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Abstract

Correspondence analysis of a bivariate table has many different optimality
properties. For instance, the scores computed by correspondence analysis lin-
earize both regressions, and maximize the correlation coefficient. We try to gen-
eralize both properties to the multivariate situation, using the concept of maxi-
mizing any aspect of the correlation matrix, and the concept of simultaneously
linearizing all bivariate regressions.

1. Introduction -

Correspondence Analysis (CA) is a technique which has been reinvented
many times, in many countries, and in many disciplines. Historical reviews
are, for instance, in Nishisato [34], Tenenhaus and Young [38], Gifi [20], De
Leeuw [15], and Benzécri [3]. Some of the reasons for the multiple discovery
phenomenon are implicit in our first sentence. Until quite recently there was
not much communication between countries, and almost no communication
between disciplines. There is another reason, however, which is more interest-
ing from a scientific point of view. The equations defining CA can be derived
in many different ways, from many different starting points. We give a brief
and sadly incomplete overview.

In the French approach to CA, initiated by Benzécriaround 1965, a dlstance
measure is defined on the rows and/or columns of a table, and these distances
are approximated by Euclidean distances in a low-dimensional representation
of the table. Excellent descriptions of this approach are in Greenacre [25] or
Benzécri [2]. Thus CAis a form of metric multidimensional scaling. The Anglo
approach to CA quantifies the row and column categories of a table in such
a way that some optimality criterion is satisfied. As we shall indicate below,
early work on this approach was done by Pearson [35] and Hartley [27], but
Fisher [18],[{17] and Maung [32],[33] were the first to apply the technique to
real data.
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In psychometrics, Guttman [26] invented multiple correspondence analysis
(MCA) using the optimal scoring approach. MCA applies the optimal scor-
ing approach to multivariate tables, generalizing (in some respects) principal
component analysis (PCA). Guttman went on to generalize optimal scoring
to other forms of multivariate analysis (compare [11] for an overview of his
contributions). Guttman’s approach to multivariate analysis was imported in
Japan by Hayashi in the early 1950’s, and rediscovered by Burt in England
around the same time. The optimal scoring approach, or optimal scaling ap-
proach, was systematized from a programmatic and computational point of
view, first by De Leeuw [11], and on the basis of this by De Leeuw, Young, and
Takane in a series of papers in Psychometrika in the late 1970’s. These ALSOS
(Alternating Least Squares with Optimal Scaling) papers are summarized in
Young [42], and eventually lead to the book by Gifi [20]. In a parallel develop-
ment, optimal scaling using smoothers was systematically applied by Breiman
and Friedman [5] and their students, using the acronym ACE (Alternating
Conditional Expectations). Compare Buja [6] for a recent review. Finally, in
another Anglo tradition, CA was rediscovered by Goodman and Haberman,
when they were extending log-linear analysis to deal with tables having ordered
categories. Recent papers in this tradition are [21], [22], [24], [23],{40],[39].

The classical work on CA, and the more recent work linking CA with log-
linear modelling, concentrate on the bivariate situation, in which we have a
single cross-table. In this paper, we shall talk mainly about the multivariate
case, which is, in a sense, more challenging.

The basic motivation for developing correspondence analysis techniques for
multivariate data, according to Gifi [20], is that there is a wide gap in MVA
between the multinomial and the multinormal. There are discrete numerical
variables, ordinal variables, and non-normal numerical variables. In applied
work in the social, behavioural and life sciences, discrete numerical and or-
dinal variables seem to be the rule rather than the exception. Yet most MVA
techniques are designed for either purely normal data or purely nominal data.
The multinormal is obviously too strong a model for most applications, and
the multinomial (log-linear) models are too weak for high-dimensional situa-
tions. Thus we need to develop a class of techniques that is in between the two.
With the multinormal MVA tradition we have in common that we only use the
bivariate marginals of the table, with the multinomial tradition we share the
emphasis on nonparametric modeling.

