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Multinomial experiments and modeis

We first define what we mean by a multinomial experiment. The first component of the definition is a
set 9, the population. Elements of P are called objects. We shall assume in this paper that ¥ is finite, and
that there is a list of ¥ objects defining this population. The objects are of m different types. Suppose there
are %; objects of type j, and define the theoretical proportions w; = nj/N‘. Now consider the set of all
sequences of length N, with elements from $. There are ¥~ such sequences, but if types are
indistinguishable not all of them are different. In particular there are IT2; jj indistinguishable sequences
with frequencies ny, and if the order of the objects in the sequence is irrelevant there are even N! H‘j‘;l {'mj“j
/n;!} such sequences. The proportion of sequences with given frequencies, where order is not taken into
account, is consequently prop(ny,....ny,) = N! ITZ, {K}‘j /n;!}. With each sequence of length N we associate
the vector of proportions p, with p; = ny/N, and the multinomial probability prop(n,,....ny,). Another way
of expressing this is that for each N we have defined a random vector py;, taking values in §™!, the unit
simplex in ®™, We use the convention of underlining random variables in this paper. Thus pyis a
sequence of random vectors.

This describes the multinomial experiment. We have the pair (¥,n) and the sequence py, and
gencrally (¥,m) is unknown. The first and most basic problem we shall study is the estimation of m. This
means, informally, that we construct a new sequence of random variables ®(pyy) which is (in some sense)
as close as possible to the unknown 7. Observe that we restrict our attention to functions of the proportions
Pn- Precise definitions of closeness and optimality will be given below.

In order to make our estimates accurate, we must try to take as much prior information into account as
possible. Science is cumulative, and presumably we already know something about the subject area in
question. Prior information takes the form of a model in this paper. A model € is a subset of §™1 If we
say that model {2 is true, then we mean that 7 € Q. The second problem we shall investigate in this paper, if
assuming that a model is true will help us to compute more precise estimates, even in those cases in which
the model actually is only approximately true. This could be formulated as deciding whether a model is
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useful. Moreover, and finally, we shall study a similar problem for the case in which we have a finite
number of models €;,...,2,. This is one version of the problem of model choice, in which we want to find
out which mode] helps us best to improve our estimates, i.e. which model is most useful.

Up.to now we have defined a mathematical structure called a multinomial experiment, but we have not
yet specified how this structure is connected with empirical data. Suppose we have selected N objects from
the population. We can compute the m quantities ny, which are the observed frequencies of objects with
type j, and p; = nyN, which are the observed proportions. We assume now, that p is a realization of the
random variable py. This means that we compare statistics computed from p with statistics computed from
the other possible realizations of this random variable. This defines our framework of replication (De
Leeuw, 1984), the set of all possible outcomes with which we compare our results. Because our
framework gives all sequences the same probability this means that we act as if that our sample is a simple
random sample, drawn with replacement from a finite population. It is important to realize that all statistical
statements are about this framework py, not about the data p, and also not about the true value T. It is also
important to see that a framework is never true or untrue (for a particular empirical situation), but it is either
relevant or irrelevant. We do not assume, in any sense of the word, that our sample is indeed a random
sample. Our results have a simple com%;;?gr;al interpretation. The counting of samples, familiar from
combinatorics, is done by using asymptotic approximations. Thus the ‘foundational’ and ‘inferential
aspects of statistics, which are both controversial and problematical, are not relevant for our discussion.
We go "back to the Laplace definition' (Hemelrijk, 1968).

It is perhaps worth mentioning that our results, which are true for multinomial situations, can be
generalized with little effort to product-multinomial situations in which we deal with more than one
population (or with a stratified population). With a bit more effort they can be extended to more
complicated sampling designs. And with a considerable amount of technical effort they can also be
extended to infinite dimensional problems (functions of empirical distribution functions, regression
functions, or density estimates). The basic methodological ideas and interpretations remain the same in

these alternative situations.

Models are never true

There has recently been much discussion in statistics about the role of models. Compare McCullagh
and Nelder (1983, section 1.1), De Leeuw (1984), or Nelder (1984) for fairly modern introductions. The
general consensus seems to be that, contrary to the practice of classical statistics, we must not routinely
assume that our models are true, i.c. that © ¢ Q. Models are approximations, which are summaries of the
prior scientific information we have, but which can still be quite far off the mark in some cases. We need
models to increase the stability of our estimators, descriptors, and predictors. Using a model which is
perhaps not true, but based on only a few parameters, means that we trade statistical stability for
unbiasedness. Making too few assumptions means instability, and may not be very cumulative from the
scientific point of view. Too many assumptions means a great deal of stability, but possibly a very large
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bias. We need to find a compromise between the two, and for such a compromise models are necessary.
The fact that models are approximations, and that approximation errors may be more important than
sampling errors, is stressed by various schools of data analysis. We mention Tukey (1980), Guttman
(1985), Benzéeri et al. (1973), Gifi (1981), Box (1979), Verbeek (1984), Kalman (1983), Willems
(1986).

