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Abstract

Suppose Kl""'Km are convex cones in é Hilbert space H, with unit
sphere S and inner prohdﬁt (.].). For a particular choice of
quantifications, transformations, or representations of a

variable xJ'in KjS we can compute the correlation matrix R(xl....,xm)

by the rule rij(xl""’xm) . (xilxj). Now suppose f is a real-valued
objective function, defined on the space of all correlation matrices.

In this paper we study the class of techniques that choose the xj

in their feasible regionsvkjs in such a way that f(R(xl....,xm))

is maximized. We discuss typical special cases, including linear

and nonlinear principal compoﬁeﬁt analysis, canonical correlation
analysis, regression analysis. It is shown that correspondence

analysis and the Breiman-Friedman ACE-methods are both special

cases of this class of techniques. We discuss some choices for the cones
Kj. and we indicate that the results simplify greatly if all bivariate
regressions can be linearized. A class of iterative projection
techniques is suggested, that produces convergent algorithms of

simple structure.
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In this paper we shdll bé concerned with multivariate analysis
(from now on MVA) techniques that can be described as follows. We
start with a number of variables. A variable is a function on a
space of oneFt . Sometimes, but not always, the space of objects

is a probahility ﬁpacé; and the variables are random variables.

If there is only a finite number of objects, and piobability is
defined by counting the number of elements, then random variables

can be identified simplywitharbitrary vectors of real numbers, of

length equal to the number of objects. We use the variables, whatever

their nature and origin, to compute correlations. With m variables

this defines anm x m correlation matrix. The next step in our MVA

is to establish how 'good' this correlation matrix is, according

to some criterion or aspect. There are many possible definitions

of good, corresponding with many different aspects that can be
defined in terms of correlation matrices. Many of them will be
reviewed below.

Different MVK techniques are associated with different aspects
of correlation matrices. In multiple regression, for instance,
in which we try to predict variable 1 from variables 2,...,m,
the aspect we are interested in is the multiple correlation
coefficient. In principal component analysis we are interested
in one or several of the eigenvalues of the correlation matrix,
in canonical correlation analysis we look at the canonical
éorrelations,'and in many multinormal likelihood procedures
we study the geterminant of the correlation matrix. Of course
in computing %hese varioué'criteria there can be many interesting
by-products, such as compdnéhf loadings, regression coefficients,

and so on, but they usually do not play the part of the criterion.
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Thus it is clear what an MVA technique consists of. We compute
the intercorrelations of the variables, and we eyaluate the correlation
matrix by computing the aspect defining the technique. Thus we impose
several very stringent restrictions on the class of techniques we
are studying. In the first place we do not look at MVA techniques
which use higher order moments than the second (or higher order
marginals, for that matter). Means and variances are also nol
relevant. Baciuse wé look at correlations only our MVA technigues
only study aspects of the variables which are invariant under
separate linear transformations.

After defining the class of techniques we are interested in,
we now come to the non-classical part of the paper. Suppose there
is missing information, so that we cannot compute the elements
of the correlation matrix, or at least not all of them. Such
missing information can, again, be of various types. We can have
uncorrelated measurement error, for instahce, which has been studied
a great deal in psychometrics and econometrics. As a consequence
of this measurement error the diagonal elements of the correlation
matrix of the true parts of the variables is unknown, the off-diagonai
elements are equal to the observed correlations. It is clear that
the aspect of the»ed;;éiétion matrix we are studying with our MVA
technique may vary with the choice of diagonal element. For principal
component analysis and regression this variation has been studied
extensively. A recent review of the results that have been obtained

is Bekker and De Leeuw (1985). There are other types of missing
information, obviously. Some variables may not have values for

some objects, for whatever reason. Filling in these missing values

e et
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also influences the aspects. There is a very voluminous literature
dea]ing with this particu]ar type of variation. We mention only the
recent review papers of Little (1982), Little and Rubin (1983), and
Titterington and Jiang (1983), which are especially relevant.

The problem of -uncorrelated measurement errors, mentioned above,

is closely related to the problem of latent variables, which is

also fqmiliar from psychometrics, econometrics, and system theory.

A latent variable is, in a sense, a yariable which is missing
completely. We do not know anything about it, we only know its
location in the system of variables, i.e. we know its role in the
criterion we are computing. Related to latent variables is the

theory of optimal scaling, which deals with variables about

which there is partial knowledge. For instance we know how a

variable orders the objects, but we do not know the precise

numerical values. The theory of latent variables was reviewed recently
by Aigner et. al. (1983) and by Bentler and

Weeks (1982). Optimal scaling theory is in Young (1981), Gifi (1981),
De Leeuw (1984c).

