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SUMMARY

Two quite different forms of nonlinear principal component analysis have been
proposed in the literature. The first one is associoted with the names of
Guttman, Burt, Hayashi, Benzécri, McDonald, De Leeuw, Hi11, Nishisato. We

call it multiple correspondence analysis. The second form has been discussed

by Kruskal, Shepard, Roskam, Takane, Young, De Leeuw, Winsberg, Ramsay. We call
it nonmetric principal component analysis. The two forms have been related and
combined, both geometrically and computationally, by Albert Gifi. In this paper
we discuss the relationships in more detail, and propose an alternative algorithm
for nonlinear principal component analysis which combines features of both
previous approaches.,
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1: Introduction

We suppose that the reader is familiar with multiple correspondence analysis
and with nonmetric principal component analysis. For multiple correspondence
analysis we refer to Cazes 2.0, (1977) and to Lebart a.o. (1977) or to HiN
(1974) and Nishisato (19{30). We only ‘discuss a comparatively simple case, the
many interesting generalizations developed especiaﬁy in Toulouse could in
principle also be fitted into our framework. For nonmetric principal component
analysis we refer to Kruskal and Shepard (1976) or Young a.o. (1978). Again
we study a simple special case of this technique. For previous attempts ta
integrate the two approaches we refer to De Leeuw and Van Rijckevorsel {1980),
De Leeuw a.0. (1981), and Gifi (1981).

2: Nonmetric principal component analysis

Suppose Ll""’Lm 2re closed subspaces of a separable Hilbert space H, with
inner product <.».>, norm |.{, and unit sphere S. For each choice of elements
yJ. € Ljs; the intersection of L, and 5, we can compute the matrix R('Vl""”m)
with elements "jz(yl""’ym) = <y Wy This matrix is a correlation matriz, in
the sense that it is positive semi-definite and has diagonal elements equal to
unity. The problem of nommetrio principal camponent analysia (NCA) is to find
)’j € LJS in such a way that the sum of the p largest eigemvalues of the matrix
R(-Vp--- ,ym) is maximized (or, equivalently, the sum of the m - p smallest
eigenvalues is minimized). Observe that for different choices of p this defines
a different problem. In some cases we shall not only be interssted in solutions
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that maximize our criterion, but we shall be interested in all solutions of the
stationary equations corresponding with the maximization problem.

It is clear that NCA generalizes ordinary principal component analysis, in which,
the subspaces L, are one-dimensional. Our formulas deal with a somewhat restricted
form of NCA, because most of the literature we have mentioned treats the more
general case in which L, is a closed convex cone. Tenenhaus (1982) even discusses
the case of a possibly infinite number of convex cones. There is another serious
restriction of generality in most of our paper: we suppose that all L, are ’
finite-dimensional. For notational convenience we shall even suppose that dim(LJ)
is the same for all j, but this last assumption is in no way essential. We use
orthonormal bases for each of the L., and collect them in the n x q matrices

Gj. Here q is the common dimensionality of the L., and n is the dimensionality
of 4. We do not necessarily assume that n is finite. If n is not finite, then

GJ is simply an ordered g-tuple of elements of H, and all 'matrix operations’

we use have their obvious interpretations.

Thus yJ = GJuj is in L .5 if and only if the q-vector ay satisfies ajnj =1,
Then r L(yl.....ym) = aic L where le is the q-matrix defined by CJL = Gsz'
Observe that for all j it is true that C § = 1, the identity of order q. It

is also convenient to define the n x mq supermatrix G = (Gll...IGm) and the

mg x mq supermatrix C = G'G. The supermatrix C is sometimes called the Burt
table of the NCA problem, observe that it depends on the choice of the bases.

A useful operation for our purposes is the direot sum of a number of matrices
{cf MacDuffee, 1946, p. 81). If X and Y are matrices of dimension a x b and
¢ x d, then the direct sum X + Y is the (a + c) x (b + d) matrix ﬁ e!. The
extension to direct sums of more than two matrices is obvious. We now define
A as the mq x m matrix a; a4 a,- In this notation R(yy.....y,) = A'CA,
provided that A'A = 1.

