categories they score in than to the categories they do

not score in.

This can be formalized using the notion of Voronoi regions. The Voronoi region of category 𝑙 of
variable 𝑗 is the polyhedral convex set of all points of ℝ𝑝 closer to category 𝑙 than to any other
category of variable 𝑗. The plot of the the 𝑘𝑗 categories of variable 𝑗 defines 𝑘𝑗 Voronoi regions
that partition ℝ𝑝. For a wealth of information about Voronoi regions we refer to

Loss function … with Δ defined by … vanishes if for each variable all 𝑥𝑖 are in the Voronoi regions
of the categories they score in. This condition implies, by the way, that the interiors of the 𝑘𝑗 convex
hulls of the 𝑥𝑖 in a given category are disjoint, and the point clouds can consequently be weakly
separated by hyperplanes. Since the category points themselves are in their own Voronoi region the

convex hulls of the stars are also disjoint.

The general majorization theory for MDS with restrictions (De Leeuw and Heiser (1980)) calls for

updates in two steps. In the first step we compute the Guttman transform of the current configuration,

and in the second step we project the Guttman transform on the set of constrained configurations.

Configuration updates are alternated with updates of the �̂�𝑗. Initial: homals.

Minimizing loss … over the ̂𝑑𝑗
𝑖 is a monotone regression problem for a simple tree order. This is

easily solved by using Kruskal’s primary approach to ties (Kruskal (1964a), Kruskal (1964b), De

Leeuw (1977)).

4.1 The Guttman Transform

The smacof iterations, or Guttman transforms, more or less ignore the fact that we are dealing with a

rectangular matrix and use the weights to transform the problem into a symmetric one (as in Heiser

and De Leeuw (1979)).

The loss function is

𝜎(𝑍1, ⋯ , 𝑍𝑚) =
𝑚

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

𝑛𝑗

∑
𝑘=1

𝑤𝑗
𝑖𝑘( ̂𝑑𝑗

𝑖𝑘 − 𝑑𝑖𝑘(𝑍𝑗))2, (9)
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with 𝑛𝑗 ∶= 𝑛 + 𝑘𝑗 and with 𝑍𝑗 the 𝑛𝑗 × 𝑝 matrices that stack 𝑋 on top of 𝑌𝑗. The 𝑤𝑗
𝑖𝑘 are zero for

the diagonal 𝑛 × 𝑛 and the diagonal 𝑘𝑗 × 𝑘𝑗 block.

To compute the Guttman transform of 𝑍𝑗 we have to solve the partitioned system

[ 𝑅𝑊 −𝑊
−𝑊 ′ 𝐶𝑊

] [�̃�
̃𝑌
] = [ 𝑅𝐵 −𝐵

−𝐵′ 𝐶𝐵
] [𝑋

𝑌] (10)

Since we have to solve this system for each variable separately we forget about the index 𝑗 here. In
(10) 𝑅𝑊 and 𝐶𝑊 are the diagonal matrices with row and column sums of −𝑊, while 𝑅𝐵 and 𝐶𝐵
are diagonal matrices with the row and columns sums of the 𝑛 × 𝑘𝑗 matrix 𝐵, which has elements

𝑏𝑖𝑙 = 𝑤𝑖𝑙
̂𝑑𝑖𝑙

𝑑(𝑥𝑖, 𝑦𝑙)
. (11)

Matrices 𝑋 and 𝑌 are the two parts of the current 𝑍 that we are updating, while we solve for �̃� and
̃𝑌, the two parts of the Guttman transform.

Define

[𝑃
𝑄] ∶= [ 𝑅𝐵 −𝐵

−𝐵′ 𝐶𝐵
] [𝑋

𝑌] (12)

Now 𝑅𝑊�̃� − 𝑊 ̃𝑌 = 𝑃 or �̃� = 𝑅−1
𝑊 (𝑃 + 𝑊 ̃𝑌 ). Substitute this in 𝐶𝑊

̃𝑌 − 𝑊 ′�̃� = 𝑄 to get

𝐶𝑊
̃𝑌 − 𝑊 ′𝑅−1

𝑊 (𝑃 + 𝑊 ̃𝑌 ) = 𝑄 or

(𝐶𝑊 − 𝑊 ′𝑅−1
𝑊 𝑊) ̃𝑌 = 𝑄 + 𝑊 ′𝑅−1

𝑊 𝑃 (13)

We solve equation (13) for ̃𝑌 and then use �̃� = 𝑅−1
𝑊 (𝑃 + 𝑊 ̃𝑌 ). Note that 𝐶𝑊 − 𝑊 ′𝑅−1

𝑊 𝑊 is

doubly-centered. As in homogeneity analysis we hope that 𝑘⋆ is not to big, and we avoid generalized
inverses of very large and very sparse matrices.