Given the French geometric approach to CA, and the Anglo optimal scaling
approach, it is not surprising that MCA and its various generalizations have
also been discussed in a number of essentially different ways. Benzécri and
Greenacre continue to use chi-square distances, defined on a cross table of
indicator matrices. Since zero-one matrices are not frequencies, the chi-square
metric is not very natural, and the approach more or less breaks down. Gifi [20]
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emphasizes the specific geometry of MCA, and this geometry is even more
central in {16]. In this paper we emphasize optimal scaling, which means at
the same time that we stress the relationships between CA and other forms of
MVA. This paper extends and summarizes [1], [14], [12],[13].

2. Formalism

We give some notation and terminology first. Suppose we have m random
variables x ;o with finite variances, all defined on the same probability space
(X, B, P). The (real, separable Hilbert) space of all finite-variance random
variables on this space is £. We define £; as the subspace of all measurable
transformations of x; with finite variance. Suppose K; is a subspace of £;, of
dimension p, and {g;,} is a basis for ;. We assume x; € K.

For ease of notation, we suppose all bases have the same dimension p, but
this is no real restriction. Also, for most results there is no reason to exclude
the case p = oo, because the infinite sums replacing our matrix operations will
converge in mean square in £. By another slight, but inconsequential, misuse
of matrix notation we use z; = G;a; to describe transformations in K;, where
the “matrix” G; has dim(L) rows and p columns, and contains the elements
of the basis {gjs} as columns.

We write Cj, = G G, for the cross products of the bases. Also, D; is short
for C;;. Observe that for orthogonal bases D; is diagonal, for an orthonormal
basis it is the identity. We can collect the Cj; in an mp x mp supermatrix C,
which is called the Tableau de Burt in the French CA literature, after Burt [7].

The cross product of any two transformations of the form z; = G;¢; and
z¢ = Gyop can simply be written as a’C 20 If K; only has centered ran-
dom variables, then this is the covariance of z; and z, if in addition &} D;;
a,C,a, = 1, then if defines the correlation.

For illustrative purposes we mention two examples of the general frame-
work. Ordinary contingency tables are usually dealt with by taking as a ba-
sis the indicator matrices or dummies coding the categories. This makes Cj,
equal to the cross-table of variables j and £. It makes D; equal to the diag-
onal matrix with univariate marginals. If the joint distribution of the x; is a
standardized multivariate normal, then the basis we use are the normalized
Hermite-Chebyshev polynomials. In that case the Cj; are diagonal, with on
the diagonal the successive powers of p;,, the correlation coefficient between
variables j and £ in the multivariate normal.

This particular way of treating finite contingency tables and continuous mul-
tivariate distributions by basically the same formalism was first suggested in
this context by Fisher (communication to Maung [32]). It has been used suc-
cessfully by Lancaster [31],{30], and by the ACE group. Of course it was al-
ready old hat in functional analysis by that time. There have been several in-



362 J. de Leeuw

teresting generalizations of the framework. Dauxois and Pousse [9] allow for
an infinite number of variables, by using the continuous direct sum of the sub-
spaces of the underlying Hilbert space. Koster [29] extends the framework by
replacing the subspaces by convex cones.

Let us also define linear regression in this context. We say that z € £ hasa
linear regression on x , if the projection of z on x; is the same as the projection
of z on £;. This means that we must have P;(z) = Ax ;- 1n matrix form this is
Gj(G}Gj)‘lG;z = Ax;. Now suppose z = x, = Gy, and x; = G;o;. Then
x, has linear regression on x; if G; (G}Gj)‘IG}Gg = AG;aj, ie. if Cjpoy =
ADjaj.

For completeness we define MCA. We solve the generalized eigenvalue
problem Co = ADu, or, in more detail,

m
ZCijlg = }»DjOlj.
£=1
If we compare this we the previous paragraph, we see that MCA finds scores
such that the “average regression” between the transformed variables is linear.

3. Linearizing the regressions

In 1906 Pearson published a paper [35] in which he proved the following result.
At least we can inferpret his paper as proving the following result.

There are two categorical variables, with indicator bases G and G,. Assign
scores to the rows and columns of their cross table C = GG, , with marginals
in the diagonal matrices D and E. Suppose the scores g and b are in deviations
from the mean, with unit variance. Thus the correlation induced by the scores
aand bisr(a,b) =a'Ch.

Now perturb the scotes, again with vectors in deviations from the mean é,
and 8. Then

. rla+€d,,b+€6,) —r(a,b)
o : -

= 8/(Cb — r(a, b)Da) + 8,(C'a — r(a, b)Eb).