In ;his paper we shall discuss a very general approach to
optimal scaling theory, in particular to algorithm construction.
The work is inspired by the Gifi-system, discussed in Gifi (1981)
and De Leeuw (1984c) but the presentation is much more in the
tradition of classical multivariate analysis. Our techniques
have numerous spécial cases, some of them new but a lot of them
already quite old. Among the more interesting special cases we
find correspondence analysis (Greenacre, 1984) and ACE (Breiman

and Friedman, 1985). It is hoped that our presentation has a
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unifying effect on the development of this class of techniques, comparable
perhaps to the effect of the Dempster, Laird, and Rubin paper about the
EM-algorithm (1977).

2: Framework, notation

The variables are elements of a Hilbert space H. The inner
prodﬁct in H is written as (x|y), and the norm as ||x||. The
correlation between variables x and y is r(x,y), defined by
r(x,y) = (x|y)/(1I1x}{{-}]yl])- Thus we tacidly assume that the

variables are in ‘'deviations from the mean'. If X sesesXp are

elements of H, then R(xl,...,xm) is the correlation matrix.
It has elements rij = r(xi,xj). It is clear that we can only
compute a correlation between nonzero variab]es. If x and y
are in S, the unit ball in H, then r(x,y) is simply (x]y).
The two most obvious interpretations of our general symbolism
are mentioned briefly here. For ordinary matrices, with

n rows and m columns, the space H is the (n-1)-dimensional
subspace of R" of all centered vectors. The columns of the

data matrix are the elements of H. If x »X, are

1reee
random variables, they are elements of LZ(A,B.p). the

space of all random variables on the probability space (A,B,p)
with finite variances. Again we suppose the variables are
centered, i.e. they have zero expectation. In the first

example (x|y) is the usual inner product x'y, in the B -

second example (x|¥) s the covariance of x and y.

The aspect of the correlation matrix that we are
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studying is a real valued function f, defined on the space of all

correlétion matrices, which is a compact convex subset of the

space of all m x m matrices. Actually it is a subset

of the im(m-1) dimensional subspace of all symmetric m x m matrices

with unit diagonal. In fact it is the intersection of this

subspace and the closed convex cone of all m x m positive semidefinite

matrices. 1t is clear that we can study the variation ot f over

all correlation matrices, b

It is not the case that we have no information at all about our

variables, and the information we have restricts the set of

feasible correlation matrices that we have to consider.

In this paper we suppose that the information we have is of the

form that variable xj js in a known closed convex cone Kj. Thus -

in our MVA problems we know Kl""’Km’ and we are interested in

the variation of R(xl,...,xm) if xj varies in Kj' Clearly continuity
of f is sufficient to guarantee that f attains its antreme valuas

on R(Kl"“’Km)’ which is a closed subset of a compact set, and

is conseqguently compact. We shall be particulary interested, in this

paper, in the maximum of f over R(K1’°"’Km)’ 0f course by changing

f to -f this covers the minimum as well. Looking for the ma x imum

can be interpreted as looking for the correlation matrix which is

best in the aspect we are studying.

We have not said much about the cones Kj so far. ln many

applications they will be subspaces. 1f we have a variable with

information on some objects missing, then K is the subspace of

all centered variables whose nonmissing part is linear with the

observed nonmissing part. If we have a latent variable, then

K is the whole space. For polynomials and splines we use Yow-

ut this will usually not be very interesting.
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dimensional subspaces. Monotone transformations define pquhedral

convex cones in R", and more general isotone cones in Lz. General

transformations of a random variable define infinite dimensionad

subspaces of L2' for variables which are not to be transformed

at all the cones are rays through the origin. And so on. We shall

encounter various other possibilities in our historical section.
As we have alfeady indicated above choosing an X5 in Kj

can sometimes be interpreted as choosing a transformation of

an observed numerical variable. In the case of missing data

we often speak of imgutation-of,;hg,missing values. In the

case of non-numerical (categorical) variables the term

quantification is more appropriate. For a variable with

k possible values the space of all quantifications js usually
a k-1 dimensional subspace of H, but it can also be the
cone of isotone functions in this 'subspace if the categories

of the variable are ordered.

3: Some history

In this section we shall mention some of the more important
examples ofithe class of MVA techniques we study. We shall see
that some of them are already cuite old. Clearly they can differ
both in terms of the aspect of the correlation matrix they are
studying, and in the types of cones of transformations and
quantifications they admit.

