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1. Introduction

Many algorithms in recent computational statistics are variations on a common
theme. In this paper we discuss four such classes of algorithms. Or, more precisely,
we discuss a single class of algorithms, and we show how some well-known classes of
statistical algorithms fit in this common class. The subclasses are, in logical order,

block-relaxation methods

Y Y

augmentation methods Alternating Least Squares
majorization methods Alternating Conditional Expectations

Y

Expectation-Maximization

We discuss the general principles and results underlying these methods.

All the methods are special cases of what we shall call block-relazation methods,
although other names have also been used. There are many areas in applied mathe-
matics where these methods have been discussed. Mostly, of course, in optimization
and mathematical programming, but also in control and numerical analysis, and in
differential equations. Bellman’s theory of quasi-linearization (4] is closely related to
what we call augmentation and majorization. We cannot give an extensive review of
the literature in this paper, but a much more complete list of references is given in

(12].

There is not much statistics in this paper. It is almost exclusively about determinis-
tic optimization problems (although we shall optimize a likelihood function or two).
Some of our results have been derived in the more restricted context of maximizing a
ikelihood function by Jensen, Johansen, and Lauritzen [21]. They develop their own
results, not relying on the existing results in the optimization literature. More or
less the same applies to much of the literature on convergence of the EM algorithm,
starting with Dempster, Laird, and Rubin [14]. Because we want to cover a much
more general class of algorithms, we need more general results than this.
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One thing we shall not discuss, at least not in this version of the paper, is stochastic
extensions. But of course the integrals in the majorization algorithms can be approx-
imated by Monte Carlo, functions can be optimized by simulated annealing, and the
expected value of the posterior distribution approximates the maximum likelihood
estimate (and can obviously be written as an integral). Incorporating this material
into this paper would take us too far astray.

2. Block relaxation

Let us thus consider the following general situation. We minimize a real-valued func-
tion 1 defined on the product-set @ =, ® 22 @ --- ® Q,, with O, C R"™. In order
to minimize ¥ over ) we use the following iterative algorithm.

[Starter] Start with w(® € Q.
[Step k.1] Wi ¢ argrgin ¢(w1,w§k’,-.-,w§,’°)).
[Step k.2] Wikt ¢ argern:ilrfwl(wikﬁ),wz,wék), “ee ,w;")).
w2 2
[Step k.p} | wit*D) e a:gergin PlwF, ... ,w,(,kfll),wp).
[Mbtor] ke—Fk+ 1’ and go to k.1

We assume that the minima in the substeps exist (although they need not be unique,
i.e. the argmin’s can be point-to-set maps). We set w® 2w®, ... wk), and

PH® £ (). Also Qo S2{w e Q| p(w) < »©@}. For this method we have our first
(trivial) convergence theorem.

Theorem: If ¢ is bounded below on 2, then the sequence {#®} converges. If g is
compact, then {w(*} has a convergent subsequence.

In the special case in which blocks consist of only one coordinate we speak of the
coordinate relazation method or the cyclic coordinate descend method. Classical pa-
pers, with applications to systems of equations, quadratic programming, and convex
programming are Schechter [33], [34],[35], Hildreth, D’Esopo [15], Ortega and Rhein-
boldt [28], [29], Elkin [17], Céa [9], [7], {8], and Auslender [2],[3]. Many of these
papers present the method as a nonlinear generalization of the Gauss-Seidel method
of solving a system of linear equations. Modern papers on block-relaxation are by
Abatzoglou and O’Donnell [1] and by Bezdek et al. [5]. Statistical applications to
mixed linear models, with the parameters describing the mean structure collected in
one block and the parameters describing the dispersion collected in the second block,
are in Oberhofer and Kmenta [27]. Applications to exponential family likelihood
functions, cycling over the canonical parameters, are in Jensen et al. [21].

We give a simple statistical application. Let

K
L(0) = nilog Ax(0) — Ai(0),

k=1

be a Poisson-likelihood with

Ae(0) = exp ) 250,
j=1
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Here {zy;} is a design-type matrix, with elements equal to 0 or 1. Let
IC]' = {k l Ty = 1}.

Then the likelihood equations are

E ne = Z ,\,,(0)

kEK,‘ keK;

Solving each of these in turn is cyclic-coordinate descent, but also the iterative prop-
ertional fitting algorithm. We have, using e; for the coordinate directions,

N[0 ifkgK,
w0+ re) = {0 itk X

with 4 = exp 7. Thus the optimal 4 is simply

i kek; Tk
EkEK:_,' Ak(o) )

3. Generalized block-relaxation methods

If there are more than two blocks, we can move through them in various ways.
In analogy with linear methods such as Gauss-Seidel and Gauss-Jacobi, we distin-
guish cyclic and free-steering methods. We could select the block, for instance, that
seems most in need of improvement. We can pivot through the blocks (A, B,C)
as {A4,B,C,B,A,B,C,B,A,--} or {A,B,B,B,C,A,B,B,B,C,---}. We can even
choose blocks in random order.

