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There are many different ways in which multivariate
data analysis techniques can be organized in a system.
This paper discusses the organization chosen by
Albert Gifi in a recent series of publications. The
Gifi-system uses multiple correspondence analysis

as the fundamental multivariate analysis technique.

INTRODUCTION

In Gifi (198la) a system of nonlinear multivariate analysis methods is presented.
It is based on earlier work of Guttman (1941), Burt (1950), Hayashi (1956),

De Leeuw (1973), Benzécri (1973), Nishisato (1980). The particular approach
chosen by Gifi is new, however. An attempt is made to build the system around
homogeneity analysis, a technique which is also known as multiple correspondence
analysis. The system tries to integrate ideas from multivariate analysis with
ideas from multidimensional scaling. The main components of the system are a
general least squares loss function, the use of additive restrictions to define
sets of variables, the use of rank restrictions to define single quantifications,
and the alternating least squares principle for algorithm construction. There

is some overlap with the ALSOS-system of Young, De Leeuw, and Takane (1980) or
Young (1981), but in ALSOS the emphasis is almost completely on the algorithms.
In this paper we present the basic components of the Gifi-system, without going
into too much technical detail. This means that we do not try to attain maximal
generality or coverage. It also means that we do not explain algorithms and
computer programs in any detail.

INDICATOR MATRICES AND QUANTIFICATION

Multivariate analysis deals with variables. Variables are functions defined on a
given set of objects. In this paper we assume that there is only a finite number

of objects, and that the variables assume only a finite number of values. Moreover
we only have a finite number of variables. To be more specific: there are n objects,
m variables, and each variable can assume at most k different values. At first sight
it may seem that these finiteness conditions imply a considerable loss of generality.
From a strictly empiristic point of view this is not the case, however. Infinity

is always an idealization, it can never be realized in actual measurement.

Each variable defines an indicator matrixz. The indicator matrix G. corresponding
with variable j is the n x k matrix in which row i indicates the Eategory of
variable j that object i is in. Thus row i has all elements, except one, equal to
zero. The remaining element is equal to one. It follows that D, = GiG. is diagonal,
while G.u = u (we use u for a vector with all elements equal td onel its number

of eleménts is clear from the context). The diagonal matrix D. has on its diagonal
the marginals of variable j. If d. is the vector of marginalsy then d, = G!u = D.u.
For two different variables j andJe the matrix Cj2 = Gle contains the bim&rginais
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(the cross table) of the two variables. Again C.Zu =d,, i.e. the row and co]umn.
sums of the bimarginals are the univariate margiiials. JThe (mk) x (mk) supermatrix
C, which has the C. as its submatrices, is called the tableau de Burt in the
French Titerature 8f correspondence analysis. The n x (mk) supermatrix of the form
G = (G1| [Gm) is the tableau sous forme disjonetif compléte.

A (p-dimensional) quantification of a set is a mapping of the set into RP. The
quantifications of the set of objects (also called object scores) are collected

in n x p matrices X, quantifications of the categories of variable j in the k x p
matrices Y.. The dimensionality p is chosen by the investigator. The nonlinear
multivariate analysis problem is to choose optimun quantifications. Thus the first
important step in the Gifi-system is to define optimality in a satisfactory and
convenient way.

HOMOGENEITY ANALYSIS

In order to measure optimality we first need a definition of perfect fit. We
actually give three closely related definitions. Object scores X and category
quantifications Y, are perfectly consistent if X = GlY = ... =0GY . Object
scores X are perféct]y diseriminating if there exist c;tegory quathfications
Yi,...,Y such that X = GlY = ... =G Ym. And category quantifications Y ,...,Ym
a}e perf@ct]y homogeneous 1+ there exi¥%t object scores X such that X = G } =

... =G Y . The relationship of these three definitions is clear. If objéc% scores
and cat@g@ry quantifications are perfectlyconsistent, then the object scores are
perfectly discriminating and the category quantifications are perfectly homogeneous.
Conversely if the object scores are perfectly discriminating, then we can find
corresponding induced category quantifications which are perfectly homogeneous,
and together with the object scores perfectly consistent. In the same way
perfectly homogeneous category quantifications induce perfectly discriminating
object scores, and together they form a perfectly consistent system again.

