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Introduction

In multidimensional scaling (MDS, from now on) a geometrical representation of
the objects in the study is derived from information about the dissimilarities of these
objects. - The objects are represented in a metric space in such a way that dissimilar
objects are relatively far apart, while similar objects are relatively close. In most MDS
techniques the target space, in which we make the representation, is low-dimensional
Euclidean space. But in various forms of cluster analysis, which can be interpreted as
MDS techniques, the metric space in which we make a plcture of the objects is a tree or
some other combinatorial structure. For a discussion of the many different MDS
techniques we'refer to Carroll and Arabee (1980), De Leeuw and Heiser (1980, 1982),
and Young (1984). It is clear that MDS has a very strong geometrical orientation, and
that the key notion is distance. '

In these respects MDS is quite different from multivariate analysis (MVA), at least
from the usual formulations of MVA. These proceed either by constructing /inear
combinations of variables with optimality properties defined in terms of correlation
coefficients, or by spec1fymg structural models for correlated variables, which are
usually assumed to be multinormally distributed. In these formulations the geometrical
notions play a relatively. minor role, and the empha515 is shifted to linear algebra in the
form of matrix calculus. Distances in low- dlmenswnal space, the key concepts for MDS,
are replaced by inner products of vectors in high-dimensional space. Nevertheless it is
important to realize that the basic mathematical structure used in most forms of MVA and
MDS is the same. It is good old Euclidean space, with the familiar inner product defining
the angle, and with the corresponding Pythagorean distance measure.

This basic similarity can be exploited in varions ways. In Gifi (1981) the more
common MV A-techniques are organized into a system which takes homogeneity analysis
(also known als multiple correspondence analysis’) as the basic technique, and derives
the other techniques as specializations of homogeneity analysis. And homogenceity
analysis, as defined and explained by Gifi, is basically an MDS technique which makes
low-dimensional pictures of data and focuses on the distance between points in these
pictures. Meulman (1986) takes these developments a step further. She defines very
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general MDS techniques, which can be specialized to ordinary MDS techniques on one
side, and to the Gifi system of techniques on the other side. Thus both classical MDS
and classical MVA are special cases of this much more general set-up. In this paper we
shall first discuss homogeneity analysis in considerable detail, emphasizing the
geometrical properties of the representation. We then show how many of the classical
multivariate techniques can be formulated as forms of homogeneity analysis with
restrictions on the representation. We extend the results of Gifi (1981) and De Leeuw
(1984a), by using the approach of De Leeuw (1984b).

The restrictions that can be used in homogeneity analysis have two major purposes.
In the first place they incorporate prior information the investigator may have, in the
second place they enhance the stability of the homogeneity analysis solutions. Thus they
illustrate one of the general principles of data analysis: incorporating prior information
into the technique improves its stability. If this is taken too far, ‘as in much of classical
statistics, then the data have not enough room to influence the solution. Prior information
(which is often just invented for the purpose of applying a standard technique) dominates
the solution, and the data are squeezed into the (possibly ill-fitting) mould provided by
the model. On the other hand the opposite extreme also has its problems. Techniques
will tend to focus on accidental and non-stable properties in the data, so-called chance
capitalization or overfitting. The representation is highly unstable, and cannot be
reproduced by subsequent investigators. There is not enough structure in the results,
which can consequently not be related to previous theory, and which cannot be
mterpretcd in a rational way. It is clear that we want to avoid both extremes, but it
follows from the nature of our techniques that we shall always tend to be on the
empiristic or data-centered side of the continuum. Together with, for example, Tukey
(1962), Benzécri (1973), Guitman (1977), Gifi (1981). We refer to these books and
papers for more methodological discussion. '

Multivariables

We start our formal developments in this paper by providing some definitions. In
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MVA wc always study a numbcr of varlables deﬁned on a set of objeas A vanable is
a funcnon, and we use the. familiar notation ¢: QT Here Q is the domain of the
~© variable ¢, and Tis its targes, containing ‘the posslblc values of the variable. Elements of
 the target zre also called the categories of a variable. A vanable ¢ associates wuh each ot

Q a category ¢(m) ¢ I. In practical apphcanons and in actual data analysis thc domain Q.

will b a finite sct {ml, ,w }. For theorencal purposes the domam can be infinite. If Q s
a probabxhty_space, for instance, and ¢ is measurable, then the variable is a random -
variable, Targets can be finite or inﬁrﬁle. In many cases the target is the set of reals or the
“integers, ie. T = R J-o0, 00, 'or r=N= {0,1,2,...‘}. ’But it is also possible that T =
{close, modcrate distant}, or T = {protestant, catholic, buddhist, other}. In MVA we
analyze several variables at the same time. This requires some addmonal tcrmmology A

mul:zvanable isa set, of variables with a common domain. We use the notation & = { ¢J ij