For two variabtes there is only one correlation coefficient,
which is then, almost unavoidably, the only aspect we can study.

variation of the correlation coefficient under choice of category
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quantification was already studiéd by Pearson, in th
var{ables; References and discussion are in De Leeuw (1983). Further
study of the case m = 2, with K1 and K, finite dimensional subspaces

of R", and with criterion ryps are in Hirschfeld (1935), Fisher (1940),
Maung (1941a, 1941b).(Extensions to subspaces of L, are in Gebelein
(1941), Sarmanov (1958a, 1958b), Lancaster (1958), Renyi (1959),

Csaki and Fischer (1960a, 1960b, 1963). A much more complete biography

of maximal correlation is contained in Lancaster (1969). The

data analysis technique known as canonical analysis of contingency

tables and also as correspondence (factor) analysis can be interpreted

as a method which finds systems of guantifications that give stationary
values of *12° We do not even try to review the literature connected
with this technique, but we refer the reader to De Leeuw (1973);
Nishisato (1980), Gifi (1981), Greenacre (1984), Lebart et. al. (1984).
For those of us who réad french, we recommend Benzécri et. al. (1973,
1980) and Benzécri (1982).

A natural criterion in the case of one dependent and m-1 independent
variables is the multiple correlation. In R", ‘with categorical
variables, the first instance of this technique is perhaps example
46.2 in Fisher (1938). He suggests the use of ‘appropriate’ scores
for a categorical dependent variable in a simple factorial ANOVA.

In the ANOVA context this was generalized to a dependent polyhedral
~ cone by Bradley et. al. (1962) and Kruskal (1965). De Leeuw.

et. al. (1976 ) also allowed for cone transformations of the
independent variab]eg. Winsberg and Ramsay (1980) used polyhedral

cones defined by}monotoné sp1inés. For the general multiple

regression problem Young et. al. (1976) allowed

e case of two categorical
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for the choice of either the isotone cone, the linear ray, or the

quantification subspace for all of the variables. Theoretical results

for L2 were obtained already by Sarmanov and Zachariv (1960), but the L2
B problem was first studied from the algorithmic point of view by
Breiman and Friedman (1985). They set up their algorithm in terms

of the random variables and the subspaces consisting of measurable

finite-variance tran;formations. If translated into the practical

R" context, this leaves far too much freedom. Thus the optimal
transformations found by the ACE algorithm are smoothed, which
means=in-most Cases transformed 1inearly. The smoother: is

f usually not defined explicitly in terms of conditions that the

: optimal transformation must satisfy, which means that the practical
optimization problem is not always defined unambiguously.

! If m variables enter symmetrically into the criterion,

we often deal with a form of principal component analysis. In

g such cases the aspect is usvally defined in terms of the eigenvalues
i of the correlation matrix. The technique which maximizes the largest
i eigenvalue of R was introduced, in a somewhat different way, by
Guttman (1941). If we look at the other stationary values of this
optimization problem we are actuallyrperforming a multiple

correspondence analysis or homogeneity analysis. This technique

is discussed extensively in the correspondence analysis books
mentioned above, and also in Hill {1974). Maximizing the sum

of the first pAeigenvalues was implemented by Roskam (1968) anc
Kruskal anc¢ Shepard (1S74). Ther used cones of isotone transformetions

in «". Youro at. zi. (197&) usod wixed nominal, ordinal, and numerical
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variables in R". This was combined with multiple correspondence analysis

into a single prihcipal component algorithm by De Leeuw and Van Rijckevorsel
(1980). -De Leeuw et. al. (1981) used subspacas defined by 8-splines,

and Winsberg and Ramsay (1983) used cones of monotone integrated

B-splines. Koyak (1985) extended the Breiman-Friedman ACE-algorithm

to maximization of the first p eigenvalues.

Criteria defined in terms of the first p cangnical correlations
or squared canonical correlations were optimized by Young et. al.
(1976 ) for p = 1 and by Van der Burg and De Leeuw (1983) for
general p. Of course this has multiple regression, discriminant
analysis, and MANOVA as special cases. Generalization of this
approach to K sets of variables, with K arbitrary large, were
proposed by Van der Burg et. al. (1984). In all these contributions
the problem was formulated in Rn, and the cones were of the mixed
type we have already discussed earlier in connection with
the Young-De Leeuw-Takane ALSOS series or the Gifi-series of

programs. T e mult1ple regression aspect was genera11zed in

another d1rect1on by De Leeuw (1984a).who suggested max1m1z1ng
the sum of the determination coefficients for a given path model,
possibly with latent variables.

The determinant of the correlation matrix, which is relatec
to maximum 1ikelihood estimation for the multivariate normal,
was maximized over quantification subspaces in Saito (1973, 1974)
and in Chang and Bargmann (1974). This was extended to mixed
ALSOS-type cones in kuhfeld et. al. (1985). For completeness

we also mention Takane et. al. {1979), who find optimal scalings

and modify diagonal elements at the same time to fit the factor

e e




model.

Also compare Mooijaart (1984) in this context.

w of the literature that

It is clear from this historical overvie

many as

pects have been studied before. The results are scattered

lied literature, and many more relevant

over the theoretical and app

a very complete

references could indeed be given. Gifi (1981) has

bibliography.