The algebra corresponding with our definitions is very simple. Let us first
start with direct object scores X. If ;hey are perfectly discriminating, then the
induced category quantifcations Y. = D.G!X are perfectly homogeneous. Superscript
+ is used for the Moore-Penrose iﬂversé,thich we need because some of the
categories may be gmpty. Thus X is perfectly discriminating if X = P.X = ... =

P X, with P. = G.DIG!. Or equivalently if X'X = X'P_X, with P the average of
the P.. Obsérve thitlthe P. are symmetric idempotenfs, with rink equal to the
number of nonempty categor?es of variable j. The matrix X'P.X is the between-
category dispersion of variable j, or the sum of squares oflall between category
distances of the object scores. Of course X'X is the total dispersion, or the

sum of squares of all distances. These facts link our definitions directly with
the ideas of discriminant analysis, and through the use of distance with
multidimensional scaling. We see that object scores are perfectly discriminating
if objects in the same category of a variable have the same score, and if this

is true for all variables.

Dually we can also start with direct category quantifications. If they are
perfectly homogeneous, then any G.Y. can be used to define perfectly discriminating
object scores. Clearly Y ,...,Ym 4sterfect1y homogeneous if G Y1 = ... =G6Y .
This can also be written-as the equation Y'CY = mY'DY, where t%e Y. are colTelted
in the (mk) x p supermatrix Y and the D. in the (mk) x (mk) diagonﬂ] supermatrix

D. Category quantifications are perfectly homogeneous if categories which contain
the same object get the same quantification. Perfect consistency shows that the
three definitions of perfect fit amount to the same thing. This is the basic
duality of homogeneity analysis, which was already explored by Guttman (1941).

It is.ngt.rea]istic to expect perfect fit in real data. This means that we need
a definition of loss, i.e. of departure from perfect fit. Loss of consistency
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is defined as
m
1

Yosea,¥ )y = = - G.Y.Y)! - G.Y.). 1
VYt = T er (- 65V (X - 65Yy) (1)
In conformity with our earlier treatment we also define loss of discrimination,
which is o(X;#%,...,%), the minimum of loss of consistegcy over category
quantifications. Thus, substituting the induced Yj = DjGjX’

a(Xs#,...,%) = tr X' (I - P*)X. (2)

Loss of homogeneity is defined as o(*;Yl,...,Ym), the minimum of o(X;Yl,...,Ym)
over X. By substituting

1 m
X == G.Y. 3
n J.zl i’ (3)
for the induced object scores we find
o(#3¥ps.0¥ ) = w8 e YI(C - mD)Y. (4)

Given the three loss functions it is now easy to define homogeneity analysis,
which is the technique that minimizes either one of these loss functions. Another
familiar duality result, again due in all essentials to Guttman (1941), says

that it does not matter which one of the three we minimize, provided we choose
appropriate normalizations. It is clear that we must impose some sort of
normalization, because X = 0 with Y = 0 is always trivially perfectly consistent.
We also emphasize that what we call homogeneity analysis is known in the French
literature as analyse (factorielle) des correspondances multiples. In the
Benzécri-system homogeneity analysis is correspondence analysis on the tableau
sous forme disjonctif compléte. In the Gifi-system correspondence analysis is
homogeneity analysis with only two variables. Thus the starting points of the

two systems are different.

We now proceed with the minimization. Call object scores X normalized if X'X = I
and u'X = 0, and call category quantifications Y normalized if Y'DY = mlI and
u'D.Y. = 0 for all j. Minimizing loss of consistency o(X;Y) over all X and

ovet 411 normalized Y is trivially equivalent to minimizing loss of homogeneity
a(*;Y) over all normalized Y. Minimizing loss of consistency o(X;Y) over all
normalized X and over all Y is equivalent to minimizing loss of discrimination
over all normalized X. The first of these two problems (X free, Y normalized)
amounts to finding the eigenvectors corresponding with the largest eigenvalues of
Cy = mDy, the second problem (X normalized, Y free) to solving the_eigenproblem
P _x = ux. By using the singular value decomposition of the matrix m 2GD 2 we

cin show that both problems have the same eigenvalues, and that the eigenvectors
we look for are the left and right singular vectors of m 2GD 2. Moreover the
singular value decomposition also solves the problem of minimizing loss of
consistency o(X;Y) over all normalized X and over all normalized Y. Observe

that computing this singular value decomposition effectively performs a
correspondence analysis on the complete disjoint table G.