If we compare the description of multinomial experiments above, for example, with actual data
collection or experimentation, then the description involves various idealizations. In the first place
populations are usually not given by finite lists. The current population of the Netherlands, for instance, is
not exactly well defined. We must decide whether we mean all human beings currently within our borders,
or all human beings with dutch citizenship, or all human beings registered by the proper authorities as

living in Netherlands. It is clear that a little bit of creative thinking shows that there are various borderline

cases and exceptions, which make it difficult to construct lists, even in theory. And, more seriously, these
populations are changing every day because of births, deaths, naturalizations, immigrations, tourism, and
50 on.

The second idealization is the gdca of sampling with replacement. Of course this can be carried out
formally only if we aétually have a list, while we have just decided that such lists do not exist. The actual
use of 'with replacement’ is very rare, except in artificial sampling experiments. In many cases
hypergeometric experiments, which do not use replacement, are more realistic. Fortunately most of what
we say applies directly to hypergeometric experiments as well, and if N is large the difference between the
two random variables is small anyway. In actual experiments with human subjects simple comparison with
all possible subsets of size N is often not the most interesting comparison, because stratification and
clustering are the rule rather than the exception. This means, in other words, than simple random sampling
(with or without replacement) does not provide the most relevant replication framework.

And, as we have already seen, our notion of a model itself is an idealization. Models are never true,

" they are at best good approximations, where ‘good’ means good enough for practical purposes. Classical

mechanics is not true, it is an approximation which is good enough for most purposes. Relativity theory
improves the approximation, but this still does not make it true. There is no reason to suppose that we shall
ever find a model which is ‘true’, in the sense that it gives perfect predictions of all phenomena under
consideration, or even predictions which can never be improved any more. This notion of truth is not really
needed, if only because of the omnipresence of measurement error. That 'truth’ exists is, in itself, 2 model,
which may be useful for guiding our actions, but which is not part of science.

The fact that even the simple multinomial model involves many idealizations and approximations
which are, at least in many cases, not really appropriate, need not disturb us greatly. The model is meant as
an approximation, and this is not only true for the model € but also for the framework modelling the
sampling procedure. The question is whether these idealizations make it possible to give descriptions and
predictions which are useful and good enough for practical purposes, or which are as good as possible
under the circumstances. There are many situations in the social sciences in which the idea of random
sampling from a well-defined population is much more far fetched than in the simple demographic or
survey situations we have in mind here. In order to apply basic statistical ideas much more far reaching




idealizations, such as super-populations or infinite hypothetical populations, are needed. One can seriously
wonder in many of these cases if the classical statistical approach is really fruitful, although not many
systematic alternatives have been proposed, at least for prediction. In such cases a satisfactory description
of the data is perhaps all that can be realistically expected. Techniques that try to go beyond mere
description must make many assumptions that are often untested or even untestable. This entails that the
conclusions in these cases are based largely on prejudice.

Example: twins

In the first part of the paper we use a simple multinomial example, taken from Andersen (1980).
Suppose that we study the gender of twins. There are three outcomes: girl-girl, boy-boy, and girl-boy. We
start with simple binomial models for the probability of a girl and the probability of a boy. Thus we ignore
the fact that twins come in piirs, and we only count the sexes. The saturated binomial model leaves
prob(Q) and prob(T) = 1 - prob(Q) free, the restricted binomial model sets prob(Q) = prob(TF) = 172,

___ The situation becomes a bit more complicated if we study the multinomial experiment with the three

V;;Bssibrlc combinations of boy and girl as outcomes. The first model one may think of, is that of
independence (model A in the sequel). If the probability of a girl is w, then

prob(Q Q) = o?, (1a)
prob(T T) = (1 - wp?, (1b)
prob(Q T') = 261 - w). (1)

Is this a useful mode! ? In order to study this question we first need data. In Figure 1 we have drawn
the simplex S, and the one-dimensional quadratic manifold defined by model A. We have also drawn in

the data points for samples from six birth centres. These data are given in Table 1, which is taken from
Andersen (1980, page 93).

2 boys 2 girls 1 boy, 1 girl
Melbourne 29 36 33
Sao Paulo 61 69 81
Santiago 88 77 76
Alexandria 116 114 161
Hong Kong 45 46 34
Zagreb 20 32 30

Table 1: twin data
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model C:
the full mixture

QQ model B: monozygotic twins 0O d

Figure 1: Models for the twin data,
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It seems clear from the data that there are fewer girl-boy twins than expected on the basis of
independence. The explanation is that twins are either monozygotic or dizygotic, and that monozygotic

twins are always of the same sex. For monozygotic twins only we consequently hav

prob(Q Q) =8, (22)
prob(T Ty =1-8, (2b)
prob(Q ) =0. (2c)

This is, of course, the basis of the triangle in Figure 1. Model B fits badly, which is not very surprising
because certainly not all twins are monozygotic.

What we really need is a mixture of models A and B, in which we suppose that the proportion of
monozygotic twins is A, an additional parameter. This mixture model C is the convex region between the
‘'monozygotic’ basis of the jriangle and the 'dizygotic’ quadratic of model A, and clearly all data points are
in this region. A more specific mixture model D supposes that @ =8 = .5. Then

e prob(QQ) = (1+ )4, (32)
prob(F Ty = (1 + 04, (3b)
prob(Q ') = (1 - A)2. (3c)

This is the vertical line segment in Figure 1, which seems to describe the data quite well.

