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{ Abstract - In this paper we discuss the technique of path analysis, its extension to
structural models with latent variables, and various generalizations using optimal
scaling techniques. In these generalizations nonlinear transformations of the
variables are possible, and consequently the techniques can also deal with nonlinear
relationships. The precise role of causal hypotheses in this context is discussed. Some
applications to community ecology are treated briefly, and indicate that the method
is a promising one.

v

INTRODUCTION

In this paper we shall discuss the method of path analysis, with a number of
extensions that have been proposed in recent years. The first part discusses path
analysis in general, because the method is not very familiar to ecologists. In fact we
have been able to find only very few papers using path analysis in the literature of
community ecology. With the help of Pierre and Louis Legendre we located Harris
and Charleston (1977), Chang (1981), Schwinghamer (1983), Gosselin er al.
(1986), and Troussellier e al. (1986). - '

In this pape'r we combine classical path analysis models, first proposed by
Wright (1921, 1934), with the notion of latent variables, due to psychometricians
such as Spearman (1904) and to econometricians such as Frisch (1934). This
produces a very general class of models. If we combine these models with the
- notion of least squares optimal scaling (or quantification, or transformation),
explained in De Leeuw (1987), we obtain a very general class of techniques.

Now in many disciplines, for example in sociology, these path analysis
techniques are often discussed under the name causal analysis. It is suggested,
thereby, that such techniques are able to discover causal relationships that exist
between the variables in the study. This is a rather unfortunate state of affairs (De
Leeuw 1985). In order to discuss it more properly, we must start the paper with
some elementary methodological discussion.

One of the major purposes of data analysis, in any of the sciences, is to arrive at a
convenient description of the data in the study. By ‘convenient’ we mean that the
data are described parsimoneously, in terms of a relatively small number of
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parameters. If possible this description should be linked as tightly as possible to
existing scientific theory, and consequently the parameters should not be merely
descriptive, but they must preferably be part of a model for the phenomenon that is
studied. This makes it possible to communicate efficiently, and to fit the results into
an existing body of theory. Fitting data into existing theory, or creating new theory
to incorporate the data, is called explanation. If the theory is formulated in terms of
if-then relationships, or more generally in terms in functional relationships, then we
can call this explanation causal .

Thus causality is interpreted by us as a way of formulating theories, a way of
speaking about the world. Whether everything, or almost everything, moves or
develops deterministically according to causal laws is, from a scientific point of
view, not an interesting question. It is an undeniable fact that everybody, including
scientists, uses causal language all the time. It is also true, that in most contexts the
word causality suggests arnecessary connection, a notion of the cause producing the
effect, and the idea that it must be possible to change the effect by manipulating the
cause. This does not imply, as we sometimes hear, that causal connections can only
be established by experimental methods. Causal connections, if they are necessary
connections, cannot be established at all, in the same way as natural laws cannot be
proven inductively. Causality is a figure of speech, and there is no need to ‘establish’
a figure of speech.

This does not mean, of course, that persons engaged in scientific discourse can
afford to choose their terminology in a misleading and careless way. The word
‘causality’ has all the connotations we have mentioned above (necessity,
productivity, manipulation), and if social scientists, for instance, want to use the
word, they must realize that it has these connotations. If social scientists set out to
prove that 'social economic status’ causes 'school achievement’, and 'school
achievement' causes 'income’, then they will have a hard time convincing others that
they are using the word ‘cause’ in the same sense as somebody who says that putting
a kettle of water on the fire causes it to boil.

We briefly mention some other points that are important in this connection.
There has been a justifiable tendency in statistical methodology either to avoid the
word 'cause’ altogether, or to give it a precise meaning which does not necessarily
have much to do any more with the common sense notion. Simon (1953) and Wold
(1954), for instance, define 'causality’ as a property of systems of linear
regressions, some are causal and some are not. This is not very objectionable,
although of course not without its dangers. A very important point of view,
defended for example by Pearson (1911), is that causation is merely the limiting
case of perfect correlation. This resulted from a conscious attempt, started by the
Belgian astronomer Quetelet, to bring the laws of the social and life sciences on an
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equal footing with the laws of the physical sciences. Pearson eloquently argued that
correlation is the more fundamental scientific category, because causality is merely
a degenerate special case, which does not really occur in practice. Again this point
of view is not inherently wrong, provided we broaden the definition of correlation
sufficiently.