"¢ 7}, where 4‘3 1Q - T,and where J is the index set of the multivariable. Index sets, -
again, need aot be finite, although in practical data analysis they always will be. The
variables in @ have the common domam Q, but they have p0551b1y different targets Ty

M ulmanaze anaiysts studies the structire of muluvanablas : ' :

" In Table 1 we have présented a small example with 10 objects and three variables.
The objects are 10 cars, the variables are pnce (in $ 1000), gas consumption (hxres per
100 km, on the expressway), and weight (in 100 kg). The data are taken from a larger
matrix used by Winsberg and Ramsay (1983, p. 587, who took their matrix from the
Apnl 1983 issue of Consumer Report. The tar gets of all three variables are the positive

reals R (with just one decimal di git). Table 2 gives another mumvanablc, derived from
the previous one by discretization . ~The targets are now natural numbers, which are
_used for labelling intervals of the positive real axis.

Indicator’ functions and matrices

" If variable ¢; maps Qinto T then the indicatorjfuhc:io(z ah of this variable maps Qx . -
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Price 1 Gas Weight
Chevrolet Chevette 56 69 9.7
~Dodge Colt i 5.7 5.1 8.8
1 - Plymouth Horizon 6.3 5.5 9.9
- - Fort Mustang ‘ 7.6- 6.7 }-.12.0: |
Pontiac Phoenix - 8.6 6.9 12.1
Dodge Diplomat 9.4 10.2 15.5
Chevrolet Impala 10.1 7.5 16.9
Buick Re%al R 10.5 1.8 15.0
AMC Eag 107 11.7 15.7
Oldsmobile 98 133 8.7 18.3
Table 1: Car Data, numerical
Price Gas Weight
Chevrolet Chevette 1 1 1
Dodge Colt 1 1 1
Plymouth Horizon - 1- 1: 1
.- Fort Mustang 2 i 2
Pontiac Phoenix 2 1 2
Dodge Diplomat 2 3 2
Chevrolet Impala 3 2 3
Buick Regal 3 2 2
AMC Eagle 3 37 2
Oldsmobile 98 4- 2 3
Table 2: Car Data, categorized
: . Price Gas [Weight
Chevrolet Chevetie 1000 100 100
Dodge Colt 1000 100 100
Plymouth Horizon ‘1000 100 100
Fort Mustang ~ 0100 100 010
Pontiac Phoenix 0100 100 010
Dodge Diplomat 0160 001 010
Chevrolet Impala 0010 010 001
Buick Regal 0010 010 010
AMCEagle - 0010 001 010
Cldsmobile 98 0001 016 001

Table 3: Car Data, indicators
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1yinto {0, 1} by the rule n_‘(wd) =1if ¢J(m) ¥, and ﬂj(‘ﬂs ) = 0 -otherwise. Table 3.shows
the indicator functions corresponding with Table 2. Indicator functions for Table 1
would look more comphcatcd because they are defined on {@y,.. ,wm] x R*, which

does not fit on the page. For variables witha finite target and a finite domain (Wthh are
the only ones actually occurring in pracnce) the indicator function takes the form of an

) mdzcator mamx For indicator mamces we use G The number of rows is card(Q) =n
and its number of colurnns is card(r ) k

The indicator matrix (or the mdxcator supermatrix , whxch consists of all matnces G -

next 1o each other) canbe mterpreted as the incidence matrix of a graph. The graph for
the car data is drawn in Figure 1. thasnxm =30 lines. . It looks kind of messy,
because there are many lines that cross. Now think of the graph as a picture of the

multivariable, i.e. as'a joint picture of the objects and the targets of the variables, in the
Euclidean plane. Thie graph will be much less messy if the lines are as short as possible,
i.e. if objects are close to the categories of the variables that they score in. This is the
basic idea of homogeneity analysis, in words. We want to make a picture of the graph of
a multivariable in low-dimensional Euclidean space in such a way that ‘the points
connected by a line are relatively close together (and the points not connected by lines are
relatively far apart). By the triangle inequality this implies that objects with similar
profiles (i.e. objects that are often in the same categories) will be close, and categories
contammg roughly the same objects will be close as well. We shall now make’ these
notions quantitative by defining a suitable loss function to be minimized.