It follows that op(yl.....ym). the sum of the p largest eigenvalues of the
correlation matrix R(yl.....ym), has the representation

°p(y1""'ym) = max {tr T'A'CAT}, (1)
with T varying over the m x p matrices satisfying T'T = I. Thus maximization

of °p(y1""'ym) over y, ¢ L.S amounts to the same thing as maximization of

tr T'A'CAT over all m x p matrices T satisfying T'T = I and all mq x m matrices
A of the form A = a, .04 a, also satisfying A'A = 1. If A and T satisfy
these restrictions, and U is the mq x p matrix AT, then U'U = [, and U consists
of m submatrices UJ. of dimension g x p, and of the form U, = a,t], with tj

row j of T, Thus U is blockwiee of rank one, each subspace LJ defines a block.

We can now define
°p(Ll""’Lu) = max {tr Y'CU}, (2)




with U varying over all orthonormal mg x p matrices which are blockwise of rank
one. The NCA problem is to compute o (Ll, ..Lm), and to find the maximizer U
of the required form. .

We now derive the stationary equations of the NCA problem. From (1) we must have
RT = Tg, (3)

with 1 a symmetric p-matrix. For identification purposes we can actually assume
that 8 is diagonal. Alsc remember that R = A'CA. Differentiation of (1) with
respect to the aj gives the equations

E‘ Yielyste = Oty (4)

where P = {y L} is defined by r = TT', where the 8, are undetermined multipifers,
and where the o, satisfy uja = 1. It follows from (3) and (4) that at a solution
© = diag(TaT'), and thus tr(6) = tr(n). Most algorithms for NCA are based on
alternating solution of {3) for T, given A, and solution of (4) for A, given

T.

Although (3) and (4) can be used to construct convergent algorithms for finding
stationary points (cf Gifi, 1981) they give little insight into the mathematical
structure of the NCA problem. It is not at all clear, for example, if (3) and
{(4) have more than one solution, and if so, how these different solutions are
related. There is one fortunate exception, If p = 1, i.e. if we choose y, ¢ L.S
in such a way that the largest eigenvalue of R(yl. ¥ } is maximized, then the
requirement that U 'is blockwise of rank one is no restrict1on at all, and thus
the problem is maximizing u'Cu over u'u = 1, where we have written u in stead
of U, because U is of dimensions mq x 1, The solutions to the NCA problem with

P = 1 are consequently the eigenvectors of C. A little reflection shows that
P=m-1, i.e. the solution for yJ 3 LjS minimizing the smallest eigevalue of
R(yl... ,ym) gives the identical result. If v is an eigenvector of C, v'v = 1,
eigenvalue u, then we can partition it into blocks v., each with q elements.,

If a block is nonzero we set ay = vJ/(v v ) , if a b]ock is zero ay is an
arbitrary unit length vector. Moreover tJ = (vJv ) » 1.0, = vy Remember

that in this case T is m x 1, its elements are written simply as t.. Also

ej = quv and w = u. It is of some interest to observe that u is not always

the largest eigenvalue of the corresponding matrix R with elements rjt = GJleal.
More precisely: if u is the largest eigenvalue of C then w =y is also the
largest eigenvalue of the corresponding R, and the same thing is true for the
smallest eigenvalue of C. But no such thing is true for the intermedfiate
eigenvalues.

3: Multiple correspondence analysis
The last paragraph brings us naturally to multiple correapondence analysta (MCA).
This is defined simply as the computation of some or all of the eigenvalues and
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;eigenvectors of C. Accordingly each solution of

Cv = uv (5)
will be called an MCA solution. In a more restricted sense we can also call

the problem of computing

9 (Ll.....[,m) = max {tr V'CV}, (6)
with V varying over all orthonormal mq x p matrices the MCA problem. This makes
it more similar to the NCA problem. The main difference between the two, from
this point of view, is that the MCA problem is nested, i.e. the solution for

p - 1 are the first p - 1 dimensions of the solution for p. Although each
choice of p defines a different MCA problem the various solutions are closely
related. In fact they can all be constructed from the mq solutions of {5).
Another obvious difference between NCA and MCA is that computing (6) gives

p different elements of each L,S, and thus p different correlation matrices.
Each of these correlation matrices has at least one eigenvalue equal to the
corresponding u of (5), and usually only one. Computing (2) on the other hand
gives only one solution for the y,, thus only one correlation matrix, of which
the p largest eigenvalues are equal to g = U'CU = T'RT. In Gifi's terminology
there is mcltiple seleotion from LJS in MCA, there is aingle selsotion from LJS
in NCA (for selection Gifi also uses transformation OF quantification, depending
on the context, cf infra).