We have shown that is does not matter if we normalize X or Y or both X and Y.
More precisely, it only mattexs up to scale factors. If we normalize X, then the
induced quatifications Y. = D;GiX satisfy Y!D.Y. = X'P.X, and thus Y'DY =

mX'P.X = mA. If we normalize Qhézcategory g%aﬂtificatians Y then the induced X,
giveR by (3), satisfies X'X =m “ Y'CY =m ~ Y'DYA = A. If we normalize X the
induced quantification of a category is the center of gravity of the scores of
the objects in the category, if we normalize Y then the induced score of the
object is the centroid of the quantifications of the categories the object is in.
These are the two principes barycentriques of Benzécri (1973), which are of
cardinal importance for the interpretation and graphical presentation of the
solutions of homogeneity analysis. Details on plots and interpretations can

be found in Gifi (198la, 1981b). We merely remark that in the Gifi-system the
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convention is used to normalize X, which means that the Y. are found by the
principe barycentrique. Because of this convention we refer to this procedure

as the first centroid prineiple. Unless otherwise indicated we shall always

use this convention, but we must remember that it is completely arbitrary

and that we can switch to the second centroid principle without changing anything
essential.

Some useful auxilary statistics in homogeneity analysis are the diserimination
matriz and the Zoading matriz. They are defined for each variable separately.
The discrimination matrix for variable j is A, = Y:D.Y.. This is the dispersion
matrix of the induced scores for var1ab1e J. ﬂe hage aiready seen that also

X'P.X, and thus A, is also the between category d1spers1on for variable j.
D4scr1m1ﬂat1on matr1ce§ add up to mA. The d1agona1 matrix @. = diag(a.) is the
matrix of diserimination measures. It is shown in De Leeuw €1983a) thﬂt if
variable j is independent of the other variables, then the discrimination measures
can be scaled in such a way that they have a chi-squared distribution. The
loading matrixz for variable j consists of the correlations between the object
scores X and the object scores 1nduced by_ yar1ab1e13, which is G Y . Thus the
Toading matrix is FJ X! G Y Q = X' P XQ = AJQJ .
There are some other 1mportant areas wh1ch we mention only briefly. The first
one is computation. In Gifi's HOMALS program (Gifi 198la, 1981b) loss of
consistency is minimized by alternating least squares, in this context also
known as reciprocal averaging. We start with normalized scores X, compute
induced category quantifications by the first centroid principle, compute new
object scores by the second centroid principle, and so on. We have to normalize
in some way or another along the way. The program HOMALS normalizes X every
couple of iterations by modified Gram-Schmidt. Many other choices are possible,
however. The second area which we do not discuss is missing data. The details
are in Gifi (198la), and even more completely in Meulman (1982). The relation-
ships of homogeneity analysis with multidimensional scaling and unfolding are
discussed extensively in Heiser (1981). Statistical stability analyses of
homogene1ty analysis, using both the delta-method and the bootstrap-method,
are again in Gifi (198la).

RANK RESTRICTIONS ON CATEGORY QUANTIFICATIONS

Homogeneity analysis uses only the purely nominal information provided by the
data. We only use the fact that some objects are in the first category of a
variable, some are in the second category, and so on. Any prior information we
may have on the categories and theit relationships is not used in the analysis.
The numbering of the categories is just a labelling, a different labelling

leads to the same results. In this section we discuss the method proposed by
Gifi (198la), which does incorporate prior information into homogeneity analysis.
This has the effect that the technique becomes more similar to classical

linear multivariate analysis, notably to principal component analysis.