Models A, B, and D are all one-dimensional. Model C is two-dimensional, but still restrictive. For the
sake of completeness we also define the zero-dimensional model E, which is the intersection of A and D. It
consists of the single point (0.25 0.50 0.25). The question is if these models help us to find better
estimates of 1t From the figure it would seem that model D is best, but we would like to have one or more
procedures that make it possible to make a choice if the situation is less clear. For this we need some formal
statistical theory, which we introduce in a somewhat unconventional way. The methods we use are inspired
by the treatment of multinomial experiments in the book of Rao (1973), but also by the recent emphasis on

* geometrical methods in statistical estimation theory, and by the equally recent work on resampling

methods.

Minimum distance methods

An estimator for a multinomial experiment is a continuous mapping ¢ of $™! into S™. The idea s,
that we try to estimate the population value or true value n. We do this by associating an estimate ®(p) with
each vector of observed frequencies p. The estimator @ can be thought of as a random variable, the
estimate ®(p) is a realization of this variable. The identity mapping is an obvious estimator, but in some
circumstances it may be possible to improve on this estimator by taking prior information into account. In
our case the prior information takes the form of a model Q, in other cases, which we do not study here, it
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may take the form of a prior distribution. The procedures we develop have a frequency interpretation even
if they use prior distributions, because our replication framework simply remains the counting of samples.

The problem we study is how to estimate % ‘optimally’. For this we first have to define optimality, of
course. The theory we shall explain is more limited in scope than other forms of statistical large sample
theory, but sufficiently general to cover many situations of practical interest. It uses the currently popular
geometrical terminology of distance, projection, and manifolds. Introduce a multinomial separator, which
is a function A on S™"' x §™! with the properties that A(p,q) 2 O for all p,q, and A(p,q) = 0 if and only if
p =q. Throughout the paper we shall not be concemned with regularity conditions. We simply assume that
A is sufficiently many times differentiable for our results to be true. Given the separator A, and the model
€2, we now define the estimator @ by (p) = argmin {A(p,q) | q € Q}, where we assume that for eachp e
$™! the minimum exists, and is unique. Thus @(p) is the 'A-projection’ of p on Q. Compare Figure 2.

It follows directly that O(p) = p for all p € Q. This condition is known as F-consistency, where the F
stands for Fisher, who introduced the concept in the twenties. If @ is F-consistent for a given model Q
containing &, and @ is also differentiable, it follows that the distribution of Nm(tb(p) - ) converges to a
multivariate normal distribution. We say that @ is CAN, or consistent asymptotically normal.

Our comparison of models will be based on the following two statistics. Compare Figure 2. In the
first place A(%,®(p)), the estimation error, i.c. the distance from ®(p) to the true value «. It is obvious
how the estmation error must be interpreted. It tells us how far off we are if the observed value is p and the
true value is . In the second place we study the prediction error A(Q,®(p)), with g an independent vector
of proportions from the same multinomial distribution. This distance shows how well the estimate ®(p)
predicts an independent replication. It is used to cross validate the estimate. Observe that both the
estimation error and the prediction error are in general nondegenerate random variables, and that we
consequently study their distribution.

*0)

Pigure 2:
a Projections

The third variable we use, among other things to compute our estimates, is the projection distance
A(p,@(p)) = min {A(p.q) | q € Q}. We are not really interested in the projection distance as such, butitis a

very important intermediate quantity. The reasons for this are clear. In the usual cases in data analysis we
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do not have a realization available of A(,D(p)), because T is unknown, and of A(G,P(p)), because we do
not have a second independent sample. We only have a single realization of AQ.®(R))-
It is instructive to find out what happens with the statistics we have introduced in the ‘extreme’ cases

TQ = ™ and Q = (%), where mny is not necessarily equal to the true value 7. For the zero dimensional
model 7, the estimation error is nonrandom, and equal to approximation error A(m,® (r)), while the
prediction error and the projection distance are two independent copies A(p.Tp) and A(g,my) of the same
random variable. For the saturated model $™1 we have a zero projection distance, and a zero
approximation error. The estimation error is A(%,p) and the prediction error is A(g.p).We shall now
proceed to compute asymptotic distributions of these separator-statistics, emphasizing the limit of their
expectations. The expected value of the estimation error is called the bias, the expected value of the
prediction error we call the distortion.
The first result is very simple. Clearly the expected values of estimation error, prediction error, and
projection distance are asyriiptotically equal to the approximation error A(n,®(n)). Thus E(AQ.®@) =
A(r,B(m) + o(1), and we have the same expression for E(A(r,®(p) and E(A(q,®(p). This means that
we can estimate the approximation error, the bias, and the distortion consistently by using the projection. .
distance. This result is not very satisfactory, however, because the projection distance is, by definition,
smallest for high-dimensional models, and is zero for {2 = S™1 Thus ‘large’ models always give small
estimates of bias and distortion, the larger the model the smaller the estimate. This is contrary to the well-
known phenomenon that prediction error increases if our models are too large. If we want to obtain more
precise comparisons, we need more precise approximations.
Let us introduce the following short-hand notation for the partial derivatives. We use A(p,q) for
D,A(p,q), and 1(p,q) for D,A(p,q). For the second derivatives we use A(p,@) = D1,A(p,9), B(p.Q) =
D,,A(p.q), and C(p,q) = Dy5A(p,@). If the arguments are not indicated the derivatives are evaluated at
(%, ®(n)), which is equal to (r,x) if & € Q. For DO(p) we use G(p), G without argument is evaluated at
®(x). The matrix Tj(p) contains the second partials qu)j(p). With T; we again mean T}(®(x)). Finally
we define I’ = Z1) 0T}, It is not difficult to sec that the properties assumed for A imply that A(p,p) = xu fo
some x, where u has all elements equal to +1, and 1(p,p) = - xu. Moreover B(p,p) = A(p,p) =-C(p,p) =-
C{p,p) forallpin §™-1 These four matrices with second order partials are all positive semidefinite.
Now let § = NY2(p - ). Then § is asymptotically norma! with mean zero, and variance V =11 - ©xt',