Before we study the relations between NCA and MCA in more detail, we must make
one important comment. Interpreting NCA and MCA as generalizations of ordinary
principal component analysis is only one possibility. We then use the fact that
these techniques can be interpreted as optimizing some property of the correlation
matrix before performing the actual principal component analysis. This particular
interpretation is natural in some contexts, for examplie if L is defined as a
subspace of possible transformations or quantifications of an element of A.
Sometimes, however, the notion of quantification or transformation does not make
much sense, because the variable {s purely nominal and a one-dimensional arrange-
ment of its possible values is somewhat far-fetched. In these cases it is usually
more sensible to interpret NCA and MCA as msltidimensional scaling techniques
which map objects or individuals into low-dimensional space in such a way that
some criterion defined in terms of distance and/or separation is optimized. Such
interpretation are possible and fruitful, they are discussed in detail by Gifi
(1981) and Heiser (1981). :

In the previous section we have already one relationship between NCA and MCA. If
p = 1 then NCA and MCA are the same, basically because mq x 1 matr:ices are always
blockwise of rank one. If p > 1 then comparing (2) and (6) shows directly that
-°p(L1“"’Lm) 3 °p(L1""'Lm) with equality if and only if the eigenvectors
corresponding with the p largest eigenvalues of C are blockwise of rank one.

In the next section we shall try to find out if this condition for equality




is ever likely to be met in practice. We shall also discuss another problem
connected with MCA. The mg solutions to (5) give mq correlation matrices, and
thus mq principal component analyses. Gifi calls this data production in order
to distinguish it from data reduction. A pertinent question is if the mq
correlation matrices are related in some simple way, so that it is easy to see
where the redundancy in this representhtion is.

4: Relationships in an important special case

Suppose that there exist oy and i such that ajuj = 1 for all § and

leaz = 1505 ’ (7)

for all j,t. Suppose moreover that T is of order m, satisfies 77' = T'T = [,

and RT = Ta, with o of order m and diagonal. Thus (7) is the critical assumption,
it defines o, and Tspo T is then defined simply as the matrix of eigenvectors of
R. Now define U = AT, with A = o, P.d ag- By using (7) it is now simple to
verify that CU = Ua. Thus U constructed in this way defines m solutions to (5),
1.e. to MCA or to NCA with p = 1. The m solutions to (5) moreover induce the
<ame correlation matrix R. If we select p columns from T, then these p columns
obviously satisfy (3). We can also verify that they satisfy (4), if taken together
with the a,, and that consequently we can construct (m) solutions to the RCA
equations (3) and (4) if (7) can be satisfied. A}l these NCA solutions have the
same R,

Now suppose v is another solution of (5), not one of the m solutions constructed
by using the 9 of (7). gg orthogonality § ijj =} V5°1t5 = 0, which is possible
only if v3°J ="0 for all j. Thus, in the terminology suggested by Dauxois and
Pousse (1976), v is not only weakly but actually stromgly orthogonal to the m
columns of U. In particular this implies that if there is a second solution of
(7), i.e. if Cdtsl L TPLY for all j,t, then q‘sj = 0 for all j. Such a second
solution of (7) again defines m solutions to (8) and (g) solutions to (3) and (4).
In total, of course, {7) can only have q solutions, all strongly orthogonal,

each of them corresponding with m solutions of {5), and each of them having

a single induced correlation matrix R. 1f we find q solutions to (7) then we

have found mq, and consequently 211, solutions to (5). We have also found q(g)
solutions to (3) and (4), but this need not be all possible solutions.

we now investigate if (7) is a realistic condition, with interesting interpre-
tations. In the first place we repeat (7) in words: it says that if two of

the matrices cjz have a subscript in common, then they have a singular vector

in common. Another interpretation of (7) is also quite useful. Suppose oy and

rjl satisfy (7) and define Yy Gjaj. Then (7) says that the projection of

y, on L. is equal-to the projection of y, on the one-dimensional subspace through
vy In the next section this interpretation will be related to linearity of the
regression between two random variables.
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A condition stronger than (7) {is that there exist m matrices Kj, orthonormal, of
order q, and diagonal matrices Djz' such that

CieKy = KDy, . (8)