This is related to the fact that lawlike relationships in the social sciences and the
life sciences are usually described as probabilistic in stead of deterministic. If we
have ten kettles, and we put them on the fire, then the water will boil in six or seven
of them. But this difference is mainly a question of choosing the appropriate unit. A
probabilistic relationship between individual units is a deterministic relationship, in
fact a functional relationship, between the random variables defined on these units.
A linear regression between status and income is a deterministic relationship
between averages, even though it does not make it possible to predict’ each
individual income precisely from a known status-value. If we call a law-like
relationship between the parameters of multivariate probability distributions a
correlation, then Pearson's point of view about causality makes sense. Of course we
must again be careful, because another far more specific meaning of the word
‘correlation’, also connected with the name of Pearson, is around too. Compare
Tukey (1954) for more discussion on this point.

Up to now we have concentrated on data analysis as a method of description. We
summarize our data, preferably in the context of a known or conjectured model
which incorporates the prior information we have. At the same time we also
investigate if the model we use describes the data sufficiently well. But science does
not only consist of descriptions, we also need to make predictions. It is not enough to
describe the data at hand, we must also make statements about similar or related data
sets, or about the behaviour of the system we study in the future. In fact it is
perfectly possible that we have a model which provides us with a very good
description, for example because it has many parameters, but which is useless for
prediction. If there are too many parameters they cannot be estimated in a stable
way, and we have to extrapolate on a very uncertain basis. Or, to put it differently,
we must try to separate the stable components of the situation, which can be used for
prediction, from the unstable disturbances which are typical for the specific data set
we happen to have.

We end this brief methodological discussion with a short summary. The words
'correlation’ and ‘causality’ have been used rather loosely by statisticians, certainly
in the past. Causal terminology has sometimes been used by social scientists as a
means of making their results sound more impressive than they really are, and this
is seriously misleading. It is impossible, by any form of scientific reasoning or
activity, to prove that a causal connection exists, if we interpret ‘causal' as
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'necessary’. What we are really looking for is invariant functional relationships
between variables, or between the parameters of multivariate probability
distributions. These invariant relations can be used for prediction. The method of
path analysis, that we shall discuss in detail below, has the specific advantage over
other data analysis techniques that it makes causal hypotheses explicit by translating
them into regression equations. Thus it becomes possible to integrate prior 'causal’
knowledge in the data analysis, and to test ‘causal’ hypotheses. These important
positive aspects of the technique are important in so far as this prior knowledge is
relatively well-established, and in so far the hypotheses really make sense.
Incorporating prior knowledge which is just conjectural means that we are treating
prejudice as certainty, and this can lead to very undesirable consequences (as the
nature-nurture debate about the genetics of intelligence amply shows; compare for
instance Jaspars and De Leeuw 1980).

PATH MODELS IN GENERAL

We shall now define formally what we mean-by a path model. In the first place
such a model has a qualitative component, presented mathematically by a graph or
arrow diagram. In such a graph the variables in our study are the corners, the
relationships between these variables are the edges. In the path diagrams the
variables are drawn as boxes, if there is an arrow from variable V to variable V)
then we say that Vy is a direct cause of V9 (and V1 is a direct effect of V1).

\Y% \%
1 6
V2 V7

Figure 1.
Path diagram.
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Compare Figure 1, for example. Observe that we use causal terminology without
. hesitation, but we follow the Simon-Wold example and give a precise definition of
causes and effects in terms of graph theory. If there is a path from a variable Vito
another variable V, then we say that V1 is a cause of V (and V3 isan effect of
V1). In Figure 1, for instance, V1 is a cause of Vg and V7, although not a direct
cause.

Table 1.
Causal relations in Figure 1.
direct
level -Causes causes predecessors
Varl 0 2% % 3% 3¢ % % 3¢ 23 3% %
Var 2 0 HHHK 3% % % X %
Var 3 1 {1,2} {1,2} {1,2}
Var 4 1 {1} {1} {1,2}
Var 5 1 {2} {2} {1,2}
Var 6 2 {1,4} {4} {1,2,3,4,5}
Var 7 2 {1,4} {4} {1,2,3,4,5}

An important class of graphs is transitive, by which we mean that no path
starting in a corner ever returns to that corner. Figure 1 would not be transitive
any more with an arrow from V7 to V1, because of the pathVy = V4 =V7= V1,
but it would still be transitive with an arrow from V7 to V. There have been heated
discussions about the question whether or not non-transitive models can still be
called causal. With our definition of causality they obviously can.

In transitive models we can define an interesting level assignment to the
variables. This concept is due to De Leeuw (1984). Variables at which no arrows
arrive are often called exogenous variables. They get level 0. The level of an
endogenous (i.e. not exogenous) variable is one larger than the maximum level of
its direct causes. We call V| a predecessor of Vo (and V5 a successor of Vi) if the
level of V7 is less than that of V5. In the Table 1 we give causes, direct causes, and
predecessors for the variables in Figure 1. Clearly the direct causes are a subset of
the causes, and the causes are a subset of the predecessors. If x is any variable, we
write this symbolically as pred(x) 2 cause(x) D dcause(x). By using lev(x) for
the level, we can now say dcause(x) = g = lev(x) = 0, and lev(x) = 1 + max
{lev(y) | y € dcause(x)}. A model is transitive if (Vx){x & cause(x)}. These
qualitative concepts make it possible to explain what the general idea of path analysis
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is. We have defined our notion of causality in terms of the path diagram. Other
notions which are important in path analysis will be discussed below.