The prior information we want to incorporate is that a variable can be ordinal
or numerical in stead of merely nominal. In the ordinal case the range of the
variable is interpreted as an ordered set, in the numerical case it is
interpreted as a subset of the reals. This interpretation can be incorporated
by imposing restrictions on the category quantifications. One such system of
restrictions has been discussed by Young, De Leeuw, and Takane (1980), compare
also Young (1981). Gifi (198la) uses a different system of restrictions. Before
we discuss its main components we emphasize that it is nonsense to say that a
variable s numerical, ordinal, or nominal, at least if this means that the
measurement level is some intrinsic property that belongs to the variable. It is
not. The measurement level is a model, more concretely a set of restrictions

on the quantifications that we may or may not impose.
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In the Gifi-system quantifications can be either multiple or single, and both
multiple and single quantifications can be either nominal, ordinal, or numerical.
The category quantifications of homogeneity analysis discussed above_are

multiple nominal. They are nominal because no prior ordinal or numerical
information is used in the analysis, and they are multiple because each dimension
has a separate quantification. There are p dimensions, Y. is a matrix of order

k x p, each column of Y, defines a single quantificationJof variable j. The
columns of Y, are not reélated in any particular way, we only require that

Y'DY = mA, ive. the category quantifications must be orthogonal 'on the average'.
It is by now easy to see how multiple ordinal variables can be defined. The
columns of Y. must be in the appropriate order, which means that they must be
monotonic with the prior order defined over the categories. If we combine this
with the first centroid principle, then we require that the projections of the
category centroids on the p dimensions must be in the appropriate order. There
are obviously a number of possibilities between multiple nominal and multiple
ordinal. We can require monotonicity only for selected dimensions, for example
only for the first one. Different definitions of partial orders on p-space

can also be tried. Multiple numerical can be defined in various ways. We can
require, for example, that the columns of Y. are all polynomials of degree less
than or equal to q of the prior numerical stores. In stead of polynomials we

can also use trigonometric polynomials or splines. This is discussed in Van
Ritkevorsel (1982). A very special case is multiple linear, in which we require
that the columns of Y. are all Tinear functions of the prior quantifications.
Because of the normalization we use (cf infra) this means that they all must

be proportional to a given vector. Thus there is only really a single
quantification for each variable, which is moreover known completely. Because

of this we decide to identify multiple linear and single numerical.

Single numerical requires that all columns of Y. must be proportional to a given
vector, say to z.. Thus we want Y. = z.a!, the matrix Y, must be of rank one.

If p =1 this cldarly is no restrictiod,Jif k = 2 it is9no restriction either.
Without loss of generality we also require that u'D.z. = 0 and z!D.z, = 1. Then
single ordinal is defined by requiring that Y. = z.4!J where z. 1570 1y
restricted to be in the appropriate order. And sin&lé nominal ﬁere]y requires

Y. = z.al, with no further restrictions on z., except for the normalization.
Blcausd ﬂomogeneity analysis with all variabdes multiple is very similar to
ordinary multiple nominal homogeneity analysis, we shall not discuss the

multiple versions in detail any more. For non-nominal multiple variables the
first centroid principle becomes more complicated, especially from a geometrical
point of view. For ordinal multiple variables the first centroid principle can
still be used almost in its original form, but the ordinal restrictions eliminate
the rotational indeterminacy of the optimal quantifications and they destroy

the Guttman-duality of scores and quantifications. We concentrate below on the
case with all variables single. Observe, however, that one of the unique features
of the Gifi-system is that programs such as PRINCALS {Gifi, 1981la, 1983) can
handle mixed cases, with some variables single and some variables multiple.

If all variables are single the loss of consistency is

. . 17 N .
O(X32Zq 50 e esZ38y5000ay) = aAjzl tr (X - szjaj) (X - szjaj)' (5)
If we let q. = G.zj then
o(X3Q3A) = tr X'X - % tr AX'Q + % tr A'A, (6)

where A is the m x p matrix with the a, as rows and § is the n x m matrix with
the q, as columns. Remember that u'g, = 0 and q:q. = 1 by our normalization
conventions. J 3

