Recent Developments in Statistics Invited Paper
J.R.Barra et al., editors
© North-Holland Publishing Company, (1977)

APPLICATIONS OF CONVEX ANALYSIS
TO MULTIDIMENSIONAL SCALING

Jan de Leeuw
Department of Data Theory
University of Leiden

Leiden, The Netherlands

In this paper we discuss the convergence of an algorithm
for metric and nonmetrie multidimensional scaling that

is very similar to the C-matrix algorithm of Guttman. The
paper improves some earlier results in two respects. In
the first place the analysis is extended to cover general
Minkovski metrics, in the second place a more elementary
proof of convergence based on results of Robert is

esented.
pr n ‘.

1: INTRODUCTION
In multidimensional scaling (MDS) problems the data consist of m nonnegative

square matrices A_, A 4 of order n, whose elements are interpreted
m

1 PEERERI
as measures of dissimilaritx between the n objects o Ops ven s o measured
at m replications r , r., ... > ¥ . Thus §,, is the dissimilarity between

1 2 m ijk

objects o; and oj at replication T+ In a psychological context the objects

are often called stimuli, and the replications are defined by the dissimilarity
judgments of different subjects. Moreover we assume that m nonnegative square
matrices W , W

1 2°
as weights, i.e. w:.ij indicates the relative importance or precision of

> W_of order n are given, whose elements are interpreted
m

s measurement ¢, .
i

jk°
% Multidimensional scaling techniques represent the objects P Ops ey o as
points Ko Xpy win xn in a metric space <{,d>in such a way that the distances

d(xi,xj) are approximately equal to the dissimilarities Gijk' We sometimes

write dij for d(xi,xj).

In this paper we study representations of 0 = {ol, Ops e s on} in the space

of all p-tuples of real numbers, in which the metric is defined by a norm ’I.fl.

* Thus dij = [!xi - xjfl. A representation of 0 is then an n x p matrix X, with
row i representing 0, We also define the notation dij(X) for the distance

between x, and x..
1 J

The loss function we use in this paper to evaluate the badness-of-fit of a
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particular representation X is

m n n
o =37 1 1 wijk@ijk- dij(X))z.

k=1 i=1 j=1
Clearly o(X) > 0, and 0{(X) = 0 if and only if dij(X) = 6ijk for all i,j,k with
w.. #0. If w.. =0 then the value of 6(X) does not depend on §.. . This
ijk ijk 1jk

provides us with a simple device for handling missing data: if the observation
corresponding with the triple i,j,k is missing, then we can choose sijk

arbitrarily, and set wijk = 0.

The first and most basic MDS problem we study in this paper is the minimization

of o(X) over all n x p configuration matrices X. This is usually called metric

MDS, to distinguish it from the more general nonmetric problem in which the

Gijk are only partially known. Or, more precisely, in the MDS problem as we have

defined it so far the 6, .
. ik

unknown (missing), nonmetric MDS deals with various kinds of intermediate cases.

have to be either completely known or completely

Tn a later section of the paper we discuss straigthforward extensions of our

techniques that cover nonmetric MDS.
-

2: PREVIOUS WORK

Algorithms for the minimization of o(X) have been proposed earlier by Kruskal
(1964 a,b) and Guttman (1968). In fact both Kruskal and Guttman propose
algorithms to solve the more general nonmetric scaling problems. In this

general nonmetric case there are substantial differences between the two
approaches, but if we specialize them to the metric MDS problem they become

very similar. A detailed discussion ;nd comparison of the algorithms and the
correspondiﬁg computer programs is available in Lingoes and Roskam (1973). We
only discuss the main ideas, and the major differences between the two approaches

in the metric case.

Kruskal proposes a gradient method of the form

X « X ~ aVo(X),

where Vo(X) is the gradient of ¢ at X, i.e. then x p matrix of partial
derivatives, and where o > 0 is a step-size., Guttman on the other hand shows
that the stationary equation Vo(X) = 0 can be rewritten in the form X - C(X)X = 0,
where C(X) is a square symmetric matrix valued function of X. He proposes the
iterative process

X <« C(X)X.