TRANSITIVE PATH MODELS

We know make the path diagram quantitative, by embedding the qualitative
notions in a numerical model for the variables. We restrict ourselves to linear
structural models. There exist nonlinear path analysis techniques, developed in the
framework of log-linear analysis (Goodman, 1978, Kiiveri and Speed, 1982), but
these are outside our scope. They are discussed and compared with our approach in
De Leeuw (1984). The only nonlinearity we allow for, at a later stage, is that
connected with the transformation or quantification of variables. We assume, for
the moment, that all variables are completely known, and, moreover, standardized
to zero mean and unit variance. Thus VAR(x) = 1 for all variables x, and AVE(x) =

0.

The model in Figure 1 can be made numerical in the following way. We take all
the endogenous variables in turn, and we suppose that they are a linear function of
their direct causes, plus a disturbance term. The linear model corresponding with

Figure 1 becomes

x3 = B31x1 + P3oxp + €3, (1a)
x4 = B41x1 + €4, (1b)
x5 = Bs2x) + &5, (1c)
x6 = P6ax4 + €6 (1d)
x7 = By4%4 + £7. (1e)

The assumptions we make about the disturbance terms &; are critical. These
assumptions are in terms of uncorrelatedness, for which we use the symbol L. First
assume for each j that the g; are uncorrelated with dcause(x;). Thus

€3 L {x1.x2} (2a)
g4 L {x1} (2b)
g5 L {xa}, (2¢)
g6 L {x4} (2d)
g7 L {x4}. (2e)

Now model (1)(2) describes any data set of seven variables perfectly. To see this it
suffices to project each Xj on the space spanned by its direct causes, i.e. to perform a
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multiple regression with Xj as the dependent variable and dcause(Xj) as the
independent ones, and to take g equal to the residual. Then the disturbance is, per
definition, uncorrelated with the direct causes in the same equation, and description
is perfect. We can also say that the model is saturated, or just identified. It does not
impose any restrictions, it merely provides us with an alternative description which
is perhaps preferable to the original one because it links the data with some existing
theory. But although description is, in a trivial sense, perfect, the performance of
(1)(2) as a predictive model may still be very bad. The predictive power of the
model is measured by the variances of the disturbances or residuals. If this is large,
then we do not predict the corresponding variable efficiently. Thus we can have
models which are good descriptors but poor predictors.

Path models can also be poor descriptors. But in that case we clearly must make
stronger assumptions about the distribution of the disturbances. Let us call for any
path model the assumption that for each j we have €] 1 dcause(x;) the weak
orthogonality assumptions . The strong orthogonality assumptions are defined for
transitive models only. They are (i) that the disturbances are uncorrelated with the
exogenous variables, and (ii) that disturbances of variables of different levels are
uncorrelated with each other. In symbols this reads € L {x|lev(x) =0} and € L
{ex | lev(xy) # lev(xj')}.Thus, in a convenient compact notation, in our Figure 1,

{€3,£4,85.86,7} L {x1.x2}, - (3a)
{€3.64,65} L {eg.£7}. (3b)

Assumption (3) is much stronger than (2), and not all sets of seven variables satisfy
(1) and (3). Because g4 1 {x1,x2}, for example, regression of x4 on x1 and x9 will
give B42 = 0 if (1)(3) is true, and this is clearly restrictive. Thus model (1)(3) can
be a poor descriptor as well as a poor predictor. It is clear, by the way, that a model
which is a good predictor is automatically a good descriptor.

For the causal interpretation the following argument is useful. It extends to all
transitive models. We have gg L {x1,x2} and €¢ L €3. Thus, from (1a), €g L x3.1In
the same way €g L x4 and €g L x5. Thus £ L {x1,x2,X3,X4,x5}, which implies that
proj(xglxy,x2,x3,x4,x5} = proj(xglxg), with proj(ylxy,...,xy,) denoting least
squares projection of y on the space spanned by x1,...,.Xp,. In words this says that the
projection of xg on the space spanned by its predecessors is the projection of xg on
the space spanned by its direct causes. The interpretation is that, given the direct
causes, a variable is independent of its other predecessors. Thus the strong
orthogonality assumptions in transitive models imply a (weak) form of conditional
independence .