' .Loss. of homogeneity

Let us try to find 2 quantification of objects and categories in p-dimensional space. ‘
The quantifications of the n objects can be collected in an n X p matrix X, the
quantifications of the kj categoriesof variable jina k;x p matrix Yy The sum of squares

of the distances between objects and the categories they score in is given by
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oY} V) = 5 SSQK -GY) M

where 8SQ() is corivenient shorthand for the sum of squares of the elements of a
matrix or-vector. B : .
We could now say that hqmogeneity analysisisa technique that minimizes ’(1) over
X and the Yj, but_mis would not be vcry satisfactory. In thg first place we can set X =0 7
and YJ =‘ 0 for all j. This gives loss eq_ual to zero, and cénséquently perfect homogeneity.
In fact, more generally, taking all elements of X equal to a constant ¢, and taking all
elements of all Yj equal to ¢ as well, gives loss zero. We want to exclude these trivial

solutions by imposing suitable normalizations. The one we choose, for the moment, is
X'v =0, with u a vector with all elements equal to +1, and X'X = I, the identiry matrix.
A matrix X satisfying these restrictions is normalized . We now define homogeneity

vanalysis as minimizatjon of the loss function (1) over all Yj:(j=l,.‘.,m) and over all
" normalized X. » ' T '
* - Define

(X* ) = WD (GG Y qrerrs Y ) | Yoo Y- o)

In order to compute this partial minimum ‘we'dcﬁnc XJ = {G,;}*X, with + denoting the

,'Moore—P_enrose inverse. Write Yj = Yj +(Y. i Xj), and substituie in (1). This gives

oY Y = Ty XA PYX +

+ 2w (Y- X)DKY; - X . ‘ (©)

o - + o
) where D} = G]G_l and PJ = G]!GJ) B Thus
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o(X;*,. M= T X(-PPX =
m(p-trXP.x),, R R : ()

wnh cqual to the average of the P ’

For the interpretation it is convemem to remember that D isa diaconal matrix
containing the marginals of the categones of vmablc j- Pj is an orthogonal projector,
which projects on the space Lj spanned.by the columns of Gj. The space L is the

subspace of R consisting of all vectors which assign the same real number to objects

séoring in the same category of variable j. Or, in somewhat different terminology, if x is

) “ any'vcctor in’ R", then P~x replaces the elements of x by their category means Y=

{G }*¥X. Thus x‘P X = xJ'D v. is the variance between catcgones, and x'{dT- -)x isthe -

variance wuhm categories.
The next step in the derivation of homogenery analysis is to computc

© o(*¥,...*) = min { o(X;*,. ,*)|X normahzed) : o) -
From (4) we obtain directly
o(*;%,...¥) =mp I {1-4®u)}, | : ®

‘where LP)2.. 2 kp(&) are the p largest nontrivial cigenvalixes of the average
projector Px. We use ’nonufivig’x" because Ps always has a largest trivial eigenvalue
2g(P=) = 1, corresponding with the rivial eigenvector u. All other eigenvectors can

consequently be chosen such that X'u=0. -
It is of some interest that alternatively we could also minimize the loss function (1)
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with the condition that X is free and the _Yj are normalized. This means that
Zj Yj'Dju = 0, ‘ (73) -
z YJ’DJYJ =L . 7b)

It has béen shown in detail by Giﬁ (1981), also compare De Leeuw (1984a), that this

- gives essentially the same solution as normalizing X and leaving the Y, the ccmcatenation

of the Y free. Alxemauvely we-can also normalize both X and Y, or we could require

mXX + Y'DY 1. Again this nges essentially the same solution. This basic result is, in
a somewhat less general form, already due to Guttman (1941) in his pioneering paper on
(one-dimensional) homogenexty analysxs :

Reciprocal averaging

In the previous section we have shown that optimal quantifications for the objects

can be found by. computing the p dominant eigenvalues, with corrcspondmg

e igenvectors, of P,. The corresponding optimal scores for the categories of variable j jare

then Yj = {Gj]*}{ = {Dj}"Gj'X. In words: the optimal qugnuﬁcat}on of acategory is

the ceniroid of the optimal scores of the objects in-that category. In many situations in

which homogeneity analysis is applied, an iterative technique for computing the optimal -

scores and quantifications is very convenient. It is usually called reciprocal averaging , it

has been around since the thirties, and we give the algorithm in Figure 2. It is

_ exceedingly simple, and hardly needs any explanation. The optimal category

guantifications are computed in each iteration step as the averages of the relevant current
object scores, and the optimal object scores are the averages of the current optimal-
quantified variables. The only minor complication is that we have to normalize X in each
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=i+ lz=z+GY,