By substituting Guttman's formula for the gradient in Kruskal's algorithm we
find

X<« X - ofX - ¢(X)X) = (1 = a)X + aC(X)X.

Thus Guttman's algorithm is a special case of Kruskal's with a constant

step-size o equal to one, And Kruskal!s algorithm can be interpreted as an
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over- or underrelaxed version of Guttman's algorithm. Interesting geometrical
and mechanical interpretations of these algorithms have been discussed by

Kruskal and Hart (1965), McGee (1966), and Gleason (1967).

There are two problems with the Kruskal-Guttman approach that specifically
interest us. In the first place the distance function dij(X) is typically not
differentiable at all configurations X with X, = xj. This implies that a gradient
method cannot be applied to ¢(X) without further specifications, it implies that
the usual convergence theorems for gradient methods are invalid, and it also
implies that local minimum points of o(X) need not satisfy the stationary
equations. The second problem is that it has not been shown, for either Kruskal's
"heuristic" or for Guttman's "constant" step-size procedure, that the resulting
algorithms are indeed convergent. Kruskal (1969, 1971) has proved some partial
results, and Guttman (1968) and Lingoes and Roskam (1973) have some heuristiec
arguments and some empirical results, but there is no complete convergence

proof.

Until recentl% these problems have been ignored, or they have been '"dissolved"
by transforming the model and, through the model, the loss function. ALSCAL,
for example, defines the loss on the squared distances and squared
dissimilarities (Takane, Young, De Leeuw, 1976). Classical metrié scaling
methods apply both squaring and double centering to the dissimilarities, and
then define the loss on the scalar products (Torgerson, 1958). These
transformations do make the loss functions better behaved in some respects,
but they do not really solve the problems with the Kruskal-Guttman approach,
they merely transform them away. Moreover using transformations seems less
direct, and does not generalize to other distance functions than the usual

Euclidean one.

In this paper we derive a simple algorithm for directly minimizing o(X), that
can easily proved to be convergent. Although the derivation of the algorithm
does not use differentiation or stationary equations, it turns out that the
algorithm is identical to Guttman's C-matrix method. One (modest) interpretation
of the main result of this paper is that it provides a convergence proof for
Guttman's algorithm. Another interpretation is that we show that the C-matrix
method should not be interpreted as a gradient method. It is more natural to
view it as a minimization method based on an analysis of the convexity
properties of the distance function. In fact it may very well be better not
to interprete Kruskal's algorithm as a gradient method, but as a relaxed
_version of the C-matrix method. This interpretation makes it possible, for
example, to construct interesting optimal step-size procedures, that do not

use heuristic arguments and several arbitrary parameters.
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3: PROBLEM REDUCTION: PARTITIONING

In this section we reduce the MDS problem to.a more simple form by partitioning

the loss function into additive components. For this purpose we define

W..=l' E Wiears
~1] mo2 ijk
m
L= ] 8. . i
] k=1 ijk ijk —1ij
w.. =% (w.. +w..),
i] -ij =i
i35 * ﬂ'lg i
6ij w.., *tw.. for i # j,
-ij —ji
w.. =8,. = 0.
ii ii

As is customary in the analysis of variance we collect the components of the

partitioning in a table.

SOURCE 1.0SS COMPONENT
-
n n i
-Proper loss 7oy w8, -4 x))?
i=1 j=1
n n )
Symmetr w. .85, - 82,
ymmetry % ] § fu; 8%, - w885}
n
Hollowness E w. .82, .
. ~11711
i=1
m o n
Individual differences yoor o1 w8, §..)2
K=l ie1 jm1 KRR T
m n B
Total loss w,. (8., = d.. &)
kzl 121 jzl ik ikl

It is obvious that we minimize the total

and that the proper loss is more simple.

toss if we minimize the proper loss,

I# fact in defining the proper loss

we can suppose without lo8s of generality that both the weigths and the

dissimilarities aré symmetric and hollow. The only 485umption we make about thé

Gij is that they are nonnegative. The weigths are also assumed to be nonnegétive,

but we make the additional nondegeneracy assumption of irreducibility: we

suppose that there is no partitioning of {1,2,...