We shall now treat some more or less familiar models in which description is

S A T NIRRT A S R o A
- srirtbadind i dinkrginiis s




Ao St e 8RS e e b . .t A 1 4t =1

)' o
o e kvt -t o e e, Sl e S0t 00 M vttt o~ g

7 bt et ki o Rt a2 o

|
|
i
“

388

perfect. These models are consequently saturated. The structural equations defining
- the model can be solved uniquely, and the model describes the data exactly. The
first, and perhaps simplest, example is the multiple regression model. An example is
given in Figure 2.

13 X

Figure 2.

Multiple regression model.

If we compare this with Figure 1 we see some differences which are due to the
fact that we have made the model quantitative. In the first place the arrows now have
values, the regression coefficients. In the second place it is convenient to use curved
loops indicating the correlations between the exogenous variables. The curved loops
can also be used to represent correlated disturbances. This becomes more clear
perhaps if we add dummy equations like Xj = §j for each of the exogenous variables,
which is consistent with the idea that exogenous variables have no causes; exogenous
variables are, in this sense, identical with disturbances. The strong orthogonality
assumptions on disturbances can now be stated more briefly, because they reduce to
the single statement €] L {eg|lev(xg)# |€V(Xj) }. Arrows are also drawn in
Figure 2 to represent uncorrelated disturbance terms.

In Figure 2, and in multiple regression in general, there is only one endogenous
variable, often called the dependent variable. There are several exogenous
variables, often called predictors or independent variables. The linear structural
model is

y=B1x] + o BmXm + € @)

The orthogonality assumptions on the disturbances are € 1 dcause(y) =
{X1,---Xm}. In this case the strong assumptions are identical with the weak
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assumptions, because dcause(y) are exactly the exogenous variables. Thus 4)isa
saturated model. If we project the dependent variable on the space spanned by the
predictors, then the residual is automatically uncorrelated with each of the
predictors. The description is perfect, although the prediction may be lousy. We
measure quality of prediction by the multiple correlation coefficient R2=1-
VAR(g), in this context also known as the coefficient of determination .

Figure 3 shows a somewhat less familiar model. Its linear structure is

x2 = P21x1 + €2, _ . (52)
x3 = B31x1 + B32x2 + €3. (5b)

The weak orthogonality assumptions, which make (5) a saturated model, are €3 L
{x1} and €3 L {x1,x2}. It follows from this that € is the residual after projection of
x5 on x1. Thus P71 is equal to the correlation between xj and x, and €3 = x) -
Bo1x1 is a linear combination of xj and x3. This implies that €3 L €3, and
consequently the strong orthogonality assumptions are true as well. Although we
did not require it, we automatically get uncorrelatedness of the disturbance terms.

2 2
ll- R2 1 -lR3
x| BQ‘; S ) ng » x 3 Figure 3.
1 ’ J A simple saturated
recursive model.
B31

If we try to generalize the structure in Figures 2 and 3 we find something like
Figure 4. Variables are partitioned into sets, and variables in the same set have the
same level. In saturated block-transitive models dcause(x) = pred(x) for all
variables x. Thus there are arrows from each variables to all variables of a higher
level. There are no arrows within sets. The arrows indicating errors in Figure 4
actzally indicate correlated errors. Saturated simple transitive models (also called
causal chains ) have only one variable in each set, and thus all variables have a
difF=rent level. For both block transitive models and simple transitive models the
w22k orthogonality assumptions , together with the structure, imply the strong
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orthogonality assumptions. And, consequently, imposing the strong orthogonality
assumptions leaves the model saturated and the description perfect. Residuals of
variables of different levels are uncorrelated, and residuals are uncorrelated with
variables of a lower level. There can be correlation between the residuals of
variables of the same level, or between residuals and variables of a higher level. We
can find path coefficients by regressing each endogenous variable on the set of its
predecessors. We have seen that transitive models are path models corresponding
with transitive graphs having no ‘causal loops". Saturated transitive models, of
which the block transitive models and simple transitive models are special cases,
describe the dispersion matrix of the variables precisely. Non-saturated or
restrictive transitive models, of which the model in Figure 1 is a special case, arise
from saturated models by leaving out certain arrows. It is still the case that an
unambiguous level assiénment is possible, and the terminology of predecessors and
successors still applies.

6 residuals 4 residuals

level O level 1 fevel 2

18 arrows 24 arrows

— —»>

12 arrows

Figure 4.

General recursive saturated model.

In quantifying any path model we can simply use the path diagram to write down
" the lifiear structural equations. We also have to assume something about the
disturbances in terms of their correlation with each other and with the x;. The
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weak orthogonality assumptions can be applied in all cases. They make the model

saturated, and have as a consequence that consistent estimation of the regression

coefficients is possible by projecting a variable on the space spanned by its direct
causes. In all transitive models, saturated or not, the strong orthogonality conditions
follow from the weak orthogonality conditions and the linear structure. Thus the
causal interpretation in terms of conditional independence is available.