This is equivalent tg the condition that (7) has q different solutions, it says
that if two matrices ¢ . have a subscript in common then they must have all their
singular vectors in common, By using familiar results this can be reduced to the
condition that several matrices must commute (cf Bellman, 1960, p. 56), but in
itself this commutation result does not give much insight. We know already that
if (8) is.true then we €an construct all mq solution to (5). We now show how

this can be done systematically,

Suppose (8) is satisfied. Let Kk = K. 4 el 4 Kne Then K'CK has submatrices Dy, =
Kchsz' and as we know these submatrices are alj diagonal. Moreover they are all
of order q, there are m? of these DJL' they all have G nonzero elements at most,
It is now possible to construct a permutation matrix P such that P'DP « P'K'CKP =
£ is of the form E = £ ... 4 E, where each of the £, is a symetric matrix
of order m. Thus D consists of m? matrices, each with at most q nonzero elements,
and £ consists of q matrices, each with at ‘most m2 nonzerg elements. Element

J.t of matrix Et s equal to element t,t of matrix DJ!. As the next step 1n

our solving of (5) we construct L = L, ¢ ... {1 » With each L orthonormal

of order m, such that Lt diagonalizes Et' Thus F = L'EL = L'P'OPL = L'pigickpL

is of the form F = Fi+ oo $F7, with all of the F, diagonal. It follows that
KPL diagonalizes C, thus KpL contains the eigenvectors of C, and the matrices

Ft contain eigenvalues in some order. If we look somewhat closer to KPL, we

find that it consists of mgq submatrices, all of order q x m, and 21! of rank

It also implies that there is no data Production, there are only q different
induced correlation matrices, not mq. We also know that this block structure
makes it possible to find q(g) solutions to (3) and (4). It is a usefy] exercise
to find out what happens to the results of this section if the L, have different
dimensionalfties. making some le rectangular in stead of square,

5: Even more special cases

We now apply the three-step or KPL-d1agonalization in some cases in which we
can easily show that 1t works, If m = 2 we yse the singular value decomposition
c12 = Klulzké‘ Here 012 is diagonal of order q, with singular values on the
diagonal. Thus the Et are correlation matrices of order two, each Et has one
singular valye as off-diagonal element. The Ft are diagonal of order two, the
two elements are one Plus the singular value and one minus the singular value.
This is the familiar result linking multiple correspondence analysis with two
variables with ordinary correspondence analysis of the cross table of the two

variables. We emphasize that in ordinary correspondence analysis we often use
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a very special basis of indicator functions or step functions. This basis has some
attractive properties, we mention for example the centroid principle of Benzécri,
and we mention the fact that (7) can be interpreted es the assumption that all
bivariate regressions can be linearized by suitable choice of the y, ¢ LS. The
stronger assumption (8) means that all bivariate distributions can be diagonalized
simuitaneously.

Now consider the case g = 2 with a basis of normalized indicators for each of the
L,. Thus C L ds a 2 x 2 table with bivariate frequencies, divided by square root
of the product of the univariate marginals. These C . satisfy (8), one column of

K. is proportional to the square roots of the marginals, the other columns must

be orthogonal to it and is consequently also determined completely by the marginals.
It follows that E = El + Ez. where E1 is of order m and has all elements equal to
one and where E2 is likewise of order m and has as its elements the matrix of phi-
cogfﬁcients or point correlations of the binary variables. Thus F1 has one element
on the diagonal equal to m and m - 1 diagonal elements equal to zero. The elements
of F2 are the eigenvalues of the matrix of phi-coefficients. This 1; the familiar
result that multiple correspondence analysis or nonmetric principal component
analysis of binary variables is the same thing as ordinary component analysis of
phi-coefficients. A matrix El' of order m, with all elements +1, occurs whenever
we use normalized indicators as a basis. Thus there is always a trivial eigenvaluve
equal to m and m - 1 trivial eigenvalues equal to zero in this case.

As a final special case suppose we have m standard normal variables, and suppose
L. is the linear space of all polynomial transformations of degree not exceeding
q - 1. As a basis of each of the L, we take the Hermite-Chebyshev polynomials
of degree 0,...,q -~ 1. It is well known that transform s of variable j and
transform t of variable & are uncorrelated (orthogonal) if s f t. If s =t

then their correlation is pjt. where p . {s the correlation in the original
multinormal distribution. Thus (8) is satisfied, EI1 has all elements equal