We still have the basic Guttman-duality between scores X and quantifications Yj'
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There is some additional flexibility, because we effectively deal with three
sets of variables. We can minimize (6) over all X. This gives loss of homogeneity
chﬂﬂ):%uA%I-%RM, 1 (7)
where R = Q'Q. The minimum in (7) is attained for X = m - QA, whjch is the same
as (3). Now Y is normalized if Y'DY = mI. If all variables are single this
becomes A'A = mI. Thus minimizing loss of homogeneity over all norm§11zed Y

is the same thing as finding Q such that the sum of the p largest eigenvalues of
R is maximized. In fact

o(¥3Qi#) = P - A (5 R), (8)
with A the sum of the p largest eigenvalues. Loss of discrimination can be
writteR as N

o(Xs#3#) = tr X'(I - 1QQ')x, ) (9)
where Q is the optimal Q for given X, and where A = Q'X. Maximizing (9) over

all normalized X can again be interpreted as maximizing the sum of the p largest
eigenvalues of QQ', which is the same thing as maximzing the sum of the p largest
eigenvalues of R = Q'Q. Homogeneity with all variables single can be interpreted
in terms of the dimensionality of the <nduced correlation matriz R. Observe

that if all variables are single numerical then Q is fixed, and the technique
'degenerates' to ordinary principal component analysis. Also observe that (8)
implies that o(#;%;%) > p - 1, with equality if and only if the induced
correlation matrix has rank p. To get a loss function with lower bound equal

to zero, we must subtract (p - 1)/m for each single variable.

If a variable is single its dis¢rimination matrix is 4, = Y!D.Y. = a.a., and its

lToading matrix is;T. = X'G,Y.0.2 = a.s!, where a, = X'g, ard thd sindid loadings

and where s. = .2a% containg th si&ni of the elementsdof a.. We can also

compute theJcateﬁorﬂ centroids D.G:X. If the variable is mu]%ip]e, then category

centroids are category quantificﬂt?ons. If the variable is single then we

compute the single category quantifications z., the single loadings a., together

with the rank-one category quantifications Y.°= z.a.. Additional insight can be

obtained from a partitioning of the loss funﬂtionj(é). If all variables are single
FRVN _1 g v t v 1 m v 1y v 1

a(X;Y;A) 5 jzl tr(X GjYJ) (X GjYJ) - jzl tr (Yj zjaj) Dj(Yj zjaj). (10)

In (10) the Y, are the category centroids. The first component in the partitioning

is multiple loss, the second component is single loss. For multiple variables

we can write Y. for Y., and single loss is zero;lMu1tip1e loss is equal to

tr X'(I - P_)X{ and single loss is tr X'PX - m ° tr A'A. Total loss, the sum

of mu]tigle and single loss, is p - m = tr A'A, and at the optimum this is

p - A_(m "R), as before. Multiple loss indicates in how far the object scores

deviale from the category quantifications of the categories they fall in. Single

loss indicates in how far the category quantifications deviate from the best

fitting line through the origin. This also explains why the lower bound for

total loss is nonzero. For perfect fit we want object points to coincide with

corresponding category points, which also must be on a line through the origin.

But taken together this implies that the rank of X must be equal to one, which

is contrary to our normalization of X if p > 1.

It is of some interest to observe that in the case of a multiple variable the
category quantifications Y., which are also category centroids, can be decomposed
according to J

t
Y, = z. at .
J Szl 3ss
ch a,decomposition is possible in many different ways. If t = p, Z, = Y.QT% and
= 02

‘., t i .= Z.A! i 'D.Z.) = i J i
E hen indeed YJ ZJ 3 and also d1ag(ZJDJZJ) I, which makes thelmdtrix

(11)

Such a
A.
j Q
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1
72:D.Z. a correlation,matrix. Another poss1b111ty is to take t = k, Z, = D.? and
1ﬂ ﬂdﬂ1t1on A. =Y D2 Again Y. but now Z2!D.Z. = I. In generﬂ] 1tJmay be
interesting to decdmpose Y. w1%h thé ﬂdd1t1ona1 rés%r#ct1on that 2!0.Z, = I,
because this imples that AJ A. A‘, which is convenient for the 1n%e?p?etat1on
Two interesting choices for wh1éh this additional restriction is true are
orthogonal polynomials on prior scores or the singular value decomposition of Y.,
both with the D, as weights. Remember, however, that decomposition (11) does 9
not influence tHe computations and can be constructed afterwards. It does show a
possible relationship between the multiple and the single approach, because for the
single approach decomposition (11) is essentially unique.