The notion of a linear structural model is more general than the notion of a
transitive model, of course. If we assume a structural model, such as (1), then we
can make alternative assumptions about the residuals, for instance that they are all

- uncorrelated. In fact we can easily build linear structural models which are not

transitive at all. Simply write down the model from the path diagram, one equation
for each endogenous variable, and make some sort of assumption about the
disturbances. By allowing for correlations between the disturbances we can create
saturated nontransitive models, and we can also get into problems with
identifiability. For these identification problems we refer to the econometric
literature, for instance to Hsiao (1983) or Bekker (1986). Observe that
nontransitive models can not be translated into conditional independence statements,
which has caused some authors to say that nontransitive models are not causal.

For a small ecological example we use a part of the correlation matrix given by
Legendre and Legendre (1983, Table 5.6). The data have to do with primary
production, and were collected in 1967 in the Baie des Chaleurs (Québec). There
are 40 measurements on four variables. These are:

K:  the biological attenuation coefficient which represents
the relative primary production, )

C: the concentration of chlorophyll a, '

S: the degree of salinity,

T: the temperature.

The correlation matrix, and some simple path models, are given in Table 2.
Model (a) is the saturated model which-has T and S as exogenous variables (level 0),
has C as a variable of level 1, and K as the innermost variable of level 2. Model (b) is
not saturated, because the paths from T and S directly to K are eliminated. All
effects of T and S on K go through C, or, to put it differently, K is independent of T
and S, given C. Model (c) is also saturated, but no choice is made about the causal
priority of C or K. Thus C and K have correlated errors, because they both have
level 1. In the part of Table 2 that gives the fitted coefficients we see that the
covariance of the errors in (c) is .721. Because of this covariance variable K has a
much larger error variance in model (c).
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Three recursive models

Table 2.
Legendre and Legendre VAR ERR C
Primary Production Data. /AR ERR K

COV ERR CK

Models (a) and (c) give a perfect description of the correlations, so the choice
between them must be made purely on the basis of prior notions the investigator has.
We are pot familiar with the problems in question, so we cannot make a sensible
choice. Model (b) is restrictive. If we compare it with (a) we still see that its
descripton is relatively good. If we want to decide whether to prefer it to (a) we can
cither mse statistics, and see if the description is 'significantly’ worse. But we can
also wse (a) and (b) predictively, and see which one is better. Our guess is that on
both counts (b) is the more satisfactory model. - '
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DIRECT AND INDIRECT EFFECTS

In this paragraph we discuss the calculus of path coefficients explained by
Wright (1921, 1934). We do not present the general theorems here, but we illustrate
the calculus by using our examples. First consider the model in Figure 3. Let us use
equations (5) to compute the correlations between X1, x2 and x3. We find ry 1 = 391
and 131 = 31 + B32ra1 = P31 + B32B21. In terms of Figure 3 the equation for r3;
can be interpreted as follows: there is a direct effect of X1 on x3 with size 31, and
an indirect effect (via x) of B32B71. The indirect effect comes about because there
is a path from xj to x3, which passes by xg. Coefficients along the path are
multiplied to quantify the indirect effect. In the same way we find 132 =B3iryp +
B32 =B31B21 + B3. Again a direct and an indirect effect, but now the indirect
effect does not correspond with a path in the directed graph but with the path in the
corresponding undirected graph.

An even clearer example can be obtained from Table 2. In model (a), for
instance, we have K = BgcC + BT + BgsS + ek and C = BT + BesS + ¢
Thus rgc = Bgc + BrTrCT+ BRstes = Be + BRT(BCT + BosrsT)+

Prs(BctrsT + Bes) = Bre + BRTBCT +BrSBCs + BRTBCSTST + BRSBCTTST-
Thus rg ¢ is the sum of a direct effect, an indirect effect via T and another indirect

effect via S. The two remaining contributions to T C come from the (undirected)
paths from K to Tto S to C and from K to S to T to C. In model (b) we have rgc =
P because this direct effect is the only path. In model (c) K = BkTT +BksS + ek
and C = BT + BesS + ec. Thus ik = BRTBCT + BrsBes + BRTBCSTST +
BrSBCTTST + r(EK.€C) and there is no direct effect.

The terminology of direct and indirect effects is causal, of course, and our
earlier warnings against taking this terminology too literally apply. For model (a)
in Table 2 we find, for instance, for the direct effect from C on K +.916, the
indirect effect via T is -.023, the indirect effect via S 15 -.230, and the two effects 'K
to Tto StoC'and K to S to T to C' are +.030 and +.149. The sum of these effects is
+.842, which is indeed the correlation between C and K. It is difficult, and risky, to
give a causal interpretation, because the values depend strongly on the model that we
have chosen. In model (c), for instance, the indirect effect via T is +.466 and the
indirect effect via S is +.768. The equation for rg ¢ in (c) becomes .842 = .466 +
768 - .616 - .497 + .721. The model also fits perfectly, but presumably the causal
interpretation would be quite different.