I1 = diag(n). We write

A(ﬂ?»@(ﬂ)) = A(TC,@(‘JC + Nhln&) = A(n,o(n)) + N-l/?_n.Gﬁ +
+ 12 N''§(T + GBG)3 + op(N'). “@

In the same way
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A®@) = AR + N2, + N'128) = A(r.(m) + NG +n'GY) +
+ 12 N1§(A + CG + GC + T + GBG}3 + o,(N'), (4b)

and

AGDD) = At + N25,0(xn + NY23,)) = Am, (@) + N2AG; +1'GYy) +
+ 12N (5_1AG; +28 CGB 5 + 8T + GBG)S,) + 0, (N (4c)

It follows that

N{ E{ A(x,®@) - A, D)} } = 127 (T +GBG)V +o(l), (5a)
N{E{ Alp, @) - A(r,D(m))}} Z12a0{A+CG+GC+T +GBG}V +o(l), (5b)
N{E({ A(Q,®®) - A(r,O()}) =12t (A + T+ GBG}V +o(1). (5¢)

In deriving these expressions we have not used the fact that @ is the projection of p in the metric A on
Q. The formulae (4) and (5) are true for any function of the proportions (which has sufficiently many
derivatives). If we use the fact that @ is a projection, then we can derive a formula for the matrix of partial
derivatives G, using the implicit function theorem (compare Wolfe, 1976, or Abatzoglou, 1979, for closely
related results). First introduce a local coordinate system ¥(8), with 8 ¢ 7, in the point ®(x). The matrix
H contains the partial derivatives of ¥ with respect to the r coordinates, i.e. the columns of H are 2 basis

for the tangent space of Q in @(x). Also define the matrix V with elements

o, = L, My 3y, /08,00, (6)
where the second order derivatives are evaluated at @(x). Now the partials are given by

G = -H{HBH + V}'HC. Q)

Formula (7) can be substituted in (4) and (5), but we do not present the resulting expressions. We do point
out that in the extreme cases S™ and ny we have G =1 or G =0. In both cases the map @ is linear, and r

= 0. This obviously leads to dramatic simplifications in.(4) and (5).
In the general case it is somewhat tedious to use (5), because it involves the complicated matrix I of

second derivatives of @. But it follows from (5) that

N{ E{ A(,OQ) - E{ A &)} =-12u0 (A+CG + G'C}V +o(l), (8a)
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N{E{ A(q, Q@) - E{ AQ.O®®))} =- ¢ G'CV + o(1). (8b)
Thus if we define 9(p) = {NA(p,®(p)) - tr C'GVI/N, with C, G, and V evaluated at (p,D(p)), then
E{AQO®)} = E(0@)} + o(N'). ©a)
In the same way, with @(p) = {NA(p,®(p)) - 1/2 tr AV - r CGV}/N, we have
E(AmO®)} =E(p@) + oN"). b)

This means that bias and distortion can be estimated consistently by using o (p) and 3(p), for which we do

not need the second order derivatives of ®.

£l

Best asymptotically normal theory

Am,D@) = 1/2 N'FG'BGY + o, (N7), (102)
AQRP@) = 12 N3 - GYBA- G)3 + o, (N, (10b)
AQOE) =12N1@_; - G8)'B@.; - Ggy) + 0, (N'). (10c)

Thus NA(T, (@), N AR, @), and N A(q,D(p)) are asymptotically quadratic forms in normal variables.