,n} such that wij = 0 whenevet

i and j belong to different members of the partition. Again this assumption

causes no real loss of generality, because if all between-subset weigths are

zero the MDS problem separates into a number of smaller problems corresponding

with each of the subsets.
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4: PROBLEM MANIPULATION: USE OF HOMOGENEITY

As we have shown in the previous section the metric MDS problem can be

reformulated without loss of generality as the minimization of
o = w,.($
(x) =77 lJ(

over the n x p configuration matrices X. In this section we study a closely
related maximization problem, that is in some respects more simple. For the

discussion of this alternative problem we need the following definitions.

p(X) =) T w (x),

L.8..d. .
i<3 ij71j74j

n2(x) = 7§ ¥ w,.d2 (%),
i<3 1] 1]

nZ = Z Z v, .82,
6 15 il
and
AMX) = p(X) / n(X)n,.

$
4
Theorem 4.1: For all X we have 0 £ A(X) g 1. Moreover A(X) =1 if and only if
the dissimilarities sij and the distances dij(X) for which wij # 0 are

proportional.

Proof: This follows directly from the Cauchy-Schwartz inequality applied to

p(X). //

Theorem 4.2: a) Suppose X minimizes ¢(X). Then X also maximizes X (X).

b) Suppose X maximizes A(X). Then {p(X)/n2(X)}.X minimizes o(X).

Proof: Because dij(SX) = Bdij(X) for all X and all 8 2 0 we can reformulate the

MDS problem as the minimization of
1l wo (8, - 8d, (X))?
ij J 3 3

over the n x p matrices X and ovéf all § 3 0. The miniﬁum over B for fixed X
is attained at

B = () / n2(0),

and the value at the minimum 1§ h%(l - AZ(X)). The theorem follows from these

computations. //

It follows from theorem 4.2 that we can solve the metric MDS problem by finding

the configuratieh matrix that maximizes A(X).

S: THE EUCLIDEAN CASE

Suppose dij(X) is Euclidean, i.e.

b
a2.(x) = J (x. - x. )2
i} <=1 is is
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In this case it is convenient to derive some matrix expressions for o(X) and

n(X). Define the matrix valued function B(X) by

b..(X) = - w..8..s..(X) if i # 3,
ij i37i3 i)

b. (X) = J w, .8, .5, .(X).
ii 13713713

Here

Yy if 4. .0 £ 0,
ij ij

s..(X)
ij

0 if 4..(X) = 0.
1]
We also define the matrix V by

.= -w.. if i j
Vi w1J if i # 3,

1

vy = L

Both B(X) and V are real symmetric matrices with nonpositive off-diagonal and

ii

nonnegative diagonal elements, whose rows and columns sum to zero. By a familiar
matrix theorem they are consequently both positive semi-definite of rank not
exceeding n -71. Because V ig irreducible by assumption we have in fact

rank(Vv) = n - 1, and the null space of V is the set of all vectors with constant
elements. (Taussky, 1949; also Varga, 1962, sections 1.4 and 1.5). If e is the
n-vector with all elements equal to one, then the Moore-Penrose inverse of V

is simply

vho= (v o+ % ee')n1 -l

The following results can be verified easily.

Theorem 5.1: a) p(X) = tr X'B(X)X.
b) n¥XX) = tr X'VX.

We also define, for all pairs of configuration matrices,

n(x,Y) = tr X'B(D)Y.
Theorem 5.2: u(X,¥) £ p(X) for all X,Y.

Proof: The Cauchy-Schwartz inequality implies
P
2 (Y LT X, P A
a;,® > 5550 szl (xy ™ %360 Ui Vi)
1f we multiply both sides with wijsi" sum all inequalities, and simplify, we
find the inequality stated in the theorem. //

Using the notation developed in this section we can now define the B-matrix
algorithm for Euclidean metric multidimensional scaling as the recursion
+ + kK
1 - v EOK .
The only difference between Guttman's C-matrix and our B-matrix is due to the

fact that we have removed the homogeneity from the problem in section 4, this
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makes B more simple than C.