4.2 The Guttman Projection

After computing the Guttman transforms �̃�𝑗 and
̃𝑌𝑗 we have to project them on the set of constrained

configurations.

First suppose the only constraint is 𝑋𝑗 = 𝑋. We will discuss some additional (optional) constraints

in a while. To project we must minimize

𝑚
∑
𝑗=1

tr (𝑋 − �̃�𝑗)′𝑅𝑗(𝑋 − �̃�𝑗) − 2
𝑚

∑
𝑗=1

tr (𝑋 − �̃�𝑗)′𝑊𝑗(𝑌𝑗 − ̃𝑌𝑗)+

𝑚
∑
𝑗=1

tr (𝑌𝑗 − ̃𝑌𝑗)′𝐶𝑗(𝑌𝑗 − ̃𝑌𝑗) (14)

where 𝑅𝑗 and 𝐶𝑗 are now the diagonal matrices of row and column sums of the 𝑊𝑗.
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The stationary equations are

𝑌𝑗 = ̃𝑌𝑗 − 𝐶−1
𝑗 𝑊 ′

𝑗 (𝑋 − �̃�𝑗), (15)

𝑋 = {𝑅⋆}−1
𝑚

∑
𝑗=1

{𝑅𝑗�̃�𝑗 − 𝑊𝑗(𝑌𝑗 − ̃𝑌𝑗)} . (16)

We solve these equations iteratively using alternating least squares. This means using (15) to

compute a new 𝑌 for given 𝑋 and (16) to compute a new 𝑋 for given 𝑌. We alternate these two

updates until convergence.

Thus we have an iterative “inner” ALS process within the iterative “outer” ALS process of alternating

the Guttman transform/projection and the monotone regressions. More precisely the inner iterations

are in the projection phase of the Guttman update.

If there are further constraints on 𝑋, besides 𝑋𝑗 = 𝑋, and if there are constraints on 𝑌𝑗 the updates
in the projection phase must be modified.

4.2.1 Rank Constraints for Y

If ww choose to do we can require the 𝑌𝑗 to have rank 𝑟𝑗 ≤ min(𝑘𝑗, 𝑝), i.e. 𝑌𝑗 = 𝑄𝑗𝐴′
𝑗 with 𝑄𝑗 a

𝑘𝑗 × 𝑟𝑗 matrix and 𝐴𝑗 a 𝑝 × 𝑟𝑗 matrix. The rank-constraint on 𝑌𝑗 is taken from the Gifi system,

where it serves to connect homogeneity analysis with forms of non-linear principal component

analysis.

If 𝑟 = 1 then geometrically having all 𝑦𝑗
𝑙 on a line through the origin implies that all Voronoi

boundaries are hyperplanes perpendicular to that line, and consequently all Voronoi regions are

bounded by two parallel hyperplanes (parallel lines if 𝑝 = 2). All objects scores must orthogonally
project on the line in the interval corresponding with the category theyscore in. Note that the

intervals on the line are actually the one-dimensional Voronoi regions of the line with the category

points.

If 𝑟 = 2 and 𝑝 = 3, another case that may be practically relevant, then category points are in a
hyperplane through the origin. The Voronoi regions in three-dimensional space are bounded by

lines perpendicular to that plane, intersecting the plane at the two-dimensional Voronoi points for

that plane. The object points must be in the correct polyhedral cylinder.

For each of the 𝑚 variables we can independently choose the ranks 𝑟𝑗 of the 𝑌𝑗 and combine

it with one of the three options for 𝑋, creating a large number of different analyses (in a given

dimensionality 𝑝).

If there are rank constraints on one of more of the 𝑌𝑗 then for those 𝑗 we have to minimize

2tr 𝐴′
𝑗{𝑌 ′

𝑗 𝐶𝑗 − (𝑋 − �̃�𝑗)′𝑊𝑗}𝑄𝑗 + tr 𝐴′
𝑗𝑄′

𝑗𝐶𝑗𝑄𝑗𝐴𝑗

The stationary equations are

{𝑌 ′
𝑗 𝐶𝑗 − (𝑋 − �̃�𝑗)′𝑊𝑗}𝑄𝑗 = 𝑄′

𝑗𝐶𝑗𝑄𝑗𝐴𝑗,

and

{𝑌 ′
𝑗 𝐶𝑗 − (𝑋 − �̃�𝑗)′𝑊𝑗}′𝐴𝑗 = 𝐶𝑗𝑄𝑗𝐴𝑗𝐴′

𝑗
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4.2.2 Normalization of X

Besides 𝑋𝑗 = 𝑋 We can choose to impose the weak normalization constraint tr 𝑋′𝑅⋆𝑋 = 1
or the strong normalization constraint 𝑋′𝑅⋆𝑋 = 𝐼. In both cases the stationary equation (15)

remains the same, while (15) becomes

𝑅⋆𝑋Λ = 𝑃,

with

𝑃 ∶=
𝑚

∑
𝑗=1

{𝑅𝑗�̃�𝑗 − 𝑊𝑗(𝑌𝑗 − ̃𝑌𝑗)}

and with Λ a matrix of Lagrange multipliers. For weak normalization Λ is scalar, and