We can compute their moments, and in particular

NE{A(m,®(p)) = 1/2 r GBGV + o(1), (11a)
NE{ A@,®(@)} =12tr d- GYB(I-G)V +0(1), (11b)
NE{ A(gq,®@)) = 1/2w (V + G'VG)B + o(1). (11¢)

We now study the concept of optimality a bit more in detail, using bias and expected prediction error
as criteria. The expected values in (11) still depend on B, which is a property of the separator A, and on G,
which is a property of the estimator ®. We know that O(p) = p for all p € Q. Using a local coordinate
system ¥ around T, it follows that @(¥(6)) = ¥(8), with \¥(8;) = n. By differentiating this we see that
GH = H, where H = D¥(8y), i.e. H is again a basis for the tangent space of Q at . But GH = H can also
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be written as G = H(I*{'II'll-I)’lﬂ'II'1 + TH _,: » with H, a basis for the null space of H, i.c. the normal
space to Q at x. Now tr BGVG' = tr BHHTI'HY'H' + tr BTH; VH, T' > tr BH(HTI''H)'H'. Here we

have used the fact that B is positive definite, while VIT'H = H. Estimators ® for which we have that G =
H(H'H"H)"H‘H“ are called BAN, or best asymptotically normal. Compare Neyman (1949), Wijsman
(1959), Berkson (1980), Bemis and Bhapkar (1983), and LeCam (1986, section 11.10) for various
aspects of the general theory of BAN estimation. The estimates are asymptotically normal, and they are are
best in the class of F-consistent estimators, in the sense that their variance (HTI"'H)? is minimal. If we

apply this to (11) we find that

NE{A(r,@@)} = 1/2 w (HIT'H)'"H'BH + o(1), (12a)
NE{AQ,@@)} = 1/2 r VB - 172 r (HIT'H) 'HBH + o(1), (12b)
NE{A(q,®®)} = 1/2,r VB + 172 tr (HTI''HY 'H'BH + o(1), (12¢)

if @ is BAN, and this is optimal, no matter how we choose B (i.e. no matter what separator we use).

The interesting question remains which separators give BAN estimates when minimized (also
compare Taylor, 1953). From (8) we have, if the model is true, G = H{H'BH} 'H'B.We see that & is
BAN, for any model, if B = IT'! for some x # 0. In this case we say that A is an optimal multinomial
separator. It is normalized if x = 2. A number of these normalized optimal multinomial separators are given
by Rao (1973, section 5d.2). Thus if we derive our F-consistent estimator by projection using a separator,
then we must choose an optimal separator to get BAN estimates. If the model is true, then the combination
of an arbitrary normalized optimal separator and an arbitrary BAN estimate gives a technique for which the
asymptotic distributions of the three statistics N A(x,®(p)), N A_(iz_,—(bﬁ)), and N A(q,D(p)) are central chi
squarés, with the appropriate numbers of degrees of freedom. In addition ) ‘

NE{A(n,®@)] =r+o0(1), (13a)
NE{A(p, ()} = (m-r-1) +o(1), : (13b)
NE{A(Q,®(@)} =(m+r1- 1) +o(1). (13¢)

This implies that {NA(p,®(@)) + 2r}/N is a consistent estimate of the distortion, which seems a very
simple way to justify the AIC-criterion of Akaike (1977). Compare also Sakamoto, Ishiguro, and Kitagawa
(1986). Also {NA(p,D(R)) - (m - 2r - 1)}/N is a consistent estimate of the bias.
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Model comparison if the models are true

Let us now briefly review some of the techniques that have been proposed in statistics to compare
models. These comparisons have usually been in terms of significance tests, and they try to answer the
question ‘is the model Q true 7. We have emphasized from the start that the answer to this question is
simply 'no’. One docs not need statistics to answer it, the answer follows from general éonsiderations
about the role of models. Our suggestion is to try and answer the question 'is the model Q helpful in
improving our predictions and descriptions ?'. This is a different question, and it is consequently not
surprising that it may have a different answer. But a review of the classical procedures from our more
general point of view is still useful.

Testing if a single model  is satisfactory can be interpreted as a problem of model choice: it
compares £ and 5™, The classical statistical technique for comparing Q and $™" is to use the statistic
NA(p,®(), with @ a BAN-estimator, and with A an optimal normalized multinomial separator. We
already know that NA(p.®(D)) is asymptotically a chi square with m - 1 - 1 degrees of freedom. The
classical statistical procedure, due for r = 0 to Pearson and for general r to Fisher, tells us to reject the
model Q if NA(QR,®(p)) is too large, because this implies that 'cither the model is untrue, or a very
improbable event has occurred'. There is no reason to worry if you have trouble understanding the -
syllc;gism in the previous sentence. Nobody understands it. But the procedure can be interpreted quite-- -
simply in our terms. We evaluate a model by computing the integral from NA(p, () to +00 of the x,?,_,_l
distribution. The resulting 'P-value' must be as large as possible. It is difficult for most models to compete
in P-value with the saturated model, because this has a P-value of one.

We now illustrate the procedure on our twin example. As the separator we take the one associated
with the method of maximum likelihood. This is

 A(.) =2 ER,(p;Inp;- pjIn q;). (14)

Thus A(p,q) = 2(1 + In p; - In ¢;) and N(p,q) = -2py/q;. Moreover A(p.q) = 2P, C(p.q) = -2Q, and
B(p,g) = 2PQ2. Here P = diag(p) and Q = diag(q). If p = q then A{p,p) = 2u, n(p,p) = -2u, where u has
all elements equal to +1, and A(p,p) = B(p.p) = -C(p.p) = 2P}, which shows that the maximum likelihood
estimator is BAN.