Theorem 5.3: a) The three sequences p(Xk), n(Xk), and A(Xk) are bounded and
increasing. The limits are Pos Ny, = pf, and Aw =pu)/ n5nm'
b) The sequence Xk has convergent subsequences. If X_ is the limit
of a convergent subsequence, then A(Xw) = Aw. Moreover Xo° is a
fixed point, i.e. X = V+B(Xw)Xw, and if A is differentiable at

X , then VA(Xm) = 0.

c) ]ka+1 - xk|| + 0.

Proof: From the Cauchy-Schwartz inequality

o (%) = er v < ndnty.

From theorem 5.2

k+ k+1
o (X 3 tr XMBEE = er XTI = 2t
If we combine these inequalities we obtain
k
p(XT)
k
n(x*) < — s n(x 1,
n(x™)
and hd
k
n(x™)
k k+1 +1
p(X7) 5 T 2y <k ).
nx" )
K 2 k . K k
Because p(X") g ns and n(X") g ng it follows that both p(X") and n(X ) are

convergent increasing sequences, with limits, say, p, and n_. Because X(Xk) <1
it follows that A(Xk) is another convergent increasing sequence with limit A
Moreover Py = ni, and Xm =0, / nsnw. It also fqllows that the sequence Xk

lies in the compact set n{(X) g né, and has convergent subsequences, There

is equality in the basic chain of inequalities if and only if X is a fixed
point. This implies that subsequential limits are fixed points. Finally

k+l k+1

er T KT - = 26y L 2 - 200 > a2 - ) = 0,

which implies part c¢ of the theorem. //

A very similar result appears in Robert (1967). The general convergence
theorems of Zangwill (1969) and Meyer (1976) are also relevant. Observe that
theorem 5.3 does not say that Xk converges. This follows only if we make some
rather arbitrary additional assumptions, for example that there is only a
finite number of fixed points, or that one of the subsequential limits is

an isolated fixed point. If Xk does not converge, it follows that the set of
limit points is a continuum (a result due to. Ostrowski, cf Daniel, 1971,

section 6.3).

Theorem 5.3 is our basic convergence theorem for metric Euclidean MDS. Tt is

quite satisfactory, and it has been proved by very elementary methods. In fact
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the proof only uses some elementary properties of sequences, and the Cauchy-

Schwartz inequality.

6: NONEUCLIDEAN METRICS

Our method can be generalized to general Minkovski metrics, with the metric
defined by a gauge ¢. We shall use some elementary facts about gauges without
proof. The proofs follow easily from the beautiful introduction to gauges

and norms in Rockafellar (1970, chapter 15). Introductionsto Minkovski geometry

are given in Busemann and Kelley (1953), and Busemann (1955).

A gauge is a function ¢:Rn + R satisfying
Gl: ¢(x) 2 0
G2: ¢(x) = 0 if and only if x = 0.
G3: ¢(px) = ué(x) for all uz0.
Gh: ¢(x + y) so(x) + ¢(y).
A gauge is a norm if we can replace G3 by the stronger
G5: ¢(ux) = |uj¢(x) for all u.
A gauge defines a distance function by the rule
(X) ¢(x -'xG)
Unless the gauge is a norm this distance is not necessarily symmetric. With
some minor modifications our results are also valid if we replace G2 by the
weaker
G6: ¢(0) =
In fact most of the results remain valid if we only assume G3 and G4, i.e.
for all homogeneous convex functions. Thus gauges are relevant for our problem
because they can be used to comstruct very general distance functions. But they

are even more relevant because of the following result.

Theorem 6.1: Both p(X) and n(X) are gauges on the space of all n x p configuration

matrices.

Proof: For both 0(X) and n(X) property Gl is obvious. For n(X) property G2
follows from irreducibility, for o(X) property G6 is obvious, we could assume
G2, but we never need it. Properties G3 and G4 follows from the fact that

each d.j(X) is convex and homogeneous on the space of configuration matrices. //
i .

The theorem shows that the metric MDS problem reduces to the maximization of a
ratio of two gauges. Problems of that type have been studied by Robert (1967),
Boyd (1974), Pham Dinh Tao (1975, 1976). Before we discuss their results and
apply them to our problem we state some of the elementary facts about gauges.