X = GRAM(Z} -

Figure 2: Reciprocal averaging algorithm




iteration, which is done by Gram-Schmidt orthogonalization. In the flow-diagram this L
reads X = GRAM(Z). Observe that the algorithm in Figure 2 has no stopping criterion,
but there are several obvious places where we can test for convergence. The algorithmis
implemented in the éomputcr program HOMALS (homogeneity analysis by alternating
least squares), compare Van der Geer (1985), and it has been widely applied. ‘
" Now let us now apply it to the car data: We find dominant eigenvalues of .81 and
.53. The two-dimensional solution is plotted in Figure 3. We see that both cars and
categories curve along a convex curve in two-space. This is a common type of
rcprescntanon in homogeneity analysis, which indicates that there is mly one really
dominant dimension (roughly the size of the car). For more information on
“horseshoes’ we refer to Gifi (1981), Schriever (1985), Heiser (1985), Van Rijckevorsel
-(1986). Comparing Figure 1 and Figure 3 shows clearly‘ how much r‘iea:e: the graph of
"the indicator supermatrix is now presented in R2. Of course the example is in no way.
typlcal It is merely an illustration. Usually homogeneity analysis is apphed to many
more objects and many more variables. .

“Rank restrictions

Aftér explaining the basic idea of homogeneity analysis we no\x; discuss various
types of restrictions that can be imposed. The kj pom:s corresponding with the categories -
of a variable can be located anywhere §n ‘RP. there isvno rcs:_ricﬁon bn;;h"gk location -
relative to oné another (excépt for Y,-'Dju = 0).If the catcgbrics of a;vaﬁablle are ordered,
however, we would like to see this order represented in the picture. There are various
ways of ordering the points in the plane, but the most obvious one is to take a direction

and let n define the order. In for-nulas this means that we want the category poxms ofa
vanable 10 beona straxght line through the ongm Thus we require Y = :o:JaJ , where g
isa k _vector with single-quantifications and % is a p-vector with weights or Ioaa'mgs

These restrictions are called the rank-one restrictions . For identification purposes we'
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Figwe3: .
Homogeneity analysis

CarData k .
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_Tequire zj'Djzj =1and u'Djzj =0 for all j.

The loss function, with restrictions, becomes

O Y 1oy Y ) = O(XiZ et Zip Bl =

= EJ SSQ(X - sz_‘aj') =
=mp-2uX'QA+trA'A=

- r‘n‘(p -1)+SSQQ-XA). ®)

" 'Here Q is the n x m matrix with columns q;= G;izj, and Aisthemxp matrix with the g

as rows. Letting R = Q'Q we obtain
Co(*Zgie i ¥ ) =

= min {c(X;zl,...,zm;al,...,am) I XiZgseesZ) =

=m@-D+E AR Isplml. O

This shows that homogeneity analysis with rank-one restrictions has a loss which is
always at least mp - i). 1t is exactly equal to m(p - 1) if we caﬂ choose the z ir_x sacha
way that the rark of the correlation matrix R is less than or equal to p. This means that
for all j we'must have szj = Xaj. Gcbmcuic_ally thfs means that each variable deﬁnes a

line{yly= ‘taj} through the origin with direction cosines proportional to aj; If we
_ project object points xi' orthogonally on this line then objects.in the same categofy must

project into the same point of the line. This means that categories of a variable are




60

represented as parallel hyperplanes perpendicular to the line of the variable. We have a
perfect solution if all object points-are in the appropriate category planes, ie. if the
objects scoring in category one of variable j are in plane one of variable j, and so on.

It also follows from (9) that homogeneity with rank-one restrictions is a form of
ronlinear principal component analysis (Kruskal and Shepard, 1974, Young, Takane,

’ and De Leeuw, 1978, De Leeaw, 1982, Koyak, 1985). We must find category ’

quantifications 'z in such-a way that the sum of the p largest eigenvalues of the

" correlation matrix of the quantified variables is as large as possible. This becomies more
clear if we combine the rank-one restrictions with cone restrictions, i.e. if we require in

addition that zj ¢ K, where K; is a convex cone in kj-dimcnsional space. It follows that
zjeK;n §;, with S, the set of vectors that are normalized. If K; is the ray. of vectors

- proportional to a known vector, for instance the numerical values in Table 1, then z;is

fixed by the normalization requirements, and homogcneity analysis with single

restrictions- becomes: ordinary pnncxpal componzm analysis. If “( is thc cone of
" 'monotoné n'ansformauons then we obtam nonmetric principal componcnt analysxs, and
50 on.

structure as the algoriihm in Figure 2, with one major modification. After ﬁnding X, = _