We start with the simple binomial model, which says that the probability of a boy is equal to the
probability of a girl. The projection distance is 2N{pInp+ (1 - p) In (1 - p) + In 2}, which has a chi
square distribution with one degree of freedom if the model is true. Of course for the saturated binomial
model, which does not restrict the probability of a boy or girl, the projection distance is zero. Table 2 lists
the projection distances, together with the P-values, for the six centres. According to the usual criteria we
would accept the restrictive model for all centres, except perhaps for Zagreb. If we use the distortion a5 2
criterion (assuming that the model is true) we see from (13) that the restrictive model is better than the
saturated model if the projection distance is less than two. Again this is the case for all centres, except




Melbourmne 1.00 .

Sao Paclo 0.61 438

Santiago 1.00 317

Alexandria 0.02 .888

Hong Kong 0.02 .903

Zagreb 3.52 061
Table 2: binomial model tests

Zagreb. This means that in all centres we estimate the probability of a boy to be equal to .5, but in Zagreb
we estirnate it to be 70/134 = .5224. We see the damping effect of our use of models, which is basically the
same as the shrinkage in empirical Bayes procedures, in ridge regression, or in Morris-Stein estimation,

Now we analyze the five models A-E for twin-pairs in the classical way. Consider model A, which is
_ a one-dimensional quadratic manifold. The parametrisation in (1) is valid for all 0 £ © < 1. The maximum
likelihood estimator of ® is, after s:omc easy computation, given by py + pa/2. Thus ¢, () =(p; + 93/2)2,
¢@ =@+ 93/2)2, and ¢;(p) = 2(p; + P3/2)(Py + R3/2). For model D, which is a line segment, the
maximurm likelihood estimator of A is Py + Pz - p3- Thus ¢1() =@ = (1 + Py +p2 - B4, and 3P =
(1- p, - py + p3)/2. For model E the only F-consistent estimator is §;(p) = ¢5(p) = .25 and ¢3(p) = .50.
Models B and C are somewhat problematical from the classical viewpoint. Model B says that there are no
pairs of twins with different gender in the population. Thus they also cannot occur in any subset, and if
only one occurs in the sample we reject B. No statistics is needed, only logic. Model C gives a maximum
likelihood estimator equal to p if p is in the convex region defining the model, and equal to the estimate
under model A if p is outside the region. For any & interior to the model the probability that p is interior
tends to one, and thus the projection distance tcnds; to zero with probability one. If = is on the model A
boundary, then the projection distance has the mixture-distribution prob(p ¢ C)x% + prob(p € C)x% =
prob(p & Oxf-

In Table 3a we have listed N times the projection distances for the models A, D, and E. The
corresponding quantitites for model B are all ‘infinite’, those of model C are all zero. According to classical
statistical theory the projection distances have chi square distributions with one (models A and D) or two
(model E) degrees of freedom. Table 3b uses these asymptotic distributions to convert the chi square values
to probabilities. This puts them on a convenient scale, and makes them comparable. The estimate of the
distance between the observed and the expected value under the (true) model is thus corrected for the
dimensionality of the model. Table 3 shows clearly that according to the classical analysis model D is the
best one. It also shows that on the probability scale model E is better than A. One can interprete this
according to the classical, although mysterious, syllogism quoted above. One can also think in terms of
distance estimates between models and data, transformed to a convenient scale. But an interpretation of this

scale in our replication framework is possible only if the model is true.




model A
Melbourne 10.40 0.76 11.40
Sao Paulo 11.37 0.49 11.98
Santiago 33.39 0.73 34.39
Alexandria 12.24 0.02 12.26
Hong Kong 26.97 0.01 26.99
Zagreb 5.24 2.79 8.77

Table 3a: chi squares

model A model D model E
Melbourne .001 .383 .003
Sao Paulo .001 484 .003
Santiago .001 .393 001
Alexandria 1001 888 002
HongKong | .001 = . 920 001
Zagreb 022 .095 .012
Table 3b: probability transform

Another comparison is based on Akaike's AIC. As we have seen this amounts to adding two to the
chi squares of models A and D, and zero to those of model E. The resulting quantity estimates the
distortion, but again only if the model is true. Clearly this does not change the conclusions a great deal.
Model D is still the best, by far, and on the AIC scale E is also slightly better than A, except for Zagreb.

Model evaluation using separator statistics

We now continue with our evaluation of models, but it is no longer assumed that the model, or one of
the models, is true. Within classical statistics there has been at least one major development which applies
in this more general situation. This the theory of Pitman powers. In this theory one does not assume that &
£ Q. The aséumption is that there is a sequence Sy of models, giving rise 1o a sequence Py of projections.
We assume that the approximation errors A(%,®n(m)) tend to zero in such a way that NA(%,Dp(r)) tends
to a constant Ag. More precisely the assumptions guarantee that NA(p, (@) converges in law to a
noncentral chi square with m - r - 1 degrees of freedom, and noncentrality parameter Ag. Thus
NE{AQON@)} =(m-r-1)+ Ag + o(1). Verbeek (1984) has suggested to use the noncentrality, given
by {(NAQ®N@) -(m-1- 1)}/N, as an index of model fit. It is convenient to think of the noncentrality as
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an estimate of the approximation error A(n,®p(%)) for models which are not too false. Nevertheless the use
of Pitman powers in actual practical work seems a bit difficult. Who actually works with a sequence of
models ?