The interpretation of this formula is quite simple. If both regressions are lin-
ear, then the right-hand side is zero, i.e. if both regressions are linear the corre-
lation coeflicient is relatively insensitive to small modifications of the scoring.
For score-changes of order O(e) the correlation-change is O(e?). It is clear
why Pearson was interested in this result. We get roughly the same value of
the correlation coeflicient, even if we are not sure about the scoring. Pearson
was mainly interested in interchanging two columns and/or rows, which was
interpreted as an example of a small change. It is a somewhat unfortunate ex-
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ample, because of its discreteness, but it is not too complicated to fit it into
the general result. The explicit version of the argument for general random
variables is in [15].

There are a number of ways in which we want to extend Pearson’s result.
In the first place he starts with scores linearizing the regressions, and looks in
neighborhood of these scores. It is not entirely clear under what circumstances
such linearizing scores actually exist. In the second place we would like to gen-
eralize the result to more than two variables. And, finally, there is no reason to
restrict our attention to categorical variables with indicator bases. The gener-
alization to other examples is more or less immediate, using the notation from
the previous section. In order to get at the existence question, we rewrite our
result as

0

T — Cb - r(a,b)Da,
da

d

a—; =C'a—r(a,b)ED,

and we take the next step in the history of CA.
4. Maximizing the gorrelation

In 1935 Hirschfeld (who later changed his name to Hartley) published [27] in
which he proved (quite explicitly) the following.

Suppose we want to find scores that linearize the regressions in a cross table
C. Thus we want

Cb =pDa, -~
C'a=pEb.

This system always has p — 1 non-trivial solutions, given by the generalized
singular values and singular vectors of the triple (C, D, E). The vectors of
scores are mutually orthogonal, etc. Moreover (generalizing Pearson) these
scores give maxima, and saddle points, and minima of the correlation coeffi-
cient. Hartley knew about the work of Hilbert and Schmidt on what is effec-
tively the singular value decomposition, and he could consequently provide
the existence theorem that had eluded Pearson. Also, the singular value de-
composition provided an expansion of the bivariate distribution, which was a
special case of the expansions studied by Schmidt and Mehler.

Hartley’s result for finite tables was generalized to some extent by Fisher
and Maung around 1940, and by Lancaster et al. since 1955, see [30], to gen-
eral bivariate distributions. The idea of using the maximum of the correlation
coefficient over scores as a measure of association is due to Gebelein [19], and
it has been studied in detail by Renyi [36].
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Again, we would like to find out what happens if m > 2. Can we find scores
which linearize all the bivariate regressions, or perhaps even all the multivari-
ate regressions as well. And if we can’t in general, under what conditions do
such scores exist.

5. More than two variables

It is clear that for m > 2 variables things are not so simple any more. In gen-
eral, not all bivariate regressions (let alone all multivariate regressions) can be
linearized by scoring (or, if you prefer, transformation). Let us call a multivari-
ate distribution bi-linearizable if all bivariate regressions can be linearized by
scoring. In obvious notation there exist m different vectors {«;, - - -, am} such
that

ngdg = ,Ongj(.Yj.

Although each of these equations can be solved easily, and has multiple solu-
tions, by Hartley’s result, in general the solution for «; from equations (j, £)
and (Jj, v) will be different. We see that the condition means that the singu-
lar value decompositions of the bivariate distributions are linked, in the sense
that decompositions with an index in common also have a singular vector in
common. This can also be written by defining the matrices

- -1
Ty =D;'C,,D;'Cy;.

For each j the m matrices Tj; must have an eigenvector in common.
We give some simple examples of bi-linearizable distributions.

all variables are binary,

there are only two variables,

special cases, such as the multinormal (or elliptical),
the strained multinormal in the sense of Yule.

The first example is trivial. Obviously we can draw a line through two points.
The second example is Hirschfeld’s theorem. Regressions are linear in multi-
normal of elliptical distributions, so obviously they can be linearized. The
strained multinormal will be discussed in more detail below. We see that as-
suming that the multivariate distribution is bi-linearizable is an important gen-
eralization from assuming it to be multinormal (or elliptical). Cuadras [8]
shows that bi-linearizable distributions with arbitrary marginals exist.
Observe that we do not assume that all regressions can be linearized. Con-
sidering all multivariate regressions would take us into the realm of higher-
dimensional tables again, and we would run into the empty-cell problem
(also known as the curse of dimensionality). We concentrate on properties
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of the bivariate marginals, which will be reasonably well-filled even in high-
dimensional situations.