.(Gj}*X we make steps to solve the mi.Mzaﬁon problem

0:’ a,') Ci, z,')mm' _ (10)

over 3; and L (possxbly wnh restriction z; cKJ) We know from (3)° that this is d'e

; appropnats loss componcm 0 rmmmxz. In order to minimize it, or at least decrease it,

"we apply a!temanng least squares again. For the current z, we find the optimal 2, which

3
is Xl 2 z., and then we ﬁnd the optimal z tor given 3 This can be done by defining z z =

‘ Y;a;, and by solving

“There is little which needs to be said about the algorithm. It has,thc same basic
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@j-zj)'Dj(;j-zj)nﬁn! : R o oan

which is, in the most comphcafed case, a cone-projection problem Improvmg z and a 3
¢ is-done one or more times (the inner iterations ). 'I'hc final z and N define a new Y

which then is used in the homogeneity analysis. The correspondmg computer program
for homogenexty analysis, in which there can be rank-one and cone restrictions for some

 or all variables, is called PRINCALS (Gifi, 1985). :
In De Leeuw (1984b) the idea of using rank and cone restrictions was explamed ’

with more generality. Any k.l X p matrix YJ can be written, m-many ways, in the form

Y le_n 'y L s 12)
providcd'the'numbcr of components in this decomposition is large ‘enough. Various
interesting types of restrictions can be analyzed as special cases of (12). The vectors z; i
can be given vectors with orthogonal po!yypomials for inshnce. or they can be free but
restricted to be q in number (rank-q restrictions), or they can be monotone with the data
and q in numb‘er; and so on. This defincs many possible options, of which the more
common ones are imp)émented in the programs HOMALS and PRINCALS.

We say that in ordinary homogeneity analysis (or multiple correspondence analysis,
implemented in HOMALS) the variables are treated as multiple nominal. They are’
multiple, because each dimension has its own quantifications, and they are nominal
because there are no restrictions on the location of the categories. In PRINCALS, with

 cone restrictions, we can choose between a multiple nominal treatment; and a single
nominal , single ordinal , or single numerical treatment. Single refers to the fact that
there is only one quéntiﬁéation for cach variable, due to the rank-one restrictions. Single
nominal means no further restriction; on z,. single nominal means that they must be in

- _ the 'correct’ order, and single numerical means they must be linear with the prior scores. '

The use of generai rank-q restrictions makes it possible to define multiple ordinal and
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.-multiple numerical as well, and shows that there are various possibilities between single
with ra.nk(Yj) = 1 and multiple with rank(Y’ j) = min(p,kj - 1.
“We gi;re a single numerical analysis of the car example in Figure 4a7 and a single

nominal analysis in Figure 4b. In both solutions we have plotted the object points x; and

the cateoory quantifications z;a ' (in bold type). We have also drawn the three lines

through the origin represonung the three vanablcs, and for variable 'gas’ we have drawn
the category lines perpendicular to the direction defined by the variable. The solutions are
very different from the multiple nominal solution in Figure 3, the horseshoe has
disappeared {of course the horseshoe is incompatible with rank-one restrictions). The
single numnerical solution, which is an ordinary principal component analysis of Table 2,
shows us a very high correlation  between price and weight. It also shows that Ford
' Mustang and Pontiac Phoenix use less gas than expected on the basis of their
price/weight, while Dodge Diplomat and AMC Eagle use more. The single nominal
* solution give a slightly different picture. The correlations between the three variables are
now Tore equal The program has used the additional freedom to cluster the cars in the
four clusters { {FM,PP},{DD,AE},{CC,DC,PH},{C1,09,BR}}. Such clustering is
often seen in small examples, in which the clusters are located close to the category

: poims‘*which are éxlso clustered. The program clusters categories (W4, W3} and
{P,,P- ,P } by glvmg them the same quantification. This creating of ties makes it
22304

possmle to amve at a more homogeneous representation than in the single numerical

case. -

?seudo-’i_ndi’cators

: ’ Indicator matrices sre practical if the number of categories is small relative to the
number of objects. If the number of categories is equal 1o the number of objects the
indicator matrix will be a square permutation matrix, and any transformation or
quantification whatsoever is peimissiblc. This obviously allows for 100 much freedom.
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i Figure 42
Car Data

Single numerical
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" Variables with lots of categories occur in cases in which we are dealing with variables
: which are ‘continuous’. The car data in Table 1 for example have targets with:10
different elements. This 1mphes that P = I for j=1,2,3, and thus P = I and the