We give a formalization of these generalizations, due to Fiorot and Huard [18]. Sup-
pose A, are p point-to-set mappings of £ into P(f2), the set of all subsets of 2. We
suppose that w € A,(w) for all s = 1,---,p. Also define

I,(w)2 argmin{y(@) | @ € A,(w)}.

There are now two versions of the generalized block-relaxation method which are
interesting. In the free-steering version we set

W e UP_ T, (w™).

This means that we select, from the p subsets defining the possible updates, one
single update before we go to the next cycle of updates. In the cyclic method we set

Wt e ®Z=1Pa(w(k))-

In a little bit more detail this means

Wk = k)
w(kvl) G r‘a (w(kvo)),
€ ... y
wkp) € p’(w(k,p—l))’

W) wkP)
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Since w € A,(w), we see that, for both methods, if { € T'(w) then ¥(§) < Y(w).
This implies that the trivial convergence theorem above continues to apply to this
generalized block relaxation method.

A simple example of the A, is the following. Suppose the G, are arbitrary mappings
defined on . They need not even be real-valued. Then we can set

A, (w)&{¢ € Q| G,(€) = Gy(w)}.

Obviously w € A,(w) for this choice of A,. There are some interesting special cases.
If G, projects on a subspace of {2, then A(w) is the set of all £ which project into the
same point as w. By defining the subspaces using blocks of coordinates, we recover
the usual block-relaxation method discussed in the previous section. In a statistical
context, in combination with the EM algorithm, functional constraints of the form
G,(@) = G,(w)} were used by Meng and Rubin [24].

4. Some counterexamples

She shall now strengthen our trivial convergence theorem, by imposing additional
conditions on the problem. Some simple examples show that such a strengthening is
necessary. We also list some examples which illustrate later results.

Convergence need not be towards a minimum. Take the function
() = (=80 =) - WE

Clearly it does not have minima (on w = ¢ we have ¥(w,w) = —2||w||*). The only
stationary point is the saddle w = £ = 0, and block-relaxation convergences to that
saddle from any starting point.

Convergence need not be towards a minimum, even if the function is convex. This
example is from [1]. Let

— 2 _
¢(w,€)—zrg[g§]|w w—¢z|.

Start with ¢ = 0. The optimal w for this £ is *,. The optimal £ for this w is 0, which
means we have convergence. But the best Chebyshev approximation to f(z) = z?is
g(z) = z + }, and not g(x)="f.

Coordinate descend may not converge at all, even if the function is differentiable.
This is a nice example, due to Powell [32]. It is somewhat surprising that Powell
does not indicate what the source of the problem is, using Zangwill’s convergence
theory. The reason seems to be that the mathematical programming community has
decided, at an early stage, that linearly convergent algorithms are not interesting

and/or useful. The recent developments in statistical computing suggest that this is
simply not true. Powell’s example involves three variables, and the function

¢(:t,y,.’L‘) = —zy—yz—2zr+
+ @=12+(—z 12 +(y -2 +(-y— 1D} +(z-Di+ (-2 -1)],
where 0 £ <
2 _ [0, ifz<c
(¢ =)y = {(z—c)z, ifocj
Powell does not tells us that the last part of the function, with the truncated squares,
is actually the squared distance of (z,y, z) to the cube {£1,+1,+1}.
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A little analysis shows that the function does not have any minima on the outside
of the cube, and it also does not have minima in the interior of the cube. The only
points where the derivatives vanish are saddle points. Thus the only place where
there can be minima is on the surface of the cube.

Let us apply coordinate descend. A search along the z—axis finds the optimum at

+1 4+ Yoy + 2) ify+2>0,
& =< ~1+Ya(y+2) ify+2<0,
anywhere in [~1,+1] ify+2z=0.

This guarantees that the partial derivative with respect to z is zero. The other

. . l 1 .
updates are given by symmetry. Thus, if we start from (-1=-¢1+ 26 —1—g€), with
€ some small positive number, then we generate the following sequence.

(+1+ge, +l+3e, -1-1¢
(+1+é6, —1-%c, —1—}6)
(+1+ge, —l—qce, +1+4Le)
(~l—ge, —1—%6, +1+1¢)
(-1—-Ze +1+ 56 1+ 336)
(=1~g6 +1+ g6, —1—3ke)

But the sixth point is of the same form as the starting point, with e replaced by
a1 Thus the algorithm will cycle around six edges of the cube. At these edges the
gradient of the function is bounded away from zero, in fact two of the partials are
zero, the other is +2. The function value is +1. The other two edges of the cube,
ie. (+1,41,+1) and (—1,-1,—1) are the ones we are looking for, because there
the function value is —3, the global minimum. At these two points all three partials
are £2. Powell gives some additional examples which show the same sort of cycling
behaviour, but are somewhat smoother.