6. Strained multinormals

The notion of a strained multinormal is not very well known, so we describe it
a bit more in detail.

Suppose x = (xy,---,x,) is multivariate normal. Now suppose ¢; are
strictly increasing, and define y = (¢(x;), -- -, ¥m(x,,)). Then y is strained
multinormal. Thus the marginal normality is destroyed by applying separate
transformations to all variables. Obviously we can unstrain y by applying the

inverse transformations ¢j_1. The notion is due to Yule, in his discussion of
Pearson’s tetrachoric correlation coefficient [43].

We assume, then, not necessarily, that the correlation surface is normal, but
that it is “strained normal,” as we may term it, and it is conceivable that “strained
normal” may cover markedly skew correlation tables (i.c., page 141).

We can write down expressions for the distribution and density of a strained
multinormal quite easily. Use ¥ and y for the standard multinormal distribu-
tion and density. The distribution is

F(zi, - zm) = V@7 @), - b5, (@m))-

and thus the density is given by

amF

f(Zl,"'yZm)Zm:

m g ¢71
-1 -1 J
Z B e N Z _—,
V@ @) by @) le 7
This creates a fairly general family of multivariate distributions. In a sense it
generalizes the approach to transformations popularized by Box and Cox [4].
In a strained multinormal we can of course linearize all regressions (not only
the bivariate ones) by unstraining. Thus assuming strained multinormality is
stronger than assuming bi-linearizability.
There is, by the way, a condition logically in between strained normality and
bi-linearizability: suppose orthonormal systems {«;1, - - -, @)} exists such that

Cieogy = pjos Dyt

This could be called bi-linearizable of order p. We have bi-linearizability of
order p if the for each j the m matrices T}, have a complete system of eigen-
vectors in common, which happens if and only if they commute. The standard-
ized multivariate normal is bi-linearizable of all orders, because the Hermite-
Chebyshev polynomials can be chosen as the common eigen-systen.
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7. Some questions

We have defined bi-linearizable distributions, and we studied some special
cases. Immediately we are stuck with a number of questions about the lin-
earizing transformations.

If they exist, how do we find them? (estimation)

Do they exist? (test of fit)

What do they do to the standard errors? (precision)
How do they look? Are they useful? (data analysis)

In the rest of this paper we shall try to answer the first three of these questions.
The fourth one can only be answered by looking at many examples, and for
this we refer to the book by Gifi [20]. We have already discussed the existence
question above, algebraically, but we have not translated our results into a
statistical test.

8. LPV diégonalization

We start with the question on how to find linearizing scores. There is a straight-
forward direct approach. We have cross-tables Cj¢ and univariate marginals in
diagonal matrices ;. For standardized scores the correlations are

pje = o;Cjpay,
and the correlation-ratios are

r)j?,’g = (X;ngDZIngOlj.
Obviously

2 2

Pie = Mjg,
with equality if and only if the regression of variable £ on variable J is lin-
ear. This indicates one straightforward way of finding the scores, if they exist.
Minimize

m

m
T(on, - an) = > "k — pl).
=1

=1

This loss function can be minimized quite easily by changing one set of scores
at the times, and cycling through the m sets iteratively. The subproblem of
finding an optimal set of scores for variable j, with the other m — 1 sets fixed
at their current values, is a small generalized eigenvalue problem.

A more general approach, which can be used for bi-linearizability of higher
orders, is taken in [1] and [14]. The approach gives us a lot of insight into
the MCA problem, and consequently it is not merely a computational tool.
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We collect the Cj; in the mp x mp Burt table, and the D; in the correspond-
ing diagonal matrix. Multiple correspondence analysis solves the generalized
eigenvalue problem Ca = ADa, which generally has mp solutions. Or, to put
it differently, we look for an orthonormal K of order mp that diagonalizes
H = D~V2CD~V2 We can compute K by the usual techniques for solving
the symmetric eigenvalue problem. But instead of doing that, we shall try to
build up K from simpler components in three steps.