' homogenexty analysis solution is comp!ctely arbmary

’ There ‘are three different ways out of this dilemma, The first one, which we have .

k  already discussed above, is to impose rank-one restrictions togeihcr with monotonicity.
- réstrictions. Rank-one restrictions by themselves are not enough, we do need the
. monotonicity here. This is the PRINCALS solixtion( If the number of categories is equal
~“to the nunibér of observations then the restriction that the objectbsk scoring in the same
category must be in the same hyperplane perpendicular to.the direction defining the'
variable is no longer a restriction. The restriction is merely that the objects project in the
correct order on the direction defining the variable. For the car data these constraints are
niot very restrictive. The first five cars have lower values on all three variables as the last

- five cars. Thus if we give the first five cars value -1 and the last five cars value +1 on‘all
three variables, we have a monotonic transformation which gives the wansformed data
matrix rank exacﬂy equal 10 one.

The second so!\mon has been used by Breiman and Friedman (1985). and several of
their students. It procccds from a somewhat different, less geometrical, interpretation of-
homogeneity analysis. The purpose of the technique is formulated as quantifying or
transfomﬁng the variables in such a way that they are as homogensous as possible, in
the sense that the sum of the p largest cigén\'a!ues ‘of their cosrelation matrix is
maximized. Compare equation (9) and the discﬁssion following it. Other criteria are

: 'sometimes also useful (De Lecuw, 1986). The ACE-method of Breiman and Friedman
involves computmg the optimal quanbﬁcauons. and then smoa'hmg these by running

‘them through a linear smoother. This has the disadvantage that the usual linear
smoothers are not projectors, and thus the smoothed optimal tranisformations are not
optimh} in terms of projection on a given subspace any more. The usual convergence

“theory. for the alternating least squares methods conscqucrxdy does not apply.
Nevertheless using smoothers is a viable altemanve, which has been shown to produce
interesting results in practical situations. / ‘
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In this paper we shall concentrate on a third alternative procedure, however. This is
“the use of spiines, or, more generally, of fuzzy coding and pseudo-indicators . We =
introduce them in a purely géometrical way again, startin g with the basic loss functon

(XY 1Y) = I, SSQX - GY)) . )

Thc difference now is that we do not assume that the basw data matnccs G are indicator,

matnces they can be pscudo-mdzcators A pseudo-indicator mairix is a nonnegative
matrix whose row-sums are equal to one, This means that in (13) we compute the

squa.red distances between the object scores x; and certain convex combmauons of the

rows of Y Pseudo—mdlcators may ocecur because of vanous reasons. We discuss some
of the more common ones. ‘ ' :
The first one is that ‘we start out with ordinary indicators Gj, but we require that

some of the Yj must be equal. This could happen, for instance, Vif some \}ariables have
the same categories. We consider the extreme case in which all Yj are required to be
equal to illustrate what will héppen. From (13), using G for the average of the Gj and

D, for the average of the D;,
o(X; Yy, Yy = % SSQ(X'- djy) =.
; m (SSQEX) - 2 r XG,Y t YD.Y} =
i SSQEX - GoY) + % sSQt(Gj,- aovi L Cae

The matrix G, is a pseudo-indicator. Homogeneity analysis in this case amounts to

cigen-analysis of G.(D«)"1G.". This procedure, and intermediate cases in which some
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Y must be equal occurs in"the ana1y51s of caiegorlcal fime series data (Devxlle and -
Saporta 1980; De Leeuw, Van der Heuden, and Kreft, 1985). .
‘A second way i which pseudo- “indicators can arise is by Suzzy -coding . This
“concept has been studied in great detail by Martin (1980) and Van Rijckevorsel (1986).-
A simple example is the following. Suppose we have missing data, i.e. for some objects
we do not know which category of a given variable they belong to. The corresponding
row of the corresponding indicator matrix G; can then be coded by making all elements

equal to I/ch. Thi'si,srnot tﬁe only pbssible’way, let alone the best way,. to deal with
missing data in homogeneity analysis. Tn fact three other ways of incorporaiing them are
.discussed and compared by Meulman (1982). But it does give rise to a pseudo-indicator
matrix‘ whieh is what interests us here. More generally we can usé the rows of the G- 1]

code other forms of uncertainty. Missing data can also be coded, for instance; by makmg
the rows equal to the margma.ls of the non-missing objects. Ordinal data can be coded
with uncertainty by using .5 for the category the object scores in, and by usmg .25 for -
the two neighbouring categories.” .