A more direct approach is to go back to the formulas (5) to (9). In the case of the maximum likelihood
separator (14) we find that 12 tr AV =(m - 1) and tr CGV = -2 tr HBH(H'BH + V.. Thus we can
estimate the bias by

©® = {NAQ®(Q) + 2 r (H'BH + V)'HBH - (m - D}/N, (15a)
and the distortion by
B(p) = (NA(QQ,®(p) + 2 tr (WBH + Vy'H'BH)/N. (15b)

In(15)B = 2PQ‘2 is evaluated in (p,q) equal to (.®(p)). The basis H is evaluated in 9, where ¥(0) =
®(p). Matrix V is evaluated at the sanfe point. If V = 0, which happens for instance if Q is an affine
manifold, then tr (HBH + Vy'H'BH =, and (15) simplifies accordingly. This gives a justification for
using the AIC, even if the model is not true.

We can use formula (5) to estimate the approximation error. Using the simplifications resulting from
the use of the maximum likelihood method we find

R(D = (NA@QOQD) - (m- 1) + 2 tr (I'BH + V) 'H'BH -
-tr (HBH + VY'H'BH(HBH + V)''HBH- 12 o T'V)/N (16)

This satisfies E(X (D)) = A(%,D(n)) + o(NY). It is rclath,mpd\_lmt t not identical, to the noncerﬂarlityi proposed
by Verbeek, and it becomes identical to it in the case that V and T are zero. »
Let us now apply formulas (15) and (16) to the twin example. For the binomial model (and for
saturated and zero-dimensional models in general) we find that indeed V and T are zero. Thus p(p) =
{NAQR.O(@) - (m-2r- DI/N, and 5(p) = {NA(p,®@) + 2r}/N. Moreover R(p) = {NA(p,d(D) - (m -
1 - 1)}/N. For models D and E we also have V and I equal to zero, and the same formulas apply. For
model A the situation is more complicated. Table 4a has the relevant information, but the computations
needed to arrive at the numbers in the table, especially those for estimating the approximation error, are not
simple. They will be even more complicated for models with many more cells than the three in our
example. Table 4a shows that the bias and distortion are larger for model A than for the saturated model. In
Table 4b we show the comparable statistics for (zero-dimensional) model E. Clearly E is preferable to A,
even in terms of estimated approximation error (although of course the true approximation error for A is

lower).




prediction
Melbourne 113 133 099
Sao Paulo 056 066 .050
Santiago .142 .150 136
Alexandria 032 .037 029
Hong Kong 223 239 211
[ Zagreb .070 094 055

Table 4a: separator statistics model A.

bias prediction {approximati
Melbourne .086 .106 .086
Sao Paulo .044 .054 .044
Santago 130 139 130
Alexandria 026 .031 026
Hong Kong 200 216 .200
Zagrebu.. .040 .064 ’ .040

Table 4b: separator statistics model E.

Use of Jackknife-type methods

The separator statistics used in the previous section are fairly difficult to compute, even if we use the
simplifications that result from using the maximum likelihood method. For complicated models evaluating
; the second derivatives may be a painful process. A possible way out is to use resampling methods such as
the Bootstrap and the Jackknife. Compare Efron (1982) for a nice review of these methods. In this paper
we do not go into the philosophy of resampling, we merely use the methods as computational tools that use
finite difference approximations to the derivatives, and that consequently can be used to approximate the
separator statistics. We also restrict our attention to Jackknife (i.e. leave-one-out) methods. These are
computationally far less demanding than the Bootstrap methods, and in the cases in which we have
compared the two they give virtually identical results.
Define qg =p + N-1)"X(p - ¢;), with ¢; the j unit vector. Then

Agp@@)) = AD(E) + (N-1)'A(p - €) + 122 (N-1)? (0 - e)A@p - €) +o(N-1)D), (1D

and thus
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I, pAGyOE) = AQOE) + 172 (N-172tr AV + o(N-1)P), (18)
or

(N-D2{Z,; pAggP®)) - Ap.2(E)] = 1/2 w AV +o(1). (192)
In the same way

(N-12(ER,; pAR.O(y)) - ARDEN) = 12 T+ GBG)Y +o(1), (19b)
and

(N-1*(Z1%) pAQP@y) - A@.PEN) =

=12 uw(A+T+GBG+GC+CGQYV +o(l). (19¢)
It is clear that, under suitable regularity assumptions, we can use the quantities on the left of (19) to
estimate the quantities on the right. If we combine (19) with (5), we see that estimating the approximation
error, the bias and the distortion becomes quite simple. We first show this for the approximation error.
Combining (5b) and (19c) shows that

E{NAQ.O@) - N-DI, pAGQg @) = Am®m) + o((N-1)). (20)

This is the classical multinomial Jackknife résult, but it is remarkable (and very satisfactory) that it can be
generalized easily to deal with bias and distortion. Indeed, from (19b) and (19¢),

(N-D?(ER, pA(. D) - I pAay Hay)) =-12 5 (A+GC+CGV+o(), 2D
and thus
E(AR®E) + N-D(Z pA@.Say) - 5% pAGy OQ))) =
= E{Am,@@)} + o((N-1)). 2)
In the same way, from (19a) and (21),