to one, E2 has elements p i E3 has elements °§!.' and so on. The eigenvalues of
the MCA problem are those of E1 and those of EZ and so on. The largest nontrivial
one is the largest eigenvalue of Ez. the smallest nontrivial one {s the smallest
of Ez (Styan, 1973), but the order of the others is undecided. In fact the second
largest MCA eigenvalue can be the largest of E3. in which case all transformations
on the second dimension are quadratic functions of the first (horse-shoe or
Guttman effect). But the second largest MCA eigenvalue can also be the second
largest eigenvalue of E2’ the second set of transformations is then linear

with the first. For the q(g) NGA solutions we can compute from this representation
the transformations in two dimensions are both linear, or both quadratic, and so
on. NCA rank one restrictions make sure that both or all p transformations come
from the same Et (cf Gifi, 1981, chapter 11). The multinormal example has been
generalized in many directions by Lancaster and his pupils (Lancaster, 1969).
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It is remarkable that in all three special cases condition (8) is satisfied,

and KPL-diagonalization consequently works. Our results indicate that in

general NCA solutions can easily be interpreted in a principal component analysis
framework, the same thing is consequently true for MCA solutions with p =1, But
multidimensfonal MCA solutions are difficult to interpret in this framework if
(8) is not approximately true. The rest of our paper studies if (8) is approxi-
mately true in a wide variety of examples.

6: An algorithm

In order to investigate in how far (8) is satisfied in practical examples, i.e.
in how far KPL-diagonalization is possible we have written an APL-algorithm PREHOM,
A FORTRAN-version is currently being developed. The technique is fairly simple:
if F = L'P'K'CKPL, then we want to maximize the sum of squares of the diagonal
elements of F on the condition that L = L .4 Ly and K = K, .+ Kpy»
where all matrices in the direct sums are square orthonormal. Observe that P

is a fixed permutation matrix. For fixed K we maximize the criterion by choosing
Lt as the eigenvectors of Et' the maximum value is the sum of squares of the
elements_of Et' which means that we maximize our criterion by maximizing the

sum of squares of all diagonal elements of all D.L =« chjzkz' This is done by

a straightforward generalization of the Jacobi-procedure which cycles through
all the relevant plane rotations. As an initial estimate of Kj we use the
eigenvectors of JC LCLJ’ summed over ¢t # j, This initial estimate is usually
very good, but for precise convergence the program usually needs another five

to ten cycles of plane rotations.

We have analyzed a large number of examples with PREHOM, although APL-restrictions
imply that our examples cannot be too large (C must have order less than 35). The
conclusion of the examples is partly as we expect it to be: if the number of sub-
spaces (variables) is small (three or four) then KPL-diagonalization works very
well, and if the average number of categories (dimensionalities) is close to two
the KPL-diagonalization also works well. Generally KPL-diagonalization seems to
work best for ordinal or rating scale type variables, and much less well for
purely nominal variables. It came as a surprise to us that even in the least
favourable circumstances KPL-diagonalization still works quite well, and it

can predict the first three MCA-solutions (largest eigenvalues) and the last
three MCA-solutions (smallest eigenvalues) very well,

PREHOM can be used to predict MCA-results very well. Our experience (cf Gifi,
1981, ch 13) suggest that NCA is often very similar to MCA with p = 1, and thus
PREHOM can be supposed also to approximate NCA very well, It follows from these
two conclusions that in ordinal and rating scale examples NCA and MCA actually
compute the same solutions, but in a different order. The NCA eigenvalues can
be found in the 1ist of MCA efgenvalues, but they are only very rarely the p




largest ones. If we want to relate MCA and NCA in the Same dataset we can most
efficiently do this by using PREHOM or a similar program,

There are four actual examples in the tables on the next page. Example 1 are

three variables with 3 + 4 + 3 categories, 100 observations, from Burt's classical
MCA-paper. The variables are somewhat between nominal and ordinal. Example 2

are 6 variables with 2 + 5 + 3+2+5+2 categories, 25 observations, describing
screws, nails, and tacks, taken from John Hartigan's book on cluster analysis.
Most of the variables are clearly nominal. Example 3 has 5 ardinal variables

with 2 +4 +54+44+¢ categories, about 30000 observations, data from a school
career survey by the Dutch Central Bureau of Statistics. Example 4 are 8§ rating
scales with three categories each, 110 observations, taken from the Dutch Parlia-
ment Survey. A1l four tables have four columns: in the first column the eigen-
values of the Et are given (without the trivial ones), the second column has

the same numbers but ordered, the third column has the actual MCA eigenvalues,

and the fourth column has diagonal elements of V'KPL.‘;osines between actual

and predicted MCA eigenvectors.
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