It is not entirely clear what the relationship of

d how they are related to classical

the various techniques is, an

statistical theory. The developments, especially those in

psychometri

cs, are strongly algorithm centered and few theoretical

eld is in a somewhat disorganized

results are available. Thus the fi

state, dominated bx_ad hoc pqrposals and solutions. The ACE

procedures of Breiman, Friedman, and their students are,

respects at least, better imbedded in mathematical theory. In

other respects they are simply another paraliel development. A

superficial perusal of

the references shows that there are various

created by Kruskal

series of programs involved. The Bell-system,

Roskam created

and Shepard in the early sixties, was the first.

In the early seventies Young,

his own series of programs in 1968,

De Leeuw, and Takane started their ALSOS series, and in the late

seventie

s the Gifi system got under way. In the early eighties

these series were joined by Winsberg and Ramsay, who used monotone

splines and 11kelihood-derived criteria, and by Breiman and

Friedman, who used conditional expectations and worked in LZ'

Inmost of these series.the developments are started with the

"linear-model, and very soon after that principal component

analysis follows. This is not a surprising or unfortunate way

to proceed, but it does mean that history seems to repeat itself

many times in this field.
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4: Necessary conditions for an extremum

The problem we study in this paper is to maximize f(R(xl,...,xm))

over x; in Kl' cee s Xg in Km‘ In case of infinlte—d1men51ona1 H
some care is needed to establish the existence of the required

maxima, but usually it is not difficult to show existence. Compare

Breiman and Friedman (1985), or Koyak (1985), for instance, and the
many‘referénces connected with maximal correlation theory. Even if
we cannot show that a maximum exists, we could still be interested
in the supremum, or in the stationary values of the criterion.

In this section we study the stationary equations, assuming
that f is differentiable. We write H* for the dual of H. Moreover
x3 is the element of H* for which xg(x) = (xlxj) for all x in H.
Let us write 95 for the partial derivative of f with respect

to ro.. Let us know evaluate the partials in a point (xl,...,xm)

with xj in S for all j. Then

of | m ? of {a(xi|§11>_ N (31|xil| . allx.ll)} _
Xy =1 j=1 ary; Xy i3t Xy axy

mom . ' .
- N LS K ey _ L S Jk_4
izl J_Zl 913'{(5 Xk + 8 xJ.) rij(a SR xj)}.

Define

?
2k = g., x¥,
k i=1 ik

e e e -
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it follows that the necessary condition for an extreme value is that
23 - "jx3 is in K}, the cone dual to Kj, for all j. Or, to put it
differently, that
. - . . s

(lex) uJ(lex) 0

.t = )
for all x in Kj' Observe that (zjlxj) - "j(lexj) 0 for all J.
if Kj is a subspace, then K3 is the orthogonal complement. There
is a much more convenient way to write the necessary condition.
Suppose Pj projects on Kj' Then it is well known that "jxj is
the projection of zj on KJ if and only if (zj - ujlex) s 0 for
all x in Kj' Consequently our necessary condition can be written
as
Pj(zj) = ujuj.

Another way to write this equation is by defining

7.= § 9..x

J i%j ij7i°
4%

. = PN GIPR
"5 iZj 9574

Then the necessary condition is
N 4%

P.(z.) = u.x..

34250 = vy

0f course wve also have to rererber that x. is in X.S, tae intersection

~

of Kj and S.‘

5: An obvious algorithm

A nice thing about the necessary conditions we have derived in the
previous section, is that they immediately suggest an algorithm. The
algorithm we mean starts with feasible estimates X5 in KjS, and

improves them one by one.




Al: compute,?j.

A2: compute lj = PJ(QJ).

A3: compute X; = }jllllel,

Ad: if J <mthen j+« J + 1 and go to Al,

A5: if j = m then j « 1 and go to Al.
The algorithm is a bit peculiar, because it neither starts nor stops,
but the meaning is probably clear. There is, of-Geurse, no guarantee
yet that the algorithm converges. Its behaviour will probably depend
on the aspect we are maximizing and on the nature of the cones Kj.
It is clear, however, that the algorithm is conceptually quite
simple, because it only involves prdjecting the targets %j on
the convex cones Kj'

Né shall now discuss some simple rules for computing targets,
corresponding with some of the more familiar criteria. The
first one we study is the multiple correlation, or rather its
square. If r is the vector of correlations between the first
variable and the m-1 remaining ones, and Ri”is”the'correlation

matrix of the last m-1 variables, then

1- p;ult = min 1 - 28'r + 8'R;8.

This representation immediately shows two things. One minus the souared Y
multiple.COrrelafion (SMC) 1s a concave function of the carrelation

matrix, becausae it is the minimum of a family of linear functions.

