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Abstract. There are various ways in which the usual linear model can be generalized to deal
" with nonlinearities. We discuss two convenient extensions of the linear model, with normally
~ distributed disturbances, that allow for transformations of the dependent and independent

“ variables. The methods are related to other developments. in the recent statistical and data
analytical literature, and they are applied to an example from physics.

Introduction

In this paper we treat two 'differént‘r'lonlinear generali‘iations of 'the linear'regression
:model’./ Both generalizations are‘ comparatively simple, and stay rqlétviVely close to the usual
linear model. We also cdmpare the‘se genefalization‘s with some related nonlin;u' data analysis
‘ ;echniques, proposed by Kruskal (1965), De Lecuw, ‘Your}g,.and Takane (1976), and Breiman .
| and Friedman (1985). Because the model-;based techniques are somewhat less fam\iliar,.and
somewhat more complicated, we present them first. R

The first'model (called model I) suppbsés that the true, or error-free, r¢spoﬁse vafiables

satisfy the usual lin'e_al; model. Thus we are dealing‘ with n Eobservablevrandom variables 1;

which satisfy the model
0 = ZyxB; + & ST o (1a)

& are iid N(0,062). - , (1b)

Throughout the paper we use the convention of underlining random variables. The x; are n
given fixed vectors with m elements, the §; are unobservable random variables called

. disturbances. The unobserved 7; are connected with the n observéble.responses y; by the rule
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- We suppose that g is at most partially known, and that our prior information-about g isin thc
form g € G, w1th G a known set of functlons If g is completely known, and equal to the
1d'ent1ty, then model (1) 1s the ordmary nonhnear regressron model If gis known, and '
1nvert1ble, then we can compute n, 1(y,) and apply the ordlnary regresslon model to the 11,,
Ifg belongs toa partxcular one- parameter famﬂy of (contlnuous and monotone) functlons, then
(1) defines a Box-Cox model. There have been a great many pubhcatlons about Box-Cox
models, of which we mention Box and Cox< (1964, 1982), Hmkley (1975), Hernandez and -
,7 Johnson (1980), Bickel and Doksum (1981’),>Carr_oll.and Ruppert (19§1), Bunke (1982),
Carroll (1982) Doksum and Wong (1982) . A
In another famlhar speclal case of this model g is an mcreasmg step function. This is
sometimes called the dlSCI‘CtC normal lmear regresslon model. lt is reviewed by Maddala (1983,
| sectlon 2.13) and by De Leeuw (1984) We can d1st1ngulsh the case in which the locatlon of the
‘steps is known, and the case in Wthh only the number of steps is known
In thlS paper we do not analyze the case in whlch gis a step functlon but we assume that
g is_ dlfferentlable and strlctly mcreasmg, and has a d1fferent1able 1nverse h. In stead of

formulatmg the constraints on g it is more convenient to require h € H. Clearly

probly; < y] = problg(m) <¥1 = prob[n; < h(y)] =
- O{(h(y) - Z; x;{8))/c}. o @)

Here @ is. the cumulative standard normal. It follows that L, which' is -2 times the log-

likelihood, is given by

L= 6‘2 Zi (h(yl) - Zj XUBJ)Z +n ln (52 -2 Zi In h’(yl) (3)
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" The idea is to minimize this loss function over the unknown parameters [ and 62, but also over

. all h in H.

Model Il is somewhat more simple. It assumes that

Yi =vf(2j xiBy) + S S o (4a)
{; are iid N(0,62). = _ \ . ‘ (4b)

Again f is at most partially known, and f € F. Now

L=02Z {y;- f(le“xiij)}2 + rr'ln ol. 7 (5)
N ;
This must be minimized over B, 02, and over all f € . Model 11 is closely related to projection
pursuit regression (Friedman and Stiitzle, 1981, HUber, 1985), of which i_t can be c_onsid_ered to\
be'a special case. | |
~ Winsberg and Ramsay (1983) have compared the two models I and II (in a somewhat

different context) They call model Ithe model-error-transformatlon formulatlon and model I

- the 'modelftransformation-errorf formulation. According to them model I is preferable when

any nonlinear transformation inG of the dependent variable 'is about as meaningful as any
.other', while model Il seems more appropriate if the response varliable 'is uniquely significant |
in its original form." (L.c., pag 580-581)

