Statistics and the Sciences

Jan de Leeuw

"When, after the agreeable fatigues of solicitation,

Mrs. Millamant set out a long bill of conditions subject 1o

which she might by degrees dwindle into a wife, Mirabell offered in
return the condition that he might not thereby be beyond measure
enlarged into a husband. With age and experience in research come
the twin dangers of dwindling into a philosopher of science

while being enlarged into a dotard."

(C. Truesdell)

1 Introduction

This paper summarizes and extends the arguments in a number of earlier papers (De Leeuw,
1984; De Leeuw, 1988a; De Leeuw, 1988b; Dekker, 1992; Gifi, 1990). Although it is meant as
a contribution to the methodology of the social and behavioral sciences, I think my argument ac-
tually applies to all disciplines that use statistics.

The common concern in the papers and chapters mentioned above is to demarcate the re-
sponsibilities of the statistician and those of the empirical scientist, This means we assume that
there is a legitimate academic discipline called “Statistics". This is, by no means, uncontrover-
sial. Many scientists feel that they do not need statisticians to analyze their data, and many uni-
versity administrators think that statistics is just an undergraduate course that students take to
satisfy the general quantitative requirements. Quite a few statistics departments have disap-
peared, or could easily disappear, because it is tempting to distribute statisticians over the
quantitative programs of various disciplines.

In order to describe what belongs to science and what belongs to statistics I have to grope
around in the murky area called the Foundations of Statistics. In this area I generally side with
the hard-nosed frequentists, and every year or so I reread, with increasing pleasure, the papers
by Kiefer (1977) and LeCam (1977).

2 Statistics

2.1 Definition

Statistics is defined as the science of building and evaluating tools for data analysis. The word
“tools" is chosen on purpose here. It indicates that statistics is close to engineering, and in some




2.1.1 Inference

By now, some statisticians may become quite nervous, What about probability? What about in-
ference? What about decisions? The answer is quite simple. Inference is not the business of the
statistician. It is often said that statistics "transforms certain knowledge about the sample into
uncertain knowledge about the population". This is, indeed, a catchy phrase, but what does it
really mean ? Nothing much, as far as I can see. It restates the obvious fact that everybody, in-

generalize beyond the actual data it has collected. But in each of these cases, no matter if we use
extrapolation in time or space, or interpolation in time or space, there are no deductive rules
that can be applied. Missing data are indeed missing. They have to be imputed, preferably on the
basis of prior knowledge. If we have a strong model, or strong a priori information of another
type, then we can interpolate with great confidence, and extrapolate with somewhat less confi-
dence.

Many practical situations, in which statistics is especially useful, can be thought of as
"making a convincing story” or "trying to convince the Jury" or "trying to convince the review-
ers”. One has to take the possibility into account that somebody else can try to formulate a very
different story, precisely because so much information is missing and has to be imputed in some
way.

2.1.2  Decisions

The point of view that "Statistics is the science of decision-making under uncertainty" also does
not make sense to me. It is too general a definition to be useful. Everything that lives and
breathes is involved in decision making under uncertainty. If the definition is made more specific
by defining “uncertainty" and "dccision-making", then it suddenly turns out to be much too nar-

row. We would all be sitting in our chairs, afraid to take one of these decisions, because we

cians, or even to Some arbitrary statistical tools. The use of the word significant illustrates this
nicely, as does the word normal in “"normal distribution".

Just as it is usefu to distinguish models and techniques, it is useful to distinguish scientists
and statisticians, Fortunately, both modeis and techniques, and scientists and statisticians, are
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closely connected. Often the analysis and discussion of a scientific experiment involves both
models and techniques, and it is done by a person who is both a scientist and a statistician. This
practical confounding of the two does not mean, however, than we cannot make a distinction.

2.1.3 Probability

Statistical techniques sometimes use probability, and sometimes they don't. Statisticians propose
and study statistical techniques. The idea that only the language of probability can be used for
data analysis, which especially the Bayesians tend to believe, is just cultural imperialism. There
is much scientific data analysis going on that does not use probability, but only analysis, algebra,
set theory, or graph theory. To call this inferior, by implication, is quite infuriating.

2.2 Techniques

Statistical techniques are mappings of data into statistics. The data and the statistics are not nec-
essarily quantitative, although in most cases numbers are involved. What do I mean by map-
pings? Data, which are codings of results of experiments, are mapped into some statistical
space. From the data we compute a mean, a cross table, a correlation matrix. Or we generate
five pages of computer output. Thus we map, for instance, rectangular data matrices into the
space of correlation matrices.

N
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Coding Technique

Figure 1. Gathering and analyzing data.