Start with m orthonormal L; of order p such that all

Uje = L,D;*C; DL,

are diagonal. Such L; need not exist, but if they do, and we collect them in the
directsum L = L1 ® Ly ® - @ L,,, then U = L'HL has submatrices which
are all diagonal. It is now possible to find a permutation matrix P such that
P'UP = R; @ R, & -+ & R, where the R; are of order m. We find R; by
selecting all the (1, 1) elements of the Uj,, Ry by selecting the (2, 2) elements,
and so on. Now P'UP = P'L'HLP, and we have found the orthonormal
matrix L P which transforms H to direct sum form. But obviously there exist
orthonormal V, which diagonalize the R,. If V is their direct sum, then LPV
diagonalizes H.

The computations in the previous paragraph can be carried out exactly if
and only if we can find Orthonormal L; such that Uy, are diagonal. In gen-
eral, we cannot (because it would mean that the distributions are indeed bi-
linearizable of order p). What we can do is minimize the sum of squares of
the off-diagonal elements of the Uj,. A convenient and rapid way to do this
is by using Jacobi-like plane rotations to build up the L;. In [1] two strategies
are discussed. The first one minimizes the sum of squares of all off-diagonal
clements. The second one minimizes the sum of squares of the elements in
the first row and column of all U, only. It is easy to see that we can make
this particular sum of squares equal to zero if and only if the distributions are
bi-linearizable. Moreover, the sum of squares is exactly equal to the sum of
differences between the correlation ratios and the squared correlation coeffi-
cients t(ai, - - -, &,) we used a few paragraphs ago. If we are done, we fix the
first row of the L;, and start on the second one. And so on.

In any case, we have build up an orthonormal L PV which approximately
diagonalizes H. And, of course, we also have an orthonormal K which exactly
diagonalizes H. The point made in [14] is that the L PV approach in many
cases gives much more insight into the MCA problem. In order to illustrate
this, think of MCA as a form of nonlinear component analysis. Each system
of scores, i.e. each column of K, can be used to compute an induced correla-
tion matrix, and each induced correlation matrix can be submitted to a regular
PCA. But there are mp such correlation matrices, and we consequently find
m? p principal components. Gifi calls this “data production.” Now suppose «;
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is a bi-linearizing set of scores. Let us look at vectors of the form b;ct; and
substitute them in the MCA equations. They become

m
Z ,angg = )\.QJ
=1

This has m solutions for 8, the eigenvectors of R — {0je}. Thus each bi-
linearizing solution produces m solutions to the MCA equations, each with
the same induced correlation matrix, Less data production, consequently.

Moreover suppose 0jsa; are the MCA solutions corresponding with the lin-
earizing scores, and suppose ¥j are the scores for another MCA solution. If
the eigenvalue for scores ¥ 1s different from the eigenvalue of the correlation
matrix induced by the «;, then

2 bisejy; =0
j=1

foralls =1, ... m, whichwill generally be the case only if @;y; = Oforall J=
1,--, m. Thusall other MCA solutions are strongly orthogonal to the oj, inthe
sense that each piece is orthogonal. A single set of bi-linearizing scores already
means that we can use L and P to transform H to the form Ri ® Ry, with
Ry the correlation matFix induced by the scores, and with R, the “residuals”.

Ifwe want to compare the MCA solution to the approximate L PV solution,
then we can compute KL PV, which wil] have correlations between the two
Systems of solutions. There are examples in [14]. We find remarkable results,
which can be understood quite easily by keeping the standardized multinor-
mal in the back of our minds. The first set of bi-linearizing scores are the Zero-
degree Hermite polynomials. They give an induced correlation matrix with all
elements equal to one (notreally a correlation matrix, because the correspond-
ing transformed variables are not centered). This bi-linearizing set occurs in
any MCA, and gives one eigenvalue equal to m and m — | eigenvalues equal
to zero. In the multinormal the second set of bi-linearizing scores are the first
degree polynomials, i.e. the identity transformation. The induced correlation
matrix is the correlation matrix of the underlying multinormal, and we have m
cigenvalues taken from that correlation matrix. Then the second degree poly-
nomials, corresponding with quadratic transformations, induce the correlation
matrix R®, which consists of the Squares of the correlation coefficients. And
SO on.