Although the calculus of path coefficients in transitive models is an interesting
and perfectly legitimate way to decompose correlation coefficients, -causal
interpretation in terms of direct and indirect effects seems valuable only if there are
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strong reasons to prefer the particular model in the study over other competing
. models. And this happens only if we already have a pretty good idea about the
mechanisms that are at work in the situation we are studying. If the sociologist says
that fathers's income only has an indirect effect on the career of the child, this is
either just a figure of speech, or a statement that a particular partial correlation
coefficient is small. In Chang (1981), and Troussellier et al. (in press), it is shown
that the decomposition of the correlation coefficients in direct and indirect
contributions (with respect to a particular path model) can lead to useful
interpretations in community ecology.

LATENT VARIABLES

Now consider the path models in Figures 5 and 6. They are different from the
ones we have seen before, because they involve latent or unobserved variables. In
the diagrams we indicate these latent variables by using circles instead of squares.
First we give the causal interpretation of Figure 5. If we project the observed
variables on the space spanned by"‘t-haé-;mobserved variables then the residuals are
uncorrelated. Thus the observed variables are independent given the unobserved
variable. All relationships between the observed variables can be ‘explained’ by the
latent variable, which is their common factor . In somewhat more intuitive terms a
good fit of this common factor model to the data means that the variables all
measure essentially the same property. A good fit, and small residuals, means that
they all measure this property in a precise way. Again we see that the model can be a
good description of the data without being a good predictor. Uncorrelated
variables, for instance, are described perfectly by the model, but cannot be
predicted at all.

The structural equations describing the model are

xj = c,_‘C +€j. 6)

The £: are assumed to be uncorrelated with {. Model (6) is saturated and transitive,
but it has the peculiar property that the exogenous variable is not measured. In De
Lecuw (1984) & was suggested that latent variables are just another example of
variabies about which not everything is known. We have nominal variables, ordinal
variables, polynmomial variables, splinical variables, and we also have latent
varisbles. About bes¢ variables absolutely nothing is known, except for their place
in the model Thus the basic optimal scaling idea that transformations and
quantificanons st be choses © optimize prediction also applies to latent variables.
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Consequently latent variables fit very naturally into the optimal scaling approach to
path analysis.

Figure 5.

One-factor model

The model in Figure 6 is a special case of the MIMIC model proposed by
Joreskog and Goldberger (1975). In MIMIC models there are two sets of variables.
The exogenous variables influence the observable endogenous variables through the
mediation of one or more latent variables.

2 Ep)

Figure 6.

MIMIC model.

The MIMIC model combines aspects of psychometrical modelling with aspects




396

of econometric modelling. It follows from the MIMIC equations, that the
observable endogenous variables satisfy a factor analysis model, while the joint
distribution of exogenous and endogenous variables is a reduced rank regression
model. For Figure 6 these equations are

€= B1xq + Boxg + PB3x3 + 3, (7a)
y1 =18 +€y, (7b)
y2 =00 + €2, (70)

The MIMIC model is closely related to canonical correlation analysis (Bagozzi,
Fornell, and Larker, 1981) and to redundancy analysis (Gittins, 1985, section
3.3.1).

567

.620

Figure 7.
MIMIC model,Legendre data.

Figure 7 illustrates an application of the MIMIC model to the Baie des Chaleurs
data of Legendre and Legendre. The values of the path coefficients and the error
variances are given in the diagram. The model provides a reasonably good
description, compared with the transitive models in Table 2. The causal
interpretation of Figure 7 is that temperature and salinity determine the unmeasured
variable {, which in its turn determines primary production and chlorophyll
concentration. ' '

In our experience some people find it difficult to accept the concept of a latent
variable. But there are several reasons why we still think that such a concept is
useful. In the first place in many of the sciences measurement errors can not be
neglected. This means that the observed variable is an indicator of the latent 'true’
variable. The concept of an indicator can be generalized considerably, and this has
happened mainly in psychometrics and in sociological methodology. It is not
possible to measure ‘intelligence’ directly, but it is possible to measure a large
number of indicators for intelligence. If the common factor model is acceptable,
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then we have found a way to measure intelligence as a linear combination of
indicators (it is still possible, under these circumstances, that measurement of
intelligence is poor in a predictive sense). The situation can be compared with
determining the weight of a number of objects if we have a number of spring
balances with unknown characteristics. This can be done quite well by common
factor analysis. Social scientists happen to use a large number of concepts such as
intelligence (or attitude, or status, or power), which can not be measured directly
but for which indicators are available. It seems to us that the situation in ecology is
not really different. This means that the path models in terms of the observed
variables are theoretically not very statisfactory, because the theory says something
about the relationships between conctructs or concepts, which should not be
confused with their indicators. And finally, we have already used latent variables in
classical path analysis as well. The errors or disturbances in the equations are also
unobserved, and measurable only by making linear combinations of observed
variables. If we allow for ‘errors in equations', we may as well allow for ‘errors in
variables'.