𝑋 = 1
√tr 𝑃 ′𝑅−1

⋆ 𝑃
𝑅−1

⋆ 𝑃

For strong normalization Λ is symmetric. Using the symmetric square root, Λ = (𝑃 ′𝑅−1
⋆ 𝑃)1

2 and

thus

𝑋 = 𝑅−1
⋆ 𝑃(𝑃 ′𝑅−1

⋆ 𝑃)− 1
2 .

Thus requiring normalized object scores only needs small modifications in the 𝑋 update step of the

unnormalized update 𝑅−1
⋆ 𝑃.
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5 Convergence and Degeneracy

6 Utilities

6.1 Object Plot Function

6.2 Category Plots Function

6.3 Joint Plot Function

6.4 Prediction Table

In the solution (𝑋, 𝑌 ) we say that pair (𝑖, 𝑗) is a hit if

𝑑𝑗
𝑖𝑙(𝑋, 𝑌 ) =

𝑘𝑗

min
𝜈=1

𝑑𝑗
𝑖𝜈(𝑋, 𝑌 )

or, in words, if object point 𝑥𝑖 is in the Voronoi region of the category point corresponding to the
category the object scores in.
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7 Examples

Since there are so many different analyses that can be done (choosing the rank and normalization

constraints), and since each analysis leads to a large number of plots, presentation of results is a

problem. We encourage readers to repeat the analyses we present and study the output in more

detail.

7.1 Small

We start we a small artificial example, earlier used for illustrative purposes in Gifi (1990), chapter 2.

The data have 𝑛 = 10 objects and 𝑚 = 3 variables with 3, 3, 2 categories.

## first second third
## 01 a p u
## 02 b q v
## 03 a r v
## 04 a p u
## 05 b p v
## 06 c p v
## 07 a p u
## 08 a p v
## 09 c p v
## 10 a p v

We first give the Voronoi + star joint plots for a homogeneity analysis of the data, using the function

smacofHomogeneityHO().
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Figure 1: Small example, Homogeneity Analysis

The solution is Voronoi homogeneous for variables one and three. For variable two the star for

category 𝑝 has objects in the Voronoi region of category 𝑟, and is consequently not perfectly

homogeneous. This also shows in the prediction table from this analysis.

## [,1] [,2] [,3]
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## [1,] 1 0 1
## [2,] 1 1 1
## [3,] 1 1 1
## [4,] 1 0 1
## [5,] 1 0 1
## [6,] 1 1 1
## [7,] 1 0 1
## [8,] 1 1 1
## [9,] 1 1 1
## [10,] 1 1 1

Note that varable 𝑝 is atypical, because eight of the ten objects are in category 𝑝, while 𝑞 and 𝑟 only
have a single object in them.

We next use the Homogeneity Analysis solution as intial estimate for a smacof analysis without

normalization or rank constraints. Stress is 1.1313536 × 10−9 after 169 iterations.
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Figure 2: Small example, smacofHO unrestricted

As expected, variables one and three, which already has perfect fit, do not change. There is some

change in variable two, in the right direction, but it is not enough to improve the number of correct

predictions.

## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 1 1 1
## [3,] 1 1 1
## [4,] 1 0 1
## [5,] 1 0 1
## [6,] 1 1 1
## [7,] 1 0 1
## [8,] 1 1 1
## [9,] 1 1 1
## [10,] 1 1 1
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Finally, for this example, we constrain the 𝑌𝑗 to be of rank one and leave 𝑋 unnormalized. Stress is

4.3071361 × 10−10 after 73 iterations.
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Figure 3: Small example, smacofHO rank one

Variable three, which is binary, does not change. The plot for variable two changes for the better.

To improve the fit the algorithm moves the category points for categories 𝑝 and 𝑟 very close together.
There is still one prediction violation in variable two, but if the category points of 𝑝 and 𝑟 coincide
they have the same Voronoi region and the prediction violation disappears. This may happen if we

continue iterating. The same is true for the prediction violation in variable one, where object five in

category 𝑏 is very close to the boundary between 𝑎 and 𝑏.

## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
## [3,] 1 1 1
## [4,] 1 1 1
## [5,] 0 0 1
## [6,] 1 1 1
## [7,] 1 1 1
## [8,] 1 1 1
## [9,] 1 1 1
## [10,] 1 1 1

We do note that the constrained version does better than the unconstrained version. But this merely

means that the constrained version finds a better local minimum – both analyses do not find the

global minimum, which we know is equal to zero.