Empirically we find that the MCA solutions corresponding with the largest
eigenvalues, and those corresponding with the smallest eigenvalues, are found
by both eigen-analysis and 7. p v diagonalization. But L PV gives the eigen-
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values in a natural order. First we get the m trivial ones, corresponding with
the zero-degree polynomial. Then the m eigenvalues corresponding with the
first induced correlation matrix, and so on. In an ordinary MCA we typically
find that the largest nontrivial transformation corresponds with the dominant
eigenvalue of the first induced correlation matrix, while the second largest
eigenvalue is actually the largest eigenvalue of the second induced correla-
tion matrix. If we plot the two transformations, we see a quadratic structure,
the famous horseshoe, or, in French, the effect de Gutiman. Compare [41]
for more information, and [37] for a nonparametric (ordinal) explanation of
horseshoes. Horseshoes are not inevitable. There are multinormal examples
in which the first two eigenvalues come from the same (linear) correlation
matrix. If we mix two multinormals with correlations that are opposite in sign,
then the eigenvalues corresponding with the odd powers of the correlation
coeflicients disappear, and the dominant solutions can be both quadratic.

9. Functions of correlation coefficients

In the bivariate case we could find the bi-linearizing scores by maximizing the
correlation coefficient. In the case of m > 2 variables we can find the scores,
if they exist, by making the gorrelation ratios equal to the squared correlation
coefficients, or by using the L PV plane rotations to eliminate the appropriate
off-diagonal elements.

But let us go back now to the situation in which we do not necessarily as-
sume bi-linearizability. It may still be interesting, for data analysis reasons, to
find systems of scores with various optimal properties. We discuss a general
algorithm which can be used for this purpose. It is explained in greater detail
in [13).

For given scores a; we can compute induced correlation coefficients be-
tween our m variables. Take any function 7 (e) of these correlation coefficients
Pke, i.e. any function of the correlation matrix. In [13] this is called an aspect
of the correlation matrix. We define optimal scaling techniques by maximizing
(or minimizing) aspects 7 () over the scores «;. Each aspect defines a different
technique, and each choice of the subspaces K; defines a different special case
of a technique. The K; can be defined by polynomials, or splines, or dummies,
with varying degrees on various knot-sequences. Actually, let us make the easy
generalization here to convex cones K;.

(From the algorithmic point of view quite a few things can be said about the
problem of maximizing 7 (e). First let us suppose that the aspect is convex as
a function of R. Then, with y another set of scores,

T(R(@) = t(R(y)) + t G(y)(R(@) — R(¥)),

where G(e) is the matrix of partial derivatives (or an element of the subgra-
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dient) of 7 (e). Now let us maximize, in each step of the algorithm, the right
hand side of this expression over a, taking y = a, our current best guess of
the scores. The maximizer is a“*1. It follows that

L(R@ED)) = T(R@D)) + tr G@)(R@*H) = R@™))

t(R(@)) + tr G®)(R@Y) = R@™))

v

= 7(R@“)).

Thus we increase the aspect, and we can use general results [10] to show that
this leads to a convergent algorithm.

In each sub-step of the algorithm we have to maximize o’/ C®q, where C‘ﬁ,’ =
gjg(a“))C,-g, over all ¢ with oz; Djo; =1, and perhaps cone-constraints of the
form «; € K;. We cycle over the o, and update each in turn by

o < Py(D7 Y Cfa),
[y
where P(s) projects on the cone.

Ways to speed up and simplify this basic algorithm are discussed in [13].
Clearly it can be used on a very general class of aspects. We can show, for in-
stance, that the sum of the p largest eigenvalues, the squared multiple corre-
lation coefficient of one variable with the rest, the log-determinant, and many
other aspects are indeed convex functions of the correlation matrix.