Almost always, data reduction is involved, which means that the mapping is injective and
not surjective. We can compute the covariance matrix from the data, but not the data from the
covariance matrix. This is illustrated in Figure 1. Survey forms, sense impressions, or experi-
mental protocol sheets are in the dashed box on the left. Coding transforms these raw protocols
into data, and statistical techniques map the data into statistics. It is not entirely clear if coding is
a part of statistics. Obviously, it is very important, because it determines the form of the data,
and consequently it determines the types of statistical techniques that can be used. Curiously

———————
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enough, not much attention is paid to coding in teaching or philosophical discussions, although
obviously many coding decisions are at least as important as the choice between maximum like-
lihood or least squares, between likelihood or posterior distribution, or the choice between the
normal or the t-distribution. Clearly part of the coding phase is related to the area of experimen-
tal design, which is often considered to be part of statistics.

3 The Evaluation of Statistical Techniques

statistics, we start with models. A model is then combined with a principle, such as maximum
likelihood, to derive a technique. This is a mechanical process, which produces a unique tech-
nique from any model, given the principle. Unfortunately, the process takes place entirely within
statistics (or mathematics), and there is no actual contact with reality. The one-to-one corre-
spondence between models and techniques, based on narrowly defined notions of optimality, is
often not really useful. There are not too many scientific disciplines in which we can afford to
Start with the model, without ever questioning it, and let it completely dictate the technique.
Strong prior knowledge of this sort is available, it seems, only in some areas in the physical sci-
ences. And even in those areas the prior knowledge often is not specific enough to determine
the technique completely. More often than not this is not really a problem, because the precise
choice of the technique does not make much of a difference, due to low error levels.

In many quantitative disciplines, most typically in econometrics, the appropriate statistical
method is to assume a statistical model, then collect the data, then test the model by comparing
the statistics with the model. If the model does not fit, it is rejected. This is supposedly "sticking
out one's neck", which is presumably the macho Popper thing to do. There are various things
problematic with the prescription. They are by now tedious to repeat, but here we go anyway.
In the first place, if you follow the prescription, and your data are any good, your head gets
chopped off. In the second place, because people know there head will get chopped off, nobody
follows the prescription. They collect data, look at their data, modify their model, look again,
stick out their neck a tiny bit, modify their model again, and finally walk around with a proud
look on their face and a non-rejected model in their hands, pretending to have followed the Pop-
perian prescription. Thus the prescription leads to fraud. The only reason it is still around is be-
cause some scientists take their models, and themselves, much too seriously.

In order to discuss the business of evaluating techniques, Gifi ( 1990) distinguishes the
gauging of a technique and the Stability analysis of a technique. This supposedly covers almost
all of classical statistics, both the correspondence between models and techniques, and the study
of standard errors and confidence intervals.

3.1 Gauging

We are gauging a statistical technique if we apply it to a data set with known properties, and
then study how the technique represents these known properties. A little reflection shows that
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Gifi (1990) discusses a number of different gauges. We repeat the list here, because it illustrates
clearly what we mean by gauging.

Probabilistic gauges. In multivariate analysis the multivariate normal distribution is the main
gauge, but other interesting gauges are the Poisson process, the Markov chain, the Rasch
model, the Cauchy distribution, and so on. If we apply our technique to the distribution
or process, as if these are our data, then we see what happens with the known aspects of
the gauge. If we apply correspondence analysis to the bivariate normal distribution, we
find the Hermite-Chebyshev polynomials.

Statistical gauges. In statistics we apply techniques to random samples from a distribution, i.e.
we have a number of independent random variables which all come from the same distri-
bution.

Monte Carlo gauges. If the formulas become too complicated, we can always do the actual
sampling, for instance from a multivariate normal. We construct, say, artificial data sets in
this way, and apply our techniques.

Algebraic gauges. As we said above, statistics is not probability Benz (1992). In multivariate
analysis the algebraic aspects are often more important than the probabilistic ones.

Empirical gauges. Sometimes we are in the fortunate situation that an empirical finding is well-
established. This usually happens in the natural sciences, where we have very precise de-
terminations of constants and the form of laws. We can then apply statistical techniques
to data sets that obey these laws, or exhibit these constants, and we can compare our re-
sults to the "true” value. There are some fine examples of such empirical gauging in Stig-
ler (1977), Wilson (1926),Wilson & Worcester (1939).

3.2 Stability Analysis

The other statistical activity used to evaluate techniques is stability analysis. If we make a small
and unimportant change in our data, then the result of our technique should not change dramati-
cally. This is a continuity or smoothness condition on the mapping that defines the technique.
Classical statistics has always studied stability by using standard errors or confidence intervals.
Gifi thinks this is much too narrow, and other forms of stability are important as well.

Replication stability. If we replicate our experiment, and then reanalyze the results, the results
should not be too different. This is a general scientific principle, to some extent tautologi-
cal because the principle is implied by the definition of "replication”.