OPTIMAL SCALING OF VARIABLES

We now briefly indicate where the theory of optimal scaling comes in. We have
seen in De Leeuw (1987) that optimal scaling (or transformation, or quantification)
can be used to optimize criteria defined in terms of the correlation matrix of the
variables. In path analysis the obvious criteria are the coefficients of determination,
i.e. the multiple correlation coefficients. In De Leeuw (1987) we already analyzed
an example in which the multiple correlation between predictors SPECIES and
NITRO and dependent variable YIELD was optimized. In path analysis we deal with
nested multiple regressions, and we can choose which one (or which combination)
of the multiple correlations we want to optimize. If there is no prior knowledge
dictating otherwise, then it seems to make most sense to maximize the sum of the
coefficients or determination of all the endogenous variables. But in other cases we
may prefer to maximize the sum computed only over all variables of the highest
level.

In general nontransitive models the methods of optimal scaling can be used
exactly as in transitive models. We have one coefficient of determination for each
endogenous variable, and we can scale the variables in such a way that the sum of
these coefficients is optimized. This amounts to finding transformations or
quantifications optimizing' the predictive power of the model. Moreover it is
irrelevant for our approach if the model contains latent variables or not. We have
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seen that latent variables are simply variables with a very low measurement level,
~ and that they can be scaled in exactly the same way as ordinal or nominal variables.
This point of view, due to De Leeuw (1984), makes our approach quite general. It is
quite similar to the NIPALS approach of Wold , described most fully in Joreskog
and Wold (1982) and Lohméller (1986).

It is of some interest that we do not necessary optimize the descriptive efficiency
at the same time. Optimizing predictive power is directed towards the weak
orthogonality assumptions. It is possible, at least in principle, that a model with
optimized coefficients of determination has a worse fit to the strong orthogonality
assumptions. Scaling to optimize predictability does not guarantee an improved fit
in this respect. This has as a consequence that there is a discrepancy between the
least squares and the maximum likelihood approach to fitting nontransitive path
models. We do not go into these problems, but refer the interested reader to
Dijkstra (1981), J6reskog and Wold (1982), and De Leeuw (1984) for extensive
dlscussxons

‘"We now outline the algorithm that we use in nonlmear path analys;s somewhat
more in detail. We minimize the sum )

% lixj - Z1 B, ®)
over both the regression coefficients B_]I and the quantifications (or transformations)
of the variables. The outer summation, over j, is over all endogenous variables, the
inner summation, over 1, is over all variables that are direct causes of variable j J- The
algorithm we use of is the alternating least squares type (Young, 1981). This means
that the parameters of the problem are partitioned into sets, and that each stage of
the algorithm minimizes the loss function over one of the sets, while keeping the
other sets fixed at their current values. By cycling through the sets of parameters we
obtain a convergent algorithm. In this particular application of the general
alternating least squares principle each variable defines a set of parameters and the
regression coefficients define another set. ,

We give an ecological illustration of this nonlinear PATHALS algorithm. The
data are taken from Van der Aart and Smeenk-Enserink (1975), who reported
abundance data for 12 species of hunting spiders in a dune area in the Netherlands.
A total of 28 sites was studied, and the sites were also described in terms of a
number of envitonmental variables. We have used a selection and coding from these
data made by Ter Braak (1986a). He used the six environmental variables:

WC  Water content, percentage dry weight,
BS  Percentage bare sand,
CM  Percentage covered by moss layer,-
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LR  Reflection of soil surface at cloudless sky,

FT  Percentage covered by fallen leaves or twigs,

CH Percentage covered by herbs layer.
Ter Braak categorized all variables into 10 discrete categories, in order to present
them succinctly. We have taken over his categorization, and used it in our analysis.

The results of a MIMIC analysis with two latent variables (factors) are given in

Table 3. Analyses with only a single latent variable were not very successful. We
first performed a linear analysis, using the category scores from the coding by Ter
Braak, and we then computed optimal monotone transformations. As an illustration
the optimal transformations for the environmental variables are given in Figure 8.
We see a large variety of shapes. It would carry us too far astray to give a detailed
analysis of these nonlinearities. Of course these transformations are only optimal

given the path model, in this case given the number of latent variables, for instance.