7.2 Cetacea

Our first real example has 𝑚 = 15 variables and 𝑛 = 37 objects. The objects are genera of whales,

dolphins, and porpoises . The variables are morphological, osteological, and behavioral descriptors,

all categorical with a small number of categories. They are

## [,1]
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## NECK 2
## FORM OF THE HEAD 6
## SIZE OF THE HEAD 2
## BEAK 4
## DORSAL FIN 4
## FLIPPERS 4
## SET OF TEETH 5
## FEEDING 4
## BLOW HOLE 4
## COLOR 5
## CERVICAL VERTEBRAE 2
## LACRYMAL AND JUGAL BONES 3
## HABITAT 5
## LONGITUDINAL FURROWS ON THE THROAT 3
## HEAD BONES 5

The data matrix has been constructed by Vescia (1985). Chapter 1 of the book edited by Marco-

torchino, Proth, and Janssen (1985) has the data, and a number of sub-chapters in which different

data analysts apply various techniques to these data and discuss the results. Among the contenders

were Multidimensional Structuple Analysis (Guttman (1985)) and homals (Van der Burg (1985)).

hcethom <- smacofHomogeneityHO(cetacea)
hcetho <- smacofHO(cetacea, verbose = FALSE, itmax = 10000)

Stress is 5.9054624 × 10−8 after 3417 iterations.

smacofObjectsPlotHO(hcethom, cex = .5)
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hcethompre <- smacofPredictionTable(hcethom)
print(colSums(hcethompre, na.rm = TRUE))

## [1] 31 17 34 25 28 20 21 17 26 8 31 34 16 18 25

smacofObjectsPlotHO(hcetho, cex = .5)
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hcethopre <- smacofPredictionTable(hcetho)
print(colSums(hcethopre, na.rm = TRUE))

## [1] 33 15 35 33 28 25 28 25 23 36 29 35 16 22 28

hcetno <- smacofHO(cetacea, verbose = FALSE, xnorm = 2, itmax = 10000)
smacofObjectsPlotHO(hcetno, cex = .5)
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hcetnopre <- smacofPredictionTable(hcetno)
print(sum(hcetnopre, na.rm = TRUE))

## [1] 404

7.3 Senate

data(senate, package = "homals")

hhom <- smacofHomogeneityHO(senate[, 2:21])
hho <- smacofHO(senate[, 2:21], verbose = FALSE, itmax = 10000)

Stress is 2.0710178 × 10−7 after 7449 iterations.

smacofObjectsPlotHO(hhom, cex = .5, labels = as.character(senate[, 1]))
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hhompre <- smacofPredictionTable(hhom)
print(colSums(hhompre, na.rm = TRUE))

## [1] 93 95 97 88 89 100 99 97 100 96 98 91 96 85 89 87 89 86 86
## [20] 85

smacofObjectsPlotHO(hho, cex = .5, labels = as.character(senate[, 1]))
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hhopre <- smacofPredictionTable(hho)
print(colSums(hhopre, na.rm = TRUE))

## [1] 87 94 91 86 79 100 99 92 100 95 95 90 96 87 80 98 84 79 100
## [20] 79

hno <- smacofHO(senate[, 2:21], verbose = FALSE, xnorm = 2, itmax = 10000)
smacofObjectsPlotHO(hno, cex = .5, labels = as.character(senate[, 1]))
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hnopre <- smacofPredictionTable(hno)
print(sum(hnopre, na.rm = TRUE))

## [1] 1833

7.4 GALO

hgalohom <- smacofHomogeneityHO(galo[, 1:4])

smacofObjectsPlotHO(hgalohom, cex = .5)
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hgalohompre <- smacofPredictionTable(hgalohom)
print(colSums(hgalohompre, na.rm = TRUE))

## [1] 863 828 799 525

par(mfrow = c(1, 2))
smacofJointPlotsHO(hgalohom, jvar = 1:2, objects = TRUE, voronoi = TRUE, xcex = .5, ycex = .5, clabels = 0)
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hgaloho <- smacofHO(galo[, 1:4], verbose = FALSE, itmax = 10000)

smacofObjectsPlotHO(hgaloho, cex = .5)
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hgalohopre <- smacofPredictionTable(hgaloho)
print(colSums(hgalohopre, na.rm = TRUE))

## [1] 1290 397 921 385

par(mfrow = c(2, 2))
smacofJointPlotsHO(hgaloho, objects = TRUE, voronoi = TRUE, xcex = .5, ycex = .5, clabels = 0)
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8 Generalizations

1. Fuzzy Indicators

2. Voronoi with general sites
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