Moreover the matrix of partials G has the form

1 -g'

-8 +88'

with 8 = Rilr. The SMC itself is convex, and—its partials are —-G.
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Thus, giving g elements B,s...,B

%, = ? B:X
17 42 373

N
"

Bj(x1 - igZ Bixi} for j=2,...,m.
itd
Algorithm A in this case extends the ACE-algorithm to cones of
transformations, and it extends the ADDALS, MORALS, MONANOVA
algorithms of Young, Gifi, and Kruskal to Hilbert space.
Let--us-now look at the suh of the first p eigenvalues.
In this case we write

= ]
xl + ...t Ap m:x tr K'RK,

where K varies of the n x p matrices satisfying K'K = 1. Thus
again the aspect is convex, and the partials are simply 6 = KK'.
If Z = X6 = XKK', then Z is the best rank p approximation to X
in the least sgquares sense. Algorithm A in this case is very
similar to, but not identical with, the algorithms PRINCIPALS,
PRINQUAL, PRINCALS suggested by Young, Ggifi, and others.

As a final example, in this round, we take the determinant.

e know, for exahﬁfém%ébm muTtinormal maximum 1ikelihood theory,

that
In |R| = min 1In |S| + tr s”Ig - m.
S>0 '

Thus In |R} is concave, and its partials are G = RL. Thus -In |R]
is convex, with partials -R"!. The target for variable 1 is, in
our previous notation,
‘ - S - 1 .

N ) -1
7= (- eqaed L, By

1f we call, following Guttman, the best least squares prediction of
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a variable from the remaining variables its image, then the target
is equal to the image. We modify a variable by projecting its image

on the cone. This is identical to the PRINQUAL minimum determinant

algorithm proposed by Kuhfeld et. al. (1985).

Although our examples show that the general algorithm A specialtze!
to various known algorithms, they do not show in any sense that the

converges). This question will be studied

algorithm really works (i.e.

in the next section.

6: Convergence under convexity assumptions

In the previous section we have demonstrated that some of the

well-known aspects, such as the SMC, the sum of the largest

eigenvalues, and the negative logarithm of the determinant, are
convex. In this section we study our algorithm for the general
class of convex aspects of the correlation matrix, and we prove
that for this class of aspects, it is convergent.

Suppose f is convex. For the moment we also assume that f is
continuously differentiable, but we shall see that th{; assumption
is not really necessary. If R and S are ‘two correlation matrices,
then convexity tell us that
f(R) > f(S) + tr GS(R - S),
with;GS the,matrix of partials eyaluated in S. Dbserve that if f
is not only convex but also homogeneous, then this inequatity
simplif1e§ to
f(R) > tr GgR.

Now identify S with the correlation matrix at the start of the
iteration, and suppose we want to modi fy Xy~ We do this by

maximizing tr GSR over x; in Kls. This gives R¥, which differs

e s e o
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from S only in its first row and column. Because of convexity
f(R*) > £(S) + tr Gg(R" - 5),
and because of the maximizing property of R
tr GgR' > tr GgS.
Combining the two inequalities gives
f(R) 2 f(S).
If f is strictly convex, then the subdifferential inequality is
strict, and the algorithm increases f, if it changes anvthing
&t aTt=Even if f is simply.convex, this remains true:as.we
now prove.

Maximizing tr GSR over Xx; in KIS can be done by observing

that, if all xj have unit length,
) ) AT
tr GeR = g (x:]x:) = gs: t (x:1Z;).
S i=1 j=1 iginityg i=1 i j2p 0 i

Thus we must maximize (xllgl) over KIS. If z, is in Kﬁ, then
Pl(Yl) = 0. If we assume that this polar situation does not
occur, then the optimal X4 js computed simply by normalizing
PI(QI). And this gives precisely algorithm A, discussed in the
previous section. Because cone projection is unique.'it follows
that the aspect increases if the algorithm changes X,. Thus
it will centainly increase 1if we loop over Xy and something
is changed along the way. If nothing-is changed, we have found
a stationary (xl,....xm). satisfying the hecessary conditions for
an extremum. | '

We have shown that if we are maximizing a convex aspect and

if Z is during the course of the algorithm never in the polar KJ,

then the algorithm produces an increasing sequence of aspect values,
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which consequently converges for an aspect which is bounded on the set
of correlation matrices. This convergence is global, j.e. it occurs
from any initial point. We have not proved, of course, that the
sequence of transformed variables converges. For this we need

to consider the existence question. Wwhat we can easily show, using
general convergence theory as explained by Zangwill (1969) for
instance, is that each accumulation point of the sequence of
transformations is a point satisfying the necessary conditions,

and that all accumulation points of the sequence have the same
aspect value. Thus all correlation matrices that are accumulation
points have the same aspect value, and there is at least one
accummulation point in the sequence of correlation matrices
generated by the algorithm. We shall, however, not study the
convergence question in depth here, and neither will we discuss
what should be done if %j wanders into the polar cone. We still
have to point out, however, that our convergence proof-also applies
if the aspect is convex and not differentiable, because the
subgradient%ipgduality conpingg§w}o apply.»Compare'Rockafe11ar

(1971, part V) for details.