A somewhat more systematic procedure, which is very useful for continuous data, is -
10 use B-spline bases for the indicator matrices.. We do not intend to discuss B-splines
in detail. For this -we' refer, for example, to De Boor {1578). Apﬁlications to
homeogeneity analysis are discussed in more detail in De Lecuw, Van Rijckevorsel, and:
Van der Wouden (1981), and in Van Rijckevorsel and Van Kooten (1985) For our
purposes here it suffices to say that 2 B-spline basis for the space of all polynomial
splines of a given order and knot-sequence defines a pseudo-indicator. Inthe simiplest
case the splines, of order one, are step-funcﬁons. and the basis defines a true indicator.
In the order two case the splines are continuous piecewise linear functions, and the
spline basis are the hat functions, which define a pseudo-indicator with at most two
consecutive nonzero elements in each row. In Table 4 we have a spline basis of order -
 two for the car data. Each column is a hat function of the corresponding values in Table

1. This means that there arc three consecutive knots (knot, knoty,knots) such that the

funcuon 1s zero for all values less than or equal to knot; and larger than or equal to




knot3 In the interval (knotl,knotz} it increases from zero :o its maxlmum, in

(knoty, knot3) it decreases from the mammum to Zero again.

What does:the use of splines, or fuzzy codmg in general, mean in ferms of the -

-geometry of homogeneity analysis ? This is illustrated in Figure 5, in which we have the.
~multiple hat solution for the.car data. Only the variable weight is drawn in. We still make
‘ _a joint picture of object points and category points (or knot pomts), but the lines are no
Jlonger drawn from the object points to the category points, but from the object-points to
fixed places on the lines connecting two consecutive category pomts If the order is
three, then ob;ects points are connected with points in the triangle spanned by three

consecutive category points, and so on. If we code rmssmg data by assigning llk to all

caxegoncs of a variable, then rmssmg object points must be connected with the centroid i
of the category configuration. By incorporating the continuous information we move k
away from the graph interpretation of homogenelty analysis, which is of course only
natural becaue this i is inherently discrete.

B- splmes and fuzzy codin g in general, can easﬂy be combined with
rank-restrictions on the quantifications. In the case of rank-one restrictions, for examplc
the category points must be on a line through the origin, and the objects must be
connected with points on this line that are the appropriate convex combinations of the
" category points. In case of order two this means that objects must project into fixed
places in disjoint intervals on the line definin g the variable, if the order is larger than two
the intervals may overlap. This is cxblaincd in more detail in De Leeuw (1985b) and Van
Riickevorsel (1986). De Lecuw also discusses the case in which the pseudo-indicators
can be adjusted as well. Only the zero-clements are fixed, the nonzéro elements are
variables over which we optimize under the rem'iction that they are nonnegative and add
up to one. In the case of rank-one restrictions again, this means that the object must
project into dxsjomt intervals of the line defining the variable, but they can pro;cct
anywhere in these intervals. This generalizes the ‘primary approach to ties’ of Kruskal
and Shepard (1974), and the fcontinnous ordinal' scaling of De Lecuw, Young, and
Takane (1976) or Young (1981). We shall not illustrate these further developments here, ’
because they obviously should not be applied to small examples such as our car data.




68

Gas

Price Weight '
Chevrolet Chevette -~ |.70..30 .00 .00 .00 |.05 .95..00 .00}.15 .85 .00 .00
- Dodge Colt 65 35 .00 .00 00 |95 105 .00 .00 .60 .40 .00 .00
~Plymouth Horizon 35 .65 .00.00 .00 ].75..25..00 .00} .05 .95 .00 .00
Fort Mustang .00 .80 .20 .00 .00].15 .85 .00 .00] .00 .67 .33 .00
Pontiac Phoenix - .00 .47..53 .00 .00 /.05 .95 .00.001.00 .65 .35 .00
Dodge Diplomat .00 .20 .80 .00 .00 1.00 .00:.90.10] .00 .08 .92..00 ;
Chevrolet Impala .00 .00 .95:.05 .00 |.00 .83 .17-.00] .00 .00 .70 .30
Buick Regal .00 .00 .75 .25 .00 .00-.73 .27 .00|.00 .17 .83 .00
AMC Eagle .00 .00 .65 .35-.00 .00 .00 .15 .85 .00 .05 .95 .00
Oldsmobile 98 .00 .00 .00 .45 .55 1.00 .43 .57 .60].00 .00..23..77

Table 4: Car Data, psendo-indicators, hat functions.