In this section we have seen that using rank-one restrictions on the category
quantifications makes it possible to bridge the gap between homogéneity analysis
and ordinary principal component analysis in a convenient way. Another possibility
is to use dédoublement, as in Benzécri (1973). The computational details and the
graphics of the mixed multiple-single program PRINCALS are in Gifi (198la, 1983).
Relationships between multiple and single quantifications in some very interesting
idealized theoretical cases, which also seem to be relevant for a large class

of practical problems, are investigated mathematically in De Leeuw (1982) and
Bekker (1983).

ADDITIVITY RESTRICTIONS ON THE CATEGORY QUANTIFICATIONS

In ordinary multivariate analysis the partitioning of variables into sets plays
an important role. A partitioning into two sets is used in canonical analysis. If
one of the two sets consists of a single variable we are dealing with regression
or discriminant analysis. Special alternating least squares programs with optimal
scaling for two-set analysis were written by De Leeuw, Young, and Takane (1976),
Young, De Leeuw, and Takane (1976). A greatly improved version of CANALS has
recently been described by Van der Burg (1983), Van der Burg and De Leeuw (1983).
Two sets is a rather extreme special case, however, just as principal component
analysis is the special case of m sets, each set containing a single variable.

In Gifi's categorical data framework an elegant treatment of the concept of sets
of variables is possible. An algorithm and a computer program OVERALS, for the
general case of any number of sets, are currently being developed. Van der Burg
and Verdegaal (1983) present the first results of OVERALS. Related theory has been
developed in France by Masson (1974), Dauxois and Pousse (1976), Saporta (1975),
and Tenenhaus (1982).

Suppose the k categories of variable j have product structure. With this we mean
that there are sets T,, ,T s such that each category corresponds with an element
of the Cartesian prod&ct T . . Quantifications under additivity
restrictions are defined a; fo]]ows guppose Y. contains quantifications of
factor Tu, then we require for each category (%1,...,tu) that
yj(tl""’tu) = yjl(tl) LT yju(tu). (12)
The notation is a bit clumsy, but the meaning is probably clear. Categories of
a variable can be organized in a v-dimensional grid or factorial design, and we
require that the category quantifications have no interaction or consist of
main effects only. It is more convenient to write these restrictions using
deszgn matrices This means that there is a b1nary matrix S., with structure

l. )» such that (12) is simply Y. = JS IMatrices 5. are
1ﬂd1cat3; matr1€es If T bhas k e]ements, theﬂ“the ﬂ%t?qx S. has k_ 4BTumns
and k, X ... x k= k roWs. Thus 6,V ZG igr where 6. =lB.s. . Bach G,
is an indicator Hatrix. Jo Jo o "7 Ja Ja

We have used the design matrix to split a variable into v factors. It is easy
to see that the formalism can also be used into group variables into sets of

variables. 1f we want to organize v variables into a set, then we can form the
interactive variable with k1 X voo X kU categories, and then impose additivity
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restrictions. This shows that we can also choose to ignore the fact that a
variable is interactive, and work with the interactive indicators without imposing
restrictions. As a consequence it becomes a part of the model what we wish to
consider as a variable. If we have three variables to start with, for instance,
then we can use interactive coding in various ways. We can code them as a single
variable with k. k k3 categories, as two variables with k,k, and k, categories,

as three variab%e with k;, k,, and k3 categories, and s& n. In gtead of
pﬁrforming a principal co*pongnt analysis on m variables, we can also form all

(5) pairs of variables, code them interactively, and perform a principal component
aﬁa]ysis on all pairs. Using interactive coding and additivity restrictions means
that we can leave various higher-order interactions intact, while assuming others
away. In a sense this bridges the gap between homogeneity analysis and loglinear
analysis, although there remain substantial differences between the two classes
of techniques. Observe that in homogeneity analysis the additivity restrictions
can be combined with the rank one restrictions. In the program OVERALS we can
restrict each Y. by Y. = z. a! , we can also require this for some factors but
not for others.d% Ja JoJa

The least squares loss function used in OVERALS is, again, loss of consistency
(1). If we impose additivity restrictions for all variables, and we assume for
ease of notation only that all sets contain the same number of variables (or:
all variables have the same number of factors), then

Gjana

v )
G. Y. ). 13
a=1 a=1 3¢ Ja) (1)

1 7 .
Y =g 1ot (X - ] U
J:
In OVERALS we normalize X, but the Guttman-duality linking loss of homogeneity
and loss of discrimination is still true, even if there are additivity and rank
one restrictions.