7: Further simplification of the algorithm

Our convergence proof we basad on the general jdea of majorization
or minorization. In maximizing a function of a vector variable we
construct an auxilary function of two vector variables, which lies
below the first fgnction and touches it if the two arguments are
equal. A step of the algorithm then consists in maximizing the auxilaty

function over its second argument, with the first argument fixed at

1
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the current value. This is a very useful class of algorithms, because they

have the property of global convergence. Majorization algorithms have been

used earliet in maltidimensional scaling (De Leeuw, 1977, De Leeuw and

Heiser, 1980) and in maximum 1ika1ihood estimation (Dempster et. al.,

1977).

Although the algorithm is simple, it may still involve a lot of

i computation in each cycle. Remember that we first compute the target

for variable 1, then we modify variable 1 by projection, then we

, compute the target for variable 2, and so on. Computing the target

for the second variable involves the new transformation of the first

variable, which means that in general all partial derivatives must

be recomputed. In many situations it would be desirable to have

| an algorithm which.recomputes all m targets, then performs all

m projections, and so on. Developments in computing make it highly

desirable to have really simple algorithms, with a lot of high-

5 level matrix manipulation, even if they converge nerhaos a bit slower.
i

Thus we suggest another algorithm, which differs from A in its loon-structure.

Bl: Compute % = XG,

B2: crmnute X. = P (z.);
2 c'\"-uuexJ J( J),

* "] n
B3: computgrxj = j/llxj[l-

B4: if j <mthenJ + J+ 1and go to B2,

B5: if j = m then go to Bl.

Our previous results on convergence do not apply directly, but we

can modify them in such a way that they do.

For this we first make the additional assumption that f is monotone

in the sense that f(R + S) > f(R) for all § >0, i.e. for all positive

semi-definite S. For the partials G this implies that G > 0. We now
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apply the minorizati

first use of minorization f

linear in R is quadr

this quadratic {s convexX,

1inear in the xj,

Thus tr GSR, which wa

is now minorized by using
m

m
Lk Ty alg) 2

n

tr GSR

m
=2 7.) - tr GcS.
jzl (Xj\ j) S

Here ij are the curren
and
matrix notatio

this new minorization ste

over X i

consequently glob

We go back to our examples,

sMC we have found that G < 0, and the sa
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is monotone by Schur's theorem on powers of positive semi-definite

matrices (Styan, 1973). Obviously G= sR(s'l), and thus Z can be
taken as XR(S'I). For s = 1 this gives a very jnteresting algorithm.
Then G = uu', with u a vector with m ones, and thﬁs Z = Xuw' is
formed from X by replacing each element by its row sum. All columns
of Z are thé same, but because they are subsequently projected on
different cones they will differ again in the next X. This is perhaps
the simplest algorithm in this class. It maximizes the sum of the
correlation coefficients. For s = 2 we maximize the sum of squares

of the correlation coeff1c1ents. This is equal to the _sum of squares
of the eigenvaiues of R, and consequently amounts to the ‘same thing
as maximizing the variance of the eigenvalues of R. Here the target
is Z = 2XR. A slightly different theory results if f is the sum of
| | , which is always convex, but need not be monotone.

It seems somewhat unfortunate that algorithm B cannot be applied
to the SMC and the determinant, which were convex but not monotone.
There is a simple adaptation of B, called algorithm C, which can be
5pp1ied. It is based on the fact that the diagonal of R is fixed,
and that.gonseqhent]y maximizing tr GSR over R amounts to the
same thing as maximizing tr (Gg + #)R, with 2 a diagohwl matrix
which can dependion'G. Now it is obviously a]ways-possib?& to
choose § in such a way that GS.+ nvz;ol and thus the a]gdrithm

works with Z = X(Gg + f). The effect of using a is making the

a]gorithm wore dbn;ervative and slow, and thus one really should

try to choose Q as Sma11 as possible. For the determinant G = R'1 -
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1

in(R). Especially for nearly singular R

we can take @ = Al, with A > A
this may make the algorithm hopelessly slow. For the SMC we can add

1 + g's to the diagonal of G, which is not such a major modification

in general.