10. Consequences of bi-linearizability

Let us forget about cone constraints for the time being, and generalize the
class of aspects to functions of both the correlation coefficients and the cor-
relation ratios. The stationary equations for maximizing 7 (e) are (assuming
differentiability)

" ot LT .
Zg‘_cjeae—l‘ Z —i‘chDe 1C1j(¥j = ).ijt)fj.
eyl R = R T

The ); are Lagrange multipliers, taking care of the normalization of the scores.
If the scores o linearize the bivariate regressions, then they solve the station-
ary equations with
m m
ot at
)‘j = Z —_—8/) Pje + Z —“a 5 Pje-
e Pt Nje
This result is interesting, because it shows that bi-linearizing systems give sta-
tionary points, no matter what the aspect is (it does not even have to be a
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convex function of the correlations). Or, to put it differently, if bi-linearizing
scores exists, then optimizing any aspect will find them. We need some qual-
ifications here, because the stationary point may not be an actual maximum,
but essentially this strong corollary of bi-linearizability guarantees a solution
with is invariant over choice of aspect. There are already many programs which
maximize functions of the form t (), such as MCA, ACE, efc. If bi-linearizable
scorings exist, they will find them.

11. Maodel oriented approach

The correspondence analysis based techniques are primarily exploratory in
character, at least if one believes in the distinction between exploratory and
confirmatory [20]. Nevertheless, bi-linearizability and strained multinormality
are restrictive models, which can be good or bad descriptions of an observed
Burt matrix. It consequently makes sense to look at the fit of the model with
the usual statistical large sample techniques.

Suppose the «; linearize the bivariate regressions. Complete the scores to
matrices A; = (o | Zj ), such that A}DjAj = ]. Then

, pji 0
ALCjeAy = P
0 ACiAs

Solving the equations gives us the parametric model (for the joint bivariate
marginals)

pric,pit = a, [ 0 Y

. ir = i .

Lty I\ 00 o £

This can be done by weighted least squares, applied directly to the bivariate

marginals. We fit the parameters A;, as well as the parameters p;; and I'j,. For
bi-linearizability of order p we can strengthen the model to

D'Cie Dy = Aj A Ay,

with A, a diagonal matrix. For strained multinormality we combine this with
no higher-order interactions, and we can even use likelihood methods. Al-
though these techniques are fairly straightforward in principle, they involve
tedious delta-method type calculations, and they have not been implemented
so far.

12. Two-step techniques

There is another way in which we can combine classical inference with optimal
scaling. A useful statistical procedure seems to be the two-step technique. First
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we scale the variables by trying to bi-linearize the regressions. Then we ap-
ply standard techniques to the induced correlation coefficients. Such standard
techniques can be multiple regression, principal component analysis, LISREL,
etc. But what about the asymptotic normal distribution of the induced corre-
lations?

The nice result, again generalizing Pearson [35], is that for linearizable dis-
tributions the asymptotic normal distribution is the same as the one we would
derive if the scores had been known (fixed, not dependent on the data). This is
discussed in detail in [12]. The reason is simple. Let uslook at the discrete case.
The Burt table is a function of the profile frequencies, i.e. of the cell entries in
the multivariate table. Collect them in the vector p. We compute our statistics
on the basis of the correlation coefficients, which depend on the scores, which
depend on the p. Suppose statistic T(e) is differentiated with respect to p. We
find

Now
dpje _ pje By | Bpye dae | Obje OCse
9p  da; dp  dag dp  3Cje dp

If the scores bi-linearize the regressions, then the first two terms on th right
hand side disappear, and the last expression becomes simply
e _ a’-a—%ag.
ap ' op

But this means that the partials of the scores with respect to p do not enter
the delta-method calculations, and thus we can treat (for statistical purposes)
the scores as fixed and'known. We know since Isserlis [28] how to compute
the asymptotic distribution of correlation coefficients. This means that stan-
dard error calculations from ordinary regression, factor analysis, and LISREL
programs are still (first-order) correct.

So let us consider any method which consists of scaling the variables first,
using any technique which optimizes an aspect of the correlation coefficients
and correlation ratios, followed by a classical multivariate analysis technique
on the scaled variables. Such a two-step method gives unbiased estimates of
the structural parameters under the assumption of bi-linearizability, while the
usual methods to compute standard errors are still asymptotically valid. More-
over they give the same result as if we had fixed and know scores. If we compare
this with assuming multivariate normality, we gain a lot in terms of bias, and
we do not seem to lose anything in terms of precision. There is a (first-order)




References 373

free lunch here. It will be interesting to find out in how far these results are
borne out by small-sample comparisons.
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