It is of some interest that both projection pursuit regression ; and the additive regression
models of Stone (1985a, 1985b) assume that both X and y are (reallzatlons of) random
varlables and estimate the condmonal expectatron of y given x. Thus they are not linear model
techniques in the classical sense. |

o The models and techniques mentioned above readily admlt further nonlmear ‘

generalizations of various forms. The data analysis techniques of Kruskal (1965), De Leeuw,
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" Young, and Takane (‘1976), and Young, De Leeuw, and Takane (1976) minimize a loss

function of the form-
S = Z; {h(yp - % tj(x;j)}z 2 o v (6a)
over both h € H and t; € T}, subject to some normalization condition such as
b=l - @

Thus all predictors or independent variables are transformed optimally as well

Mmlmlzatlon of (6a) under condition (6b) has aspects in common with both model I and
model II, but it cannot be formulated very well in a likelihood form. It is not based on any
- probabilistic model, and can best be interpreted as a form of data reduction and apptoxlmaUOn \
In stead of maximizing the likelihood, we actually maximize the multiple correlation coefficient
by our transformations. Or, to use a distinction emphasized by Joreskog and Wold (1982), we‘
. maximize predictability and not structural smphﬁcatlon Itis well known that the alternating
" least squares methods based on (6) do not give consistent estimates of the struqtural parameters
if model I or model I1 is true, but this is hardly a valid objection to them, because model I and
model II are not assumed to be true. We might as well criticize the likelihood methods for model
1 and model II discussed below, because they do not maximize the multiple correlation. The
ACE-method of Breiman and Friedman (1985) does somethmg very s:mxlar to minimizing (6),
~ but it works in the theoretical framework in which both x and y are random vanables. In the
finite sample case ;‘\CE does not explicitly optimize a loss function.

We do not pay much attention to these further nonlihear generaliiations, because they do
not really introduce anythmg new. In the context of the linear model the nonlinearity in the

response 'variable is the interesting part, the nonlmeanty in the predictors is usually much easier

to handle.
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In this section we discuss methods to minimize the loss functions (3) and (5). As in
Winsbérg and Ramsay (1980) and Stone (1985a, 1985b) we use splines to.,kdeﬁne F and H.
More precisely we shall use increasing B-splines on a given knot-sequence (with all knots
different). Thus ~ . \ : "~

F={f|f=% oo} - 7a) .
H={h!'hZZ vyl (7b) |

where ¢, and y, are the B-splines bases for the particular knc;t-sequcnces chosen, and where o

and v, are sequences of coefficients choser; in such a way that the splines are increasing. If we
“work with parabolic splines, we can use the convenient result ﬁat the spline is increasing if and

only if fhe sequence of coefficients is increasing (De Boor, 1978, pag. 163). Moreover the

parabolic splines are differentiéble évérywhere, the derivative iS a broken-line function (a
- piecewise~1inea} B-spline) which is consequently continuous. Because of this reason we have
used pafabolic splines in our examples, but higher otders are also possible, of course.

| "We can now formulate our minimizatioﬁ problems more prec;is'el'y. The first one is

minimization, of
L= 02 Z; (B YWy - Zj xiij)2 +nlno2-2Z; In Z vy (y)), @) -
and the second one minimization of

) L2 =02 Ei {yl - Er a,¢,(EJ leBJ)}Z +nlno?. | (9)
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The princil;le of algorithm construction that we use throughout is that of alternating the o

| minimization over sets of parameters, while keeping the other parameters fixed at their current
values. This principle has worked very well in many related data analysis contexts (Young,
1981, Wold, 1982). |

- For the minimization of (8) it is clear that in the first substep we can easily minimize over

o2 and:the Bp while keeping the ¥, fixed at their current values. In.the second snb_step we must

minimize over the ¥, with 62 and the P, fixed. The first substep is merely a linear regression _7

-problem with a currently optirnally transformed variable. The second substep is also quite
. simple. We have to remember that y(y;) and ,'(y;) are known constants. Thus, for glven B;

and o2, the function L, is a convex quadratic minus a concave 'log- “linear' function of the Yo

and consequently it is convex. Because of the monotonicity constraints finding the optimal ¥, is