8: Limitations :
Algorithms A, B, and C are only guaranteed to work for convex

functions of the correlation matrix, and B only works for monotone

convex functions. We have seen that the class of aspects that are

covered by these constraints is quite large. It can be made larger

by various arguments. Adding various aspects, for instance,

gives a new one which also satisfies the constraints. This is important,

for example, in path anmalysis, in which the aspect is the sum of

various SMC's, one for each endogeneous variable or equation. Other
combination rules for convex functions can also be used. i

It remains true, however, that some criteria that have been E

proposed in the opt":ima1 scaling literature, notable those based i

on canonical correlations, are not convex. In such cases we

Fe e S S

can do various things. We can develop specia} purpose algorithms,
for instance by using the altermating least squares method. We

can also go ahead with algorithm A, possibly with some safe-guards
or ad hoc step-size procedures build in, because we expect it to

converge at least locally. Tijssen (1985) apblies algorithms similar 5

to A in such-an ad hoc way, with apparently quite satisfactory results.
There are also cases, of course, in which we may want to optimize
aspects of the data which are not even functions of the correlation
coefictents; or which are not solely functions of the correlation
coefficients. We may want to minimize skewness, for example, or

we may want to minimize the difference between correlation ratios




have to develop other algorithms, either by using minorization or

by using other techniques for algorithm construction.

Even in the cases in which the algorithm is globally convergent

ﬁ the convergence may still be too slow for practical purposes. This
% sometimes happens with the EM algorithm, and with the multidimensional
! scaling methods as well. Convergence can be to a local maximum

= e,

e . RS

as well. And there is the possibility of nonconvergence of the transformations,

i i g e 5vem g o e i w

either because there are no accumulation points (which can happen in
infiﬁite<aimensioha1 cases) or because thereis a continuum of -
accumulation points (which can even happen in finite dimensional
situations). Additional research is still needed to monitor the
progress of the algorithm, and to take care of various undesirable
events which may happen along the way. Comnarison with alternative
computational methods is also needed.

i For completeness we list one natural candidate for comparison. This
js algorithm D, the ACE-version of algorithm A, Between steps A2 and

A3 we insert the step Yj « SMOOTH(Yj), where the choice of smoother

is left free. Often it will be linear, compare Breiman and Friedman (1985).
In the usual ACE-imp1ementations so far the cones Kj are very large,

and the restrictions are imposed by smoothing. In the ALSOS and Gifi-
series the cones are much smaller, and this takes care of the smoothing.

As a consequence the ALSOS and Gifi-transformation tend to be more rigid,
but the ACE-method in the finite dimensional case does not always solve

a clearly defined optimization problem, and may have difficulties with
convergence (or with proving convergence).

Enough about algorithms. Back to theory.
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9: The importance of linear regressions

Let us go back to the necessary conditions in section 4. Suppose
< , that the cones are linear subspaces, and that consequently the

projectors P; are linear. The stationary equations are

J

m .
izl g'ijpj(x.i) = uyXge
. with X3 in KjS. Now suppose (xl.....xm) are such that all bivariate ‘

regressions are linear. This means that for all i,j we have

Pj(xi) = tinj.
If we substitute this in the stationary equations we find that these

are satisfied with

m
. = R RN
SRR
This result is, of course, completely independent of G, and thus of

the aspect we are optimizing. For all aspects which are functions of

the correlation coefficients a system of transformations or quartifications

that linearizes all bivariate regressions gives a solution to the

stationary equations. This does not prove that a linearizing system always

gives the maximum, in fact it need not do this at all.
We illustrate this with an example which is quite important from

the theoretical point of view. Suppose we have an m-variate standard normal

distribution, and Kj are the separate transformations of the variables

with finite variance. Take X; equal to the Hermite-polvnomial of degree s

in the subspace K.. Then P4(x1) = pi‘x4, with o,y the correlation parametfer
of the multinormal. Thus the stationary equations are satisfied. It has been

shown by Kolmogorov (1960), compare also Venter (19€6), that the linear




transformation optimizes the first canonical corre]ation; and consequently
also the SMC. Gifi (1981) shows that the linear transformation optimizes
the determinant and the largest and smallest eigenvalue, Koyak (1985)

shows that in fact the linear polynomials maximize the sum of the

p largest eigenvalues. By a familiar theorem of Ky Fan (1951) this
means that they maximize all unitarily invariant matrix norms, compare

Gifi (1981, page 320). -

We can extend the analysis of the multinormal example or gauge a

bit, by supposing that the first m; variables are transformed linearly
and the firsfvmé a&;dratica11y. Tﬁén R is the diféct sum of two
matrices, and for many criteria such as the determinant, the sum of
squares, add the sum of the eigenvalues, G is a direct sum too.

Thus the gij between sets are zero, and the stationary equations

are still satisfied for this transformation system too. If all

are equal to p, for instance, then the sum of the two largest

eigenvalues is (mp + (1 - p)) + (1 - p) =2+ (m - 2)p if al
transformations are linear. If m - 1 transformations are linear,
and the remaining one is quadratic or otherwise orthogonal, then
the sum of the two largest eigenvalues is ((m-1)p + (1 - p)) + 1 =
2 + (m -"2)p as well. The maximum given by the lineay transformations
need not be unique.