First define the Eolar of a gauge as the functlon ¢ R - R glven by

Oroy = <x,y>
¢ (y) mix IS

Here <.,.> denotes inner product.
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Fact 6.2: a) The polar of a gauge is a gauge, the polar of a norm is a norm.
b) The polar of the polar of a gauge ¢ is the gauge ¢.
L
¢) The Euclidean norm <x,x>° is its own polar.

d) (Holder's inequality). If ¢ and ¢° are polar gauges, then

<x,y> & ¢(x)¢o(y) for all x,y in R,

We can study the conditions for equality in Holder's inequality by introducing
subdifferentials. Remember that a subgradient of a function ¢ at a point x is

a vector y such that ¢(z) 2 ¢(x) + <y,z = x> for all z ¢ R". The set of all
subgradients of ¢ at a point x is the subdifferential of ¢ at x, and is written
as 3¢(x). Thus for each x the symbol 3¢(x) stands for a subset of Rn, possibly
empty. Again we mention some facts about subdifferentials, without proof. The

proofs can be found in part V of Rockafellar (1970).

Fact 6.3: a) If ¢ is a finite convex function, then for each x € R" the set
3¢(x) is nonempty, convex, and compact.
b) If ¢ is differentiable at x with gradient V¢(x), then 36 (x) = {Vo(x)}.
c) The map x > 3¢(x) is closed, i.e. if X T X if Y, ? Ve and if

for each i also v, € B¢(xi), then y_ € ap(x ).
By combining the results of fact 6.2 and fact 6.3 we find the following résulté;

Fact 6.4: a) Suppose ¢ is a gauge. Then y € 3¢(x) if and only if
$(z) > <y,z> for all z € R, and ¢(x) = <y,x>.
b) Suppose ¢ and ¢0 are polar gauges. Then X € 8¢O(y) {f and only if
<x,y> = ¢O(y) and ¢(x) = 1. Moreover y & 3¢(x) if and only if
<x,y> = ¢{x) and ¢O(y) 1.
¢) Suppose ¢ and ¢o are polar gauges. Then <x,y> = ¢(x)¢°(y) if and
only if x ¢ ¢(X)3¢0(y) if and only if y ¢ 62 (y) 36 (x).

u

Now consider the problem of maximizing the ratio

_ e(x)
(%) 50

with both ¢ and ¢ gauges. From the definitions of gauges and their polars we

obtain the following result.

e n . . . 4 s
Theorem 6.5: Maximizilng x(x) over R~ is equivalent to maximizing

<x,y>

LA
E(x,y) = -
P(x)o (y)
over " x Rn, and this is equivalent to minimizing
0% (x)

22 () &

32 (x)

n
over R .
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By using Holder's inequality we can derive the following necessary conditions

for an extreme value.

Theorem 6.6: a) If %,§ maximizes £(x,y) then § ¢ $°($)9¢(%) and & ¢ V() ($).

b) If & maximizes A(x) or minimizes A°(x) then % ¢ () aw°. 36 (%).

For maximizing A(x) the following algorithm was proposed by Robert (1967). We

start with xO such that w(xo) = 1. Then define yk 3 8¢(xk) and xk*l € awo(yk),

Theorem 6.7: a) The sequence A(xk) is increasing and convergent. The sequence
Ao(yk) is decreasing and convergent. Both sequences converge
to the same limit A.
b) All accumulation points of (xk,yk) correspond with the same
function value A = §. Moreover all accumulation points satisfy

the necessary conditions of theorem 6.6.

Proof: From our facts about gauges

$°G5 =1,
WGy =1,
<Xk,yk> _ ¢(Xk>’ .