(N-DHEL,; pAlqy.@e) + E% pae.2g) - Ap.2(@)) - £ pidlqg Plagl
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= G'CV + o), 23)
and thus
E(NAQO) + (N-D(E™, pAGEOE) + I pAGag) - 5T pdapSag))] =
= E{AQO@)) +o(@-1)). 24)

These formulae may look complicated, but they are actually quite easy to use. The computational burden is
that we must evaluate our estimate @ not once, but m + 1 times, with m the number of cells in the
multinomial experiment. This could be a large amount of work, especially in very large multiway tables,
but in such very large tables using asymptotic theory is of doubtful value anyway. Observe that these
formulas are perfectly general, in the sense that they use no properties of the likelihood separator and of the
maximum likelihood estimate. They also do not assume, of course, that the model is true.

We shall illustrate our formulae by applying (20) to our example, in particular to models A,D,and E.
Table 5 lists the relevant results. Table 5a actually presents the Jackknife result derived from (20), and

N [
model A model D model E
Melbourne .099 -.003 096
Sao Paulo 050 -.002 .047
Santiago 136 -.001 134
Alexandria 029 -.003 026
Hong Kong 211 -.008 192
Zagreb 055 022 .082

Table 5a: Estimated approximation errors
using the Jackknife

model A model D model E
Melbourne .099 -.003 .096
Sao Paulo .050 -.002 047
Santiago 136 -.001 134
Alexandria 029 -.002 .026
Hong Kong 211 -.008 .200
Zagreb 055 022 .082

Table 5b: Estimated approximation errors
using the Bootstrap
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Table 5b gives the corresponding Bootstrap estimates (from results not presented here). It is clear that the
results are very close indeed, and because the Bootstrap is computationally so much more demanding it
does not seem to be a wise choice in this context. We can also compare the results for models A and E in
Table 5 with the last columns of Tables 4a and 4b. The correspondence is very satisfactory.

Conclusion

It is clear from our discussion above that the expansions we have derived are valuable tools to answer
the simple question whether the model is useful or not. But the meaning of 'useful' must be specifiedrin at
last two ways before we can actually answer the question. In the first place a model can be useful for bias
reduction and for prediction. As we have seen above these two forms of usefulness tend to be
contradictory, in the sense that 'large’ models are good for bias reduction and bad for prediction, while for
'small' models it is the other way around. The solution of classical statistics is to choose from the class of
true models only. This approach does not make sense to us, although it is possible to interpret the classical
procedures in our somewhat wider framework. But in this wider framework the classical procedures may
not give good estimates of bias and expected prediction error.

A second specification we have to choose before we can answer the question about the usefulness of a
model is the choice of a separator. The one suggested by the method of maximum likelihood is convenient,
the class of methods suggested by BAN-theory is also attractive, but essentially the choice is open. Small
bias in terms of one separator does not necessarily imply small bias in terms of another one. It is quite
possible that results can be derived, in our general framework, which show that some separators are
asymptotically or uniformly preferable to others (think of second order efficiency), but we have no results
in this direction.

The question if a model is useful or not can be coupled with the question of computing a good
estimate of the unknown probabilities in the multinomial model. If we decide that a particular model is
preferable to the saturated model, then we can replace the sample proportion by the estimates under the
model restrictions. We have seen, in our simple example, that considering a number of models works in
the same way as a prior distribution, and produces shrinkage estimators very much like the empirical Bayes
estimators familiar from other statistical work. No explicit prior distribution is considered, but a discrete
class of models must be chosen for consideration, and of course this choice is to some extent 'subjective’.
It is a useful subject of study to find out if these shrunken estimators are in some sense better than the usual
estimators, although the method with which they are constructed already seems to answer this question in
the affirmative.

We think that the primary contribution of this paper is, or should be, that it tries to make people more
careful about assuming models to be true (whatever that means), about using standard statistical reasoning
(as in hypothesis testing), and about using probability models without clearly specifying the framework of
replication. Whether specific models are actually false or not is not interesting. All models are false. The
question is how false, and whether their being false actually implies that they are not useful. And whether

the resulting statements are consequently not interesting. The independence assumption, for example,
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which is at the basis of most work in statistics, cannot really be falsified. As we have seen, the
independence assumption merely corresponds with a particular framework of replication, for which we
have to decide whether it is relevant or not. We make statements about all samples with replacement from
the population of the Netherlands, for instance. If such statements are really relevant for the particular
policy issue we are studying is something which certainly must be decided with a great deal of care. For the
more complicated frameworks, such as those with continuous variables and non-identically distributed
observations, it may be most difficult to convince a sceptical user that our statements are indeed relevant for
his problem.

Another more specific contribution of the paper is that it shows that looking at the projection distance
is only a first crude apprximation. The interesting statistics, bias and distortion, can easily be approximated
more precisely, both by using additional terms in the expansions and by using resampling methods. In -
particular we have argued that the distortion, which is the expected value of the prediction error, is at least
as interesting as the bias, the expected value of the estimation error. In general the two statistics lead to a
different ordering of models, and consequently also to different estimates of T. We have tried to justify the

AIC statistic, used to estimate distortion, and the deviance statistic, used to estimate approximation error
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