Statistical stability. Statistics has been described as a poor man's way of replicating experi-
ments. If we cannot actually replicate, because we do not have the time or the money, we
assume a statistical model which tells us what will happen if we replicate. We then per-
form our stability analysis over the hypothetical replications generated by the model. This
means computing standard errors, confidence intervals, null-hypothesis tests, and so on.

Stability under data selection. If we take a random sample from our data, results of the tech-
nique should not change dramatically. Of course this type of sampling is an experiment
that we can easily replicate, especially these days with fast computers. The stability analy-

_
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sis based on resampling and subsampling has gained enormous popularity in the last 15
years.

Stability under model selection. A small and unimportant change in the model (leaving out a
variable, fixing a regression coefficient, allowing for auto-correlation) should have ng
major consequences for the results of the technique derived from the model. This is espe-
cially true, of course, if we vary aspects of the model we are not sure of (such as normal-
ity or independence). Much of the study of robustness falls under this heading.

Numerical stability. Changing computational precision should not change the results of the
technique in a major way. This type of stability is typically studied in numerical analysis,
but of course numerical stability is an important property of data analysis techniques as
well. Compare the study of robustness, and the bouncing betas of regression analysis.

Analytical stability. If the mapping of the data into the statistics space is differentiable, we can
compute its derivative, and use this in stability analysis.

Algebraic stability. Techniques from linear algebra often use techniques based on perturbation
or eigenvalue bounds to establish or quantify stability.

Stability under selection of technique. Finally, if we apply a slightly different technique (least
absolute deviations instead of least squares), the results should not be too different.

3.3 Models

There are an enormous number of books published these days about modeling. In fact, going
through some or all of these books is quite a humbling experience. I do not aim so high. For our
purposes a model is just a subset of the statistics space. If we study covariances, it is a set of
covariance matrices. If we are interested in five-dimensional contingency tables, then it is a sub-
set of the space of such tables.

We must immediately take issue with the idea that the model is, in some sense, "true" (De
Leeuw, 1988a). This notion is difficult to define, and largely irrelevant. The definitions given so
far lead us to conclude that, if the word means anything, then models are most certainly not
true. For our purposes, it suffices that the model assists us in selecting and evaluating statistical
techniques. Models can be extremely useful and efficient, even though they are obviously
untrue,

4 The Role of Models in Statistics
4.1 Why Models ?

Why are models useful, given that they are always false ? There are many reasons, we only men-
tion some important ones.

* Science is, presumably, cumulative. This means that we all stand, to use Newton's beautiful
phrase, "on the shoulders of giants". It also means, fortunately, that we stand on top of a lot
of miscellaneous stuff put together by thousands of midgets. If we want to study a scientific
problem we do this in the historical context, and we do not start from scratch. This is one of
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the peculiar things about the social sciences. They do not seem to accumulate knowledge,
there are very few giants, and every once in a while the midgets destroy the heaps. But ide-
ally, the model incorporates the prior knowledge in the discipline.

o Models facilitate communication. They are languages that users in a particular field have to
learn, and that they use to talk to each other efficiently. Regression analysis, path analysis,
factor analysis, survival analysis are all examples of this. There is an (unfortunate, 1 guess)
tendency to narrow down the language even more, so that for example in the seventies
LISREL became the language of choice for a large group of scientists in various disciplines.
If you wanted to get your paper accepted, you had to talk LISREL or SPSS.

» Models enhance precision. This is the main reason for using models from the statistical point
of view. If there is prior knowledge, in a precise form, then it can be used to sharpen the
tools. Although a very specialized tool can only be used in a limited number of situations, in
those situations it really works well. If our model, i.e. the formalized theory about the rela-
tionship between the variables in our experiment, is very specific, then we can get very low
standard errors and very high power from statistical techniques based on the model. There is,
obviously, a down-side. If we have a specialized tool, and we want to use it in another situa-
tion, then we are in trouble. We are pulling out nails with tweezers, or mowing the lawn with
an ax. If we have a too! that can be used in a great many situations, then it may not be very
powerful. Think of the Swiss Army Knife, for instance. Again, the social and behavioral sci-
ences are in an unfortunate situation here. Because there is no strong prior knowledge, there

* are no specialized tools, and thus there is not much power.

4.2 An Example

We give a simple example of the use of models. Suppose the Netherlands has N=14,000,000
inhabitants. This is the population. We make a list of all these people, and we use a random
number generator to select a sample of n=1,000 of them. For simplicity, suppose we sample
with replacement. We compute the number in our sample with an IQ larger than 140. Suppose
there are m=12. We now want to say something about the number of individuals M in the
population with an IQ larger than 140. What can we say ? Well, obviously M > 12.
But usually more specific statements are made such as: we estimate M to be
~ 14,000,000

x 12=168,000. 4]
This estimate is unbiased and has a standard error of about 48,000. Before we analyze what this
means, let us look at two other statistical techniques, that also illustrate the role of models.