<x >yk> - Wo(yk)-
By applying Holder's inequality
¢(xk) = <xk,yk> < w°(yk)w(xk> = ¢O(Yk),
P = S oG TG = o™,
and thus
WG £ 120G £ AT,
which implies part a. Because the subdifferentials are closed and the iterations
remain in a compact set we can apply the general convergence theorems of
Zangwill (1969) to get b. //

. If we compare 6.7 and 5.3 we see that 6.7 has no part c, and is consequently
weaker than 5.3. It is possible to prove that ]ixk+1 - xk|| -+ 0 in this more
general context too, but we need additional assumptions. One of the more natural
ones is that ¢ or wo or both are differentiable at all stationary points, other
possibilities are discussed by Meyer (1976). A far more important difference
between the algorithms of sections 5 and 6 is that in most cases the function
wo cannot be computed in closed form. The same thing is true for the
subdifferential Bwo. This means that we must compute xk+1 by maximizing <x,yk>
over {x I ¢(x) = 1}. This is a convex programming problem, which cannot be
solved in a finite number of steps in general. Consequently we need a version
of theorem 6.7 in which this convex programming problem is truncated after a
finite number of steps. Zangwill's general convergence theory shows how this

truncating should be done.
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The simplifications in section 5 are possible, because the gauge ¥ is ellipsoidal
in this case. If both ¢ and ¢ are ellipsoidal, then Robert has pointed out that
the algorithm reduces to the power method for solving a generalized eigenvalue
problem. Compare also Pham Dinh Tao (1976). It is of some intefest that Guttman
already pointed out that his C-matrix method for MDS looked like a sort of
generalized power method. The analysis in this paper shows what the exact

relationships are.

7: NOMMETRIC Mbs
In the simplest forms of nonmetric MDS we must minimize

n

n
(8., - d, L (x))2?
izl jzl vy (8= 4 ()
T(X,A) = SR s
..d2,(x
izl j£1 "ii%5

over all n.x p configuration matrices X and over all n x n disparity matrices

A. The disparity matrices must be chosen from a known convex cone I', the metric
MDS problem is the special case in which T is a ray, the additive constant
problem is the special”case in which I' is a two-dimensional subspace, We briefly
indicate the modifications needed to apply our ideas to nonmetric MDS in this
simple form. More complicated partitioned loss functions, with more complicated

normalizations, will be discussed in subsequent publicationms.

By using the homogeneity of the distance function as in section 4 we can show
that the nonmetric MDS problem is equivalent to the maximization of
o(X, )
A(X,A) =
x,8) n(Xn(d) 2
with
.
..0..4, . (
ij i3 i3

1 n
PX,8) = ) T w..8,.d,.(X),
i=1 j=1

L2007,
. ij ij

1

n n
nf(8) =} ] w62

i=1 j=1

and n{X) as before. If we define

2, )

o(X) = m a x =yl

AeT
then o(X) is a homogeneous convex function, in fact a gauge. Thus we have a
problem of the familiar form, a ratio of gauges must be maximized, and the

algorithm of section 6 can be applied.

If the distance function is Euclidean, the analysis of section 5 can be used.
The only difference with metric MDS is in the definition of p(X), in the

nonmetric case we have to compute the optimum 4 for given X in order to
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compute p(X). We can compute the optimum A(X) as the unique minimizer of

IR

(s,. - d,.(xN?

i<1 §=1 MM

over the cone I'. After solving this regression problem we can normalize the
solution such that n(A(X)) = 1, but this is not strictly necessary. The
B-matrix algorithm for nommetric Euclidean MDS is defined as the recursion
k+1 + k 7,0 k

= B AKX,

with B(X,A(X)) defined as B(X), but with Sij(X) substituted for éij' The same

inequalities and equations can be derived as in 5.1, 5.2, and the proof of

5.3.

Theorem 7.1: Parts a,b,c of theorem 5.3 are also true for the nommetric

Euclidean B-matrix algorithm.

Tn the nonmetric case the differences between our B-matrix method and Guttman's
C-matrix method are larger than in the metric case. One important reason is
that Guttman uses rank images, while our convexity approach forces us to use
monotone regressionréétimates of the Sij' I have not been able to find a
rigorously defined optimization problem in which rank images can be used. This
does not mean, of course, that we cannot use rank images in the earlier
iterations of an MDS algorithm. In the earlier iterations we can do anything
we please. As in TORSCA we can use the semi-nonmetric Young-Householder
process, or as in MINTSSA we can use rank images. We only have to switch to
monotone regression and the B-matrix algorithm if things are getting out of

hand (if the loss starts to increase, for example).
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