'a fairly simple convex programrmng problem, that can be solved by using. the rapld manifold
suboptization methods outlined by Zangwill (1969, section 8.3). The two substeps},are

alternated until there is convergence

Clearly such a procedure is very much like the altematlng least squares methods dlscussed

by Young (1981). It alternates a data transformation step with a parameter fitting step. In the

context of the discrete normal linear regression model a very similar algorithm was proposed by

De Leeuw (1984), who also related it to the familiar EM-algorithm' of Dempster, Laird, and

Rubin (1977) ‘ , ‘ ,
One may wonder why a normalization condition such as (6b) is not needed here. This is

s1mply ‘because the minimum of L, over 62 and the B], or fixed v, can be written, except for

some 1rrelevant constants, as

L. =nlnyUQUY-2Z; Invy. , 110)

il e Ve et e e
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* Here U contains the y(y;) and V, with rows v;, contains the y'(y;). Moreover Q is the prbjectof
I- X(XX)IX" Loss( function La doés not change:its value if we rpﬁltiply Y by a positive

: constapt-, i.e. it is scale-free. Thus a normalization is not required. Or, to make a comparison
- with the alwmaﬁng least squares methods more precise, in the ALé‘-fdrmulétion or the ACE
formulation we need a condition such as (6b) to normalize the transformation. Ir 1 model I the
second part of (10) takes care of the normalization and serves a function similar to {6b). -
Minimizing (9) seems simpler than minimizing (8), because (9) does not have the term

™~

deri\védvfrom the Jacobian. To minimize (9) it suffices to minimize the sithple sum of squares -

oLy =Zi {y;- & q'r¢r(zj xBp12. 11y

-

No normalization is required here either. Minimization over increasing o for fixed B is a

monotone regression problem, minimization over § for fixed a is a rather complicated

‘nonlinear regression problem. In our program we use ’a»~version -of the Levenberg- |
Marquand method. Compare Schwetlick (1979,vch.‘ 10) or ‘Gill, Murray, and Wright -
(1981, section ;1.7). In'mahy cases our results can be expected to be similar to those of |
-Friedman and Stiitzle (1981), who do not exactly minimize (9) but perform closely related *
operations. Their projection pursuit regression algorithm d_oesrnot‘ require f to be a
' monotqrie spiinc, but merely requires f to be ‘smooth’. Smoothness is not imposed as a
;:onsu'ainf, however, but in each stép of ;he algorithm fthe;optimal f without coristrai’nts’ is
smoothed by an appropriate subfou-tine; | |

‘Finally we indicate how nonlinear genéralizationS such as in (6) can easily be
"~ incorporated. If we have'Zi t(x;),with t; € T, replacing Z; x;B; then expanding each t; in -
its B-spline form G =2, MOy and thus L yxy) = LE, kjtsji.(xij), which is simply linear
again. This illustrates that transforming the predictors nonlinearly does n@t add anything -
'newbrspeétacixlar,andn&d not be modelled separately.
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We briefly mention the properties of our cstimhtors. Model II 1s perhaps most
com}e_nient in this sense. Itis a sfraightforward nonlinear regression model, and the theory .
developed by J,enm:icﬁ (1969) and Wu. (1981) applies. By che.cking‘ the regularity
conditions they impoée we can cénclude that our estimators of the parameters are consistent
and asymptotically normal. : | ~ -

Model 'I has been studied in considerable detail for the case of one-parameter
families of transformations. Compare the feferences g{ven for the Box-Cox model above;
v espécially Hernandez and Johnson (1980); and Bunke (1982). The idea is to use the results
of Huber (1967)-to prove consistency and asympiotic nonhality.
- Itis our fe,eling that the asympiotics for honlineax‘ regression models are certainly
rriat’hematically' intefesting, but necessarily somewhat artificial. Perhaps the safest policy is

to use the regression versions of Boots'trap‘and Jackknife to assess stability.