We assume that 1Q is normal in the population with mean # and standard deviation O. This
is our model. Again, it is obviously not “true". The population is finite, and thus at the very most
our model is an approximation. The proportion of individuals in the population with an IQ of

more than 140 is now
- 140—- u
=1-¢ .

s
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If we do not know g and o we have to estimate them first. Suppose we have 1Q measure.-
ments for all 1,000 individuals in the sample. The mean turns out (o be £=101.35 and the stan-
dard deviation &=225.67. The estimate now becomes

M, = 14,000,000 {l-«p(”?”)}:%ﬁw. )

with standard error 16,954.

If 4 and o are both known, then no data collection is necessary, and we say that the stan-
dard error of our estimate is zero. If K=100 and o=15, for instance, we find an estimated
number of

M, =14000000 { 1-® (ﬁolsioJ} = 53625. 3)
individuals with IQ larger than 140,

The three models clearly illustrate that making additional assumptions increases the preci-
sion (decreases the standard error), but may at the same time increase the bias. We still have to
define our terms, of course. Suppose we look at all subsets of size 1,000 of our population of
14,000,000, where each individual can be counted more than once. There are 14,000,000"%° of
such subsets, a gigantic number. We can use the techniques, based on three models, to estimate
the number of individuals with IQ over 140 on each of these subsets. For M y we find that the
average of all estimates is equal to the value for the population, while the standard error is given
by the binomial formula. For M » e need to work a bit harder. The approximate standard error
is computed from the delta method. Also M , is biased, in general, with the bias depending on
the population value. And M 3 Will be more biased, although it has no standard error.

The figure below illustrates also this. Here 4 s the population value of the statistic, and X,
and ¥, are sample-values based on samples of size 1. The model we use is pictured by the circle.
It is not a "true” model, because the "truth” M is not on the circle. Nevertheless, we show that
the estimates which use the model, the projections of x, and y on the circle, have smaller vari-
ability than the statistics themselves (although larger bias).

Figure 2. Stability from a model.
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5 Connecting Models and Techniques

We have seen how science and statistics are combined. Science contributes the prior knowledge,
in the form of the model, and statistics selects or designs the corresponding appropriate tool. In
agriculture, clinical trials, and physical measurement we can use the same tools many times, be-
cause the experiments are basically replications of a common framework. In the social and be-
havioral sciences similar paradigms are rare, because of the enormous amount of local and his-
torical variability, and because of the rapidly changing fashions. There we need, in many cases,
tailor-made statistics, and designing tailor-made statistics is of course time-consuming and ex-
pensive.

It is important to realize that models and techniques are quite different objects. LISREL,
for instance, is a computer program. It accepts various forms of input, and transforms them into
output. Thus it should be thought of as an algorithm that implements a particular technique. A
technique is a black box, it can be implemented in various ways. As long as it produces the same
output if we feed in the same input, we are not interested in the internals. The LISREL model is
a set of simultaneous linear equations with latent variables, which is something very different
from a computer program. As we have said, models are supposed to summarize prior
knowledge from the discipline, with perhaps also dash of common sense added. It seems to me
that in the social sciences models such as the LISREL model are used differently. They are
merely assumed because they provide a common language, because there is software available
to fit them. Because the LISREL language is mathematical and technical, it gives a certain
repectability to the enterprise. I am singling out LISREL here, but that is only because it is such
a handy acronym. The same can be said about HLM, PLS, CFA, MDS, MCA and so on.

There is no reason to be particularly unhappy with this state of affairs. It could very well be
that path analysis and latent variables are actually a very good tool and a pretty convincing lan-
guage to describe social and behavioral phenomena. It could be that the LISREL model is actu-
ally a pretty good smoother of empirical covariance and correlation matrices, in the same.way as
the model with no third order interactions is often a good smoother of multidimensional cross
tables, or the Rasch model and the Guttman scale are good smoothers of binary matrices. But
under these conditions this particular use of these techniques, as sophisticated descriptive de-
vices, should not really pose as something inferential (whatever that is) or something close to
social science theorizing, or as a tool which will be able to bring something completely new and
exciting to the science. On the contrary, if we are forced (because of intellectual honesty, and a
lack of stable prior knowledge) to use both techniques as descriptive devices, then it is probably
a bad idea to rely on very specific models and on very complicated fitting procedures. It does
not matter that the models are a restrictive, because they are only used as filters to bring out the
most important properties of the data. We do not expect them to fit. The Guttman scale, the
Rasch model, and the Spearman wwo-factor model are very restrictive. But so is the classical
linear model, and that does not prevent it from being a wonderful descriptive device.
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