In general the results in this section indicate, that if a
lihearizing system of transformations exists, then our algorithm
is often able to find 1t. It is shown by De Leeuw (1982) and Bekker
(1982) that in many practical examples approximate 1inearizing systems
exists, and that often optimal transformations found by any one of

these algorithms are not too far from linear.
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10: Statistical stability analysis

We are generally interested in the statistical stability of the
transformations and of the correlation matrix that is computed. Of
course we can only investigate statistical stability by introducing
some kind of probabilistic model. We suppose that we are dealing with
the case in which H is a space of random variables. In this case
all quantities we compute are functions of the bivariate distributions
or the bivariate marginals. The statistical problem arises if we
do not know the (population) marginals, but we observe empirical
or sample marginals. Every quantity we compute is a function of
the sample bivariate marginals. If the quantity is sufficiently
smooth we can apply the delta method, or its analogon in infinite
dimensional H. But since actual computations are always or discreticized
and finite versions, we are able, in many cases, to do the stetistics
in low-dimensional subspaces.

For ordinary correspondence analysis (m = 2, K1 and K2 are finite
dimensional indicator- or dummy-subspaces) the stability results
are well known. For multiple correspondence analysis (m > 2, Kj
dummy subspaces, maximize the ]argé;t eigenvalue of the correlation
matrix) they are also quite straightforward. De Leeuw (1984b) aives
the necessary references. In more complicated cases the derivatives
needed for the delta method tend to become unmanagable, and if the
cones Kj are polyhedral projections usually are not smooth enough.

In such cases we follow Gifi (1981), and we apply the Bootstrap
and Jackknife. Computation-oriented methods to test significance
of various aSpécts have been discussed by De Leeuw and Van der Burg

(1985).

e
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In the statistical context linearizability of the regressions,
discussed in the previous section, is also of great importance. It
was shown in De Leeuw (1984b)that if the optimal transformation linearizes
all bivariate regressions then we can apply the delta method as if the
transformations are actually fixed and known instead of stochastic
and unknown. Thus if regressions can be linearized, it follows that
we can compute the optimum transformations, and then apply the delta
method as in the classical linear MVA techniques. In particular, for
mutlivariate normal data, we can first scale them optimally and then

apply the usual MVA techniques. This will not"differ greatly from

gt

“applying linear MVA directly. On the other hand if the data are,

borrowing a word from Yule, strained normal, i.e. normal except

possible for invertible transformations on each of the variables
separately, then optimal scaling plus classical normal techniques

will still perform nicely. They give consistent estimates of structural
parameters, and valid chi square statistics and confidence intervals.
If the data come from a strongly non-normal but strained-normal
distribution, then directly applying classical techniques may lead

to rather serious distortions. There are already quite a number of
sucessfull app]ications of the combination Optimal Scalinag plus

LISREL or Optimal Scaling plus Factor Analysis in the applied

literature.

11:" Connection with likelihpood theory for the multinormal

The log-likelihood for a multivariate normal sample with

covariance matrix C is, except for irrelevant constants, equal to
1

L=1n ||+ trz”

C.
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Now let f(C) be the minimum of L over a parametric manifold of matrices
r(e), i.e. over some covariance structure model. Because f is the minimum
of a family of linear functions it is concave. If ¢ is allowed to vary
over all £ > 0, then we already know that f(C) = In |C|, but for
restricted models many other results can be obtained. Think of factor

models, path models, simultaneous equation models, LISREL models,

and so‘on. For all models we have G = 2'1, of course, which means
that f'is concave and increasing. It is now easy to think of a
transformation téchniQue for correlations. We minimize f(R), obtained
in this way, over all correlation matrices R, using algorithm A or

C. Observe that we have changed from the dispersion matrix C to the

correlation matrix R here, in conformity with our earlier usage, but

soméwhat opposite to statistical considerations.

Aithough the approach outlined above may be appealing to some,
it is not a maximum 1ikelihood method, and it does not have the
properties commonly associated with maximum 1ikelihood. The reason
is simple.In likelihood.theory we maglmlz,g___tjgg likelihood of the )
obéerved data, not the likelihood of the transformed data. If théy
modélvstateé that some transformation of the observed variables
is mq]tivariate normal, with some structure imposed on the covariance
matrix, then the 1ikelihood of the observed data involves the

usual multinormal component but also the Jacobian of the transformation.

Thus the log-likelihood is similar to our previous L, but we have to
add a term to-it consisting of the logarithm of the derivatives of the

transformations (which are supposed to be invertible and continuously

differentiable). This transformation likelihood, familiar in more
simple cases from Box and Cox (1964), is not a function of the

correlations only any more, and our theory does not apply directly.
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Nevertheless we can use minorization in this context too, by minorizing
the covariance part only. Observe that the Jacobian part of the likelihood
function does not involve any structural parameters. We are currently
experimenting with an algorithm based on these ideas, which can be used

to imbed the optimal scaling approach (usually described as exploratory

or descriptive) in a more conventional statistical framework.
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