W4

Figure §
Car Data
Muldple Hat
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-Additivity restrictions

“The title of the paper suggests more than we have offered so far. Of the classical
iineér' multivariate analysis techniques we hévc only encountered principal component _
analysis so far as an important special case of homogencit}' analysis (all variables single
nimertical). But what about canonical correlation analysis, discriminant analysis, '
multiple regression, and multivariate analysis-of variance ? In ‘this chapter we show,

. briefly, how these other ‘techniques can be displayed as versions of homogeneity

analysis with restrictions as well. We mierely discuss this for canonical correlation
analysis, because it is well known from the linear theory that the other techniques we
have mentioned are special cases qf this (Gittins, 1983). Nonlinear generalizations of
canonical correlation analysis are discussed in detail by Van der 'Burg and De Lecuw
(1983), and in even greater generahty by Van der Burg, De Leeuw, and Vérdegaal

7 (1985). -

Let us first specxa.hze homogenclty analysis to the case in which there are just two
variables (a blvanable). Homogeneity analysis then becomes identical to corre:por_adence
analysis (Benzécri et al., 1973; Benzécri et al., 1980; Lebart, Morineaux, and Warwick,
1985; Greenacre, 1985). If both variables are single numerical we:merely compute a
correlation coefficient, if lhey are single nominal or ordmal we compute the maximum
correlation coefficient (Lancaster, 1969, has many references on the maximum |
cormrelation problem). In canonical correlation analysis we do not have two variables, but

“two sets-of variables. Blll, as the literature on maximal comlanon shows. the dxffmnce

bcmmemosmmumhrge.
W‘x:hwkmﬂnmﬁumhshuuqmzmty swo-u fjdl;ﬂiv:-

(v,lch)mmMﬁﬁamMVm&b&’,wnmg“‘ |

v,mamahh;chmmdeﬁuemmmm 48T r,ul‘.

el ..,.Vmab!cso,mdyl_hweﬂ kjandll,k.cmgoncs. Applymghom

analysis to these two product variables is a form of nonlinear canonical analysis, and

does not introduce anything new. Of course in practical simaticas the nusmber of
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Figure 6: Additivity restrictions, multiple i

Al
Figure 7: Additivity restrictions, single
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categones of the product variables can easily become much too large In order toremedy
this we can impose additivity restrictions . These are illustrated in Figures 6 and 7, for
the mumpIe and single case respectively: In Figure 6 we start with two variables AandB
with three.and two categories. The product vanable A x B has six categorics, and the
addmvny restrictions have as a result that the quannﬁcanon of (A1,B1) is the vector sum
of the quantifications Al and Bi. In'stead of 2 x (6 - 1) = 10 parameters we have only 2
x [(2 - 1) + (3 - 1)] = 6 parameters for the quanﬁfica:ions The category quantifications
are on the B1- and B2-translation of the (Al, A2,A3)-triangle, or equivalently on the
Al-, A2, or A3- translation of the (B1,B2)-line. This shows the geometrical
' mterpretanon of additivity restrictions in the mulnple case. Figure 7 shows the effect of
additivity restrictions for two variables with rank-one restrictions. In this case the
category quantifications are on parallel hyperplanes. .

The use of additivity restrictions means that we deal with sets of variables in a
somewhat roundabout way. First we code them mteractxvcly, by usmg product
variables. Then we apply additivity restrictions to the product variables, with the
consequence that the sets are not coded interactively any more, but addmvely Theloss

. function for this form of homogeneity analysis is :

c(XYl, - m) Z, SSQX - Zigyy GiYys (15)

where t now indexes sets of variables , and X(t) shows which variables are in set t. Agam .
of course (15) can be combined with rank restrictions and cone restrictions. This
produces a very general nonlinear multxvanate analysis techmquc, with cmespondmg .
computer pi OVERALS (V erdegaal, 1986). Observe that ordinary homogeneity -
analysis (and consequenﬂy also principal component analysis) is the specxal case in

" which each set only contains a single variable.
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. Conclusipn

‘ VSe shall not continue to mustrate the forms of canomcal analysis and regresswn,'
'analysxs in detail with examples. The basic idea is probably clear, It is possible to
develop most of the existing linear MVA xechmques within homogenexty analysis by

_ choosing suitable restrictions on the quantifications. In as far as homogeneity analysis is
a form of MDS, we have shown that linear MV A and its generalizations can be imbedded
_in the distance framework, using the concept of hdmogcnei*y and v using the joinéd space
representation of objects and variables (or cateoones) For the many detaﬂs of these

" developments, the available softwarc applications in many.of the sciences, and for the
statistical aspects of the tochmques we refer to the book by Gifi (1981), and the other
literature we have mentioned. In this paper we could only show some of the mote
1mpon..m pnncxplcs of the MDS approach to MDA. : ' k
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