Table 3. Hunting spider data. Metric and nonmetric MIMIC analysis.

weights metric weights nonmetric  residual variances
metric  nonmetric

wC =77 .20 -.97 24

BS -.02 1 -.30 .53

M .20 17 .09 .27

LR 17 .52 -.07 .54

FT 62 -32 29 -.02

CH . =26 .13 -.52 .41

S =77 21 -87 .19 .39 21

S2 .10 -79 21 -.86 37 21

S3 -89 -.04 -89 -20 21 .16

S4 -.91 .23 -97 18 12 .04

S5 -.92 .26 -.96 .18 .08 .04

S6 -.88 .16 -93 .16 200 .10

S7 -95  -.15 -97 -08 .07 .04

S8 -.75 15 -85 -01 42 .27

S9 -25 .63 -.40 73 .54 31
S10 .30 .83 .15 .90 22 .16
Sii .59 .53 54 72 37 .18
S12 57 35 .60 .58 .56 31

For a more detailed discussion and interpretation of the data we refer to Van der
Aart and Smeenk-Enserink (1975) and to Ter Braak (1986a), who both performed
forms of canonical analysis. Actually Ter Braak used canonical correspondence
analysis, a form of nonlinear canonical analysis, also discussed in Ter Braak
(1986b). We merely point out some 'technical’ aspects of our analysis, and we
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compare the linear and nonlinear solutions. It is clear that the 'explained’ variances
of the transformed abundance variables increase considerably. The table does not
give the 'explained’ variance of the two latent variables. For the metric analysis the
residuals are .06 and .14, for the nonmetric analysis they are .01 and .01. Thus the
latent variables in the nonmetric analysis are almost completely in the space of the
transformed environmental variables, which implies that our method is very close
to a nonmetric redundancy analysis.

The interpretation of the latent variables is facilitated, as is usual in forms of
canonical analysis, by correlation the latent variables with the transformed
variables. This gives canonical loadings . If we do this we find, for example, that
the first latent variable correlates -.75 with both Water Content and Cover Herbs,
while the second one correlates +.80 with Light Reflection and -.80 with Fallen
Twigs. The analysis clearly shows some of the advantages of nonlinear multivariate
analysis. By allowing for transformations of the variables we need fewer
dimensions to account for a large proportion of the variance. Much of the
remaining variation after a linear analysis is taken care of by the transformations,
and in stead of interpreting high-dimensional linear solutions we can interprete
low-dimensional nonlinear solutions, together with the transformations computed
by the technique. Using transformations allows for simple nonlinear relationships in '
the data, and the optimal transformations often give additional useful information
about the data.

. CONCLUSIONS

Discussions of multivariate analysis , also in the ecological literature, often limit
themselves to various standard situations, and the associated techniques. Thus
multiple regression, principal component analysis, and canonical correlation
analysis are usually discussed, for situation in which we want to predict one
variables from a number of others, in which we want to investigate the structure of
a single set of variables, or in which we want to relate two sets of variables. The path
analysis techniques, with latent variables, discussed in this paper, make it possible to
use a far greater variety of models, and even to design a model which may be
especially suited for the data or the problem at hand. Usually the choice of the path
model will be based on prior knowledge the investigator has about the causal
relationships of the variables in the study. Although this far greater flexibility may
have its dangers, it is clearly a very important step ahead because incorporating
prior information into the analysis can enhance both the stability and the
interpretability of the results. '
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The nonlinear extensions of path analysis discussed in his paper allow for even
more flexibility. Not only can we choose the overall structure of the analysis by
choosing a suitable path model, but within the model we can also choose the
measurement level of each of the variables separately. Or, if one prefers this

_terminology, we can define a suitable class of transformations for each variable

from which an optimal one must be chosen. The use of transformations can greatly
increase the explanatory power of path models, at least for the data set in question.
If the transformations we obtain are indeed stable, and also increase the quality of
the predictions, is quite another matter. This must be investigated by a detailed
analysis of the stability and the cross-validation properties of the estimates, which is
a very important component of any serious data analysis. ‘

Thus we can say that this paper adds a number of very powerful and flexible
tools to the toolbox of the ecdlogist, with the logical and inevitable consequence that
these new tools can lead to more serious forms of misuse than the standard tools,

which are more rigid and less powerful. The major hazard is chance capitalization, .

i.. instability, and the user of these tools must take precautions against this danger.
But if suitable precautions are taken, the path analysis methods and the
generalizations discussed in this paper provide us with a convenient and useful way
to formalize scientific theories in situations, in which there is no precise knowledge
of the detailed mechanisms, or in which there are too many factors influencing the
system to make a precise deterministic description possible.
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