~

Example

The example we analyze is taken from a veryA intergsting paper by.Wilson.(1926).
He discusses the question if statistical methods in general, and correlational methods suéh»
‘as regression in particular, can help us to discover natural laws. Wilson's point Qf view is |
that correlational procedures are not of much help if they are: not‘ combined With
antecedent rationalism’, i.e. which prior knowledge-about the subject matter. He illustrates
~ his point by a physical ’examp}e, taken from the wc;rk of Willard Gibbs on the equilibrium

“of heterogeneous substances. Gibbs derived,‘fr’om theoretical considerations, a formula
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connecting density y, pressure x,, and absolute temperature x,, of a"mixture of gases with
convertible components. The formula is of the form ‘ |

-

h(y) =1In Xl +'ﬁé/X2 + B3, ) (12)

with h a known monotonic function of y; and with [32 and B3 two constants which must be

. determined émpirically. Gibbs determined the constants from experiments by Cahours and
Binez;u, and then used the formula to predi.c.tﬁ the outcomes of 65 new experiments by '
Neumann; He diséusses the deviations he finds in terms of the rational formula (12).

Wilson uses ordinary linear least squares to predict y from x; and ):cz’, and he
copcludes that the results of this Blind approach are quite useless(from the point of view of
physical theory It seems to us that his conclusion is a bit pessimislic; In turns out that with
the nonlinear techniques ‘we éan recover the rational t:ansfonnétions qﬁite nicely. Let us
illustrate this with some results. | | _

Ordinary least squares on the raw data givés R? equal to .9166. The correlations of
temperatﬁfe, preésure and density with their rational transforms are rt=.9960, rp = .9655,‘
and rp = .9751. If we first use the rational trahéfo_rmations, and then apply linear
regression we find R2 = .9826, while of course ry = rp = rp = 1. The alternating least
squares inéthod with pafabolic spline transformations for pressure and density was tried

: out’next. We used cardinal splines with about 10 equally spaced knots covering the range
of the variables. For temperature, which assumes only nine discrete values, wé used a step-
function. This resulted in R? = .9927, r’f =".9977, tp = .9975, and rp = .9979. Other
alternating least squai‘es analyses, with step funqtions of varying degree and varying
number of knots, are reported by Gifi (1981, page 292-300). They lead to the conclusion
'thatv alternating least sqliares with B-splines having about tén icnots virtually gives us the
exact shapé of the unknown rational transformaﬁons. This is true both for linear and for

parabolic splinés.
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We have also compared the spline analysis with the Breiman-Ftiedmart ACE-
method, usmg two very s1mple movmg average smoothers If. the bandwxdth of the
: smoother is 3, then we find R2 = .9973, ry = .9966, rp = .9899, and Ip = 9972. With
baridwidth 9 th1s becomes R2 = .9884, ry = .9969, rp = 9954, and ry = ,9922. Obviously
the performance of ACE in this example is also very sattsfactory, even though it does not‘
_ optimize an explicit criterion. Although alternating least squares with pat'aboiic monotone
B-splines seems to rec'overk the 'true’ functions just a little bit better, the differences are

i

hard]y notlcable

Finally we used the (much more comphcated) maxxmum hkehhood procedure based

on model I. We found R? = 9697, r1 = .9865, rp = .9901, and rp = .9967. Although the

method is (by definition) better in terms of likelihood, it is inferior in terms of multiple

correlation and recovery of the rational functions. We have not computed the model II
solutions for this examp]e because we were specifically ihter'ested in the optimal' ‘
transformations of densny
| The figure on the next page spec1ﬁca11y compares the solutlons for ALS with B-
splines, ACE with small and ]arge bandwidth, and model 1. The asten;ks indicate the
transformations found by the technique, the line in the plot is the rational transformation of
~ density. In the ACE-analysis with small bandwidth we see an endpeintﬁeffect at the higher
énd of the scale. This is probab]y caused by the peculiarities. ef the running average
smoothér. The B’-ks.p,]ine, large handwidth ACE, and maximum ]ike_lihood methods
overestimate the true function someWhat close to the_]arger values. ’I:he B-splihe ALS-
method and the small bandwidth ACE seem to give the smoothest transformations. Both
ML and large bandwidth ACE are more jagged. = B | ! -
It is quite clear that the example we have chosen is very well behaved, and that
examples in the life sciences and the soc1a1 sciences w111 generally have much more error. It
is of considerable mterest to apply the yanous methods we have discussed on a wider range

of examples, and to consider their statistical stability as well.
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