The additivity restrictions have some interesting consequences for the centroid
principle. This is due to the fact that in most cases the indicator matrices G.
within set j are not orthogonal, which introduces complications similar to thodf
in nonorthogonal analysis of variance. Consider factor o in variable j. Let
v .
.= R U
Ja B;a GJu Jo (14)
The optimal Y. 1 given X and the remaining category quantifications, is given by
the centroidsdf’ G' (X - U, ). At the optimum these are the multiple category
quantificationsi®wh%ch aredfinequal in general to the category centroids D
The discrimination matrix is
A, = YID.Y, = (X-U.)'P
Ja Jo Ja Jo Ja
and the loading matrix is
-1 -1
= 1 2 - i - 2
Fja X Gjana/Qja X Pja(X Uja)ﬂja' (16)
Expressions (15) and (16) simplify considerably if P, U. =0, i.e. if factor o
is independent of the other. If there are no additivity’Pestrictions then this
condition is vacuously true, because Uja = 0.

u

]
janaX'

3% 7 V) (15)

For single factors we have A, =a. a! and T, =b, s! . Here b, = X'G, z. ,

a. = (X -U, )G, z, and si% cont¥ine the sidns of*th& elementd®of a.J% e
vB¢tor b, cofisist® 8¢ correl¥tion coefficients (single loadings), butdtn
general 4% does not consist of correlation coefficients. If all variables are
single it'%s possible again to interpret the OVERALS solution in terms of the
induced correlation matrix. The largest p eigenvalues of the between-set
correlation matrix relative to the within-set correlation matrix are maximized.
Partitioning the loss is less simple if there are additivity restrictions, again
for the same reasons are in nonorthogonal analysis of variance. Something similar
to (10) remains true, however. We must adjust (10) because the total loss of a
variable can be partitioned in v ways, one for each factor. This is seen most
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easily by substituting X - U. for X in (10). An additional partitioning which
can be made quite easily is Y

1 0 v ¥
Y) = < -6 V)X -6V,
a(X;Y) mjzl tr (X - G3Y5) (X - GyY) ¢
pm _ v _ Y
= Y. - S. Y. )'D(Y S, Y. ). 17
T Zl tr aZI ja'ga) 05t QZI ja'ja) (17)

The second component is the Zoss due to additivity.

The Gifi-program OVERALS is the natural end-product of the system. Additional
developments in the direction of path analysis and partial canonical correlation
are mentioned briefly in Gifi (198la). They require special procedures, which

do not fit naturally into the loss function (13). At the moment we are experimentin
with a related, but slightly different system, based on the notion of copies.

In this system all variables are single, which means that results can be easily
formulated in terms of induced correlation matrices. Object scores get less
emphasis, and the normalization is on the Y.. What used to be called multiple
variables in the Gifi-system is introduced Aow by allowing for multiple
occurrence of the same variable in a set (this is what is meant by using copies).
There is some gain in generality, because now partial canonical correlation fits
in naturally, and there may be some gain in computational efficiency. But

in the new system, which is explained in more detail in De Leeuw (1983b), we
loose a great deal of the geometrical appeal of the Gifi-system. The geometry

of the Gifi-system is based on the first centroid principle, applied to the
object scores represented as points in Tow dimensional space. We have seen that
even in the more complicated restricted situations the centroid principle can
still be used, and it remains a powerful interpretational tool. The Copy-system
shifts the emphasis from distances to correlations, from object scores to
category quantifications, from multidimensional scaling to multivariate analysis,
from least squares loss functions to eigenvalue problems. Although the results
computed by the two systems are the same, this shift in emphasis does have
consequences for plots and interpretations.
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