Convergence can be sublinear.

P(w, ) = (w—§€)>+w,
Dip(w,€) = 2w —£)+ 4,
Dﬂb(“"a&) = _2("‘)—6)7
Duyp(w,€) = 241207
Dlﬂl)(w’f) = —'2a
D22¢(w7€) = 2

It follows that coordinate ascent updates w(* by solving the cubic
w—w® 49, = 0.
The sequence converges to zero, and by I’Hopital’s rule

(k+1)
. w

dim =1
This leads to very slow convergence. The reason is that the matrix of second deriva-
tives of ¢ is singular at the origin.

5. Global convergence

In order to prove global convergence (i.e. convergence from any initial point) we use
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the general theory developed initially by Zangwill [39],[40] (and later by Polak [31],
R.R. Meyer [26], G.G.L. Meyer [25], and others). The best introduction and overview
is perhaps the volume edited by Huard [16].

The theory studies iterative algorithms with the following properties. An algorithm
works in a space §. It consists of a triple (A, ¢, P), with A a mapping of {2 into the
set of nonempty subsets of 2, with 9 is real-valued continuous function on {2, and
with P a subset of 2. We can A the algorithmic map, ¥ the evaluation function, and
P the desirable points. The algorithm works as follows.

1) start at an arbitrary w(© € Q,
2) if w(F) € P, then we stop,
3) otherwise we construct the successor by the rule w(*+1) € A(w*),

We study properties of the sequences w(¥) generated by the algorithm, in particular
their convergence.

Theorem: (Zangwill [39]) If

o A is uniformly compact on (Q, i.e. there is a compact o C Q such that A{w) C
Qo for all w € 2,

o A is upper-semicontinuous or closed on @ — P, i.e. if £ € A(w;) and & — ¢
and w; — w then ¢ € A(w),

o A is strictly monotonic on Q — P, i.e. £ € A(w) implies ¥(¢) < ¥(w) if w is not
a desirable point.

then all accumulation points of the sequence {w(¥)} generated by the algorithm are
desirable points.

Proof: Compactness implies that {w(¥)} has a convergent subsequence. Suppose its
index-set is
K = {kl,k'z,"'}

and that it converges to wx. Since {¥(w(*))} converges to, say, ¥, we see that also

{d,(w(kl)),,/,(w(kz)), v} o Yoo

Now consider {w(f1+1) (k2+1) ...} ‘which must again have a convergent subsequence.
Suppose its index-set is £ = {¢; + 1,€;3 + 1,---} and that it converges to wc. Then

P(wi) = P(we) = Yoo

Assume wy is not a fixed point. Now
{w@) W) .} 5w

and

{w(zl+1),w(tz+1),n_}_}wﬂ’
with w@*) € A(w!%+Y. Thus, by usc, wy € A(wk). If wi is not a fixed point,
then strict monotonicity gives ¢¥(wc) < ¥(wx), which contradicts our earlier ¥(wx) =
Y(we). Q.E.D.

The concept of closedness of a map can be illustrated with the following picture,
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showing a map which is not closed at at least one point.

w 1[[]1

w

We have already seen another example: Powell’s coordinate descend example shows
that the algorithm map is not closed at six of the edges of the cube {£1,+1,£1}.

It is easy to see that desirable points are generalized fixed points, in the sense that w €
P is equivalent to that w € A(w). According to Zangwill’s theorem each accumulation
point is a generalized fixed point. This, however, does not prove convergence, because
there can be many accumulation points. If we redefine fixed points as points such
that A(z) = {z}, then we can strengthen the theorem.

Theorem: (Meyer, [26]) Suppose the conditions of Zangwill’s theorem are satisfied
for the stronger definition of a fixed point, i.e. { € A(w) implies ¥(¢) < Y(w) if w
is not a fixed point, then in addition to what we had before {w(¥} is asymptotically
regular, i.e.

lo® — W*+ D) - 0.

Proof: Use the notation in the proof of Zangwill’s theorem. Suppose |w(%+!) —
w®|| > § > 0. Then |Jwg — wk|| > 6. But wx is a fixed point (in the strong sense)
and thus w; € A(wx) = {wk}, a contradiction. Q.E.D.

It follows (from a result of Ostrowski [30]) that either {w(¥)} converges, or {w(*} has

a continuum of accumulation points (all with the same function value). This is still
not actual convergence, but it is close enough for all practical purposes.

6. Global convergence of block methods

We can now apply this theory to block-relaxation methods. We concentrate on the
cyclic methods. The free-steering methods are interesting, but inherently more com-
plicated. Details on free-steering can be found in [18]. Obviously block-relaxation is
monotonic if we choose the evaluation function equal to the function we are minimiz-
ing, and if we assume that the minima exist. If we assume that the minima of the
subproblems are always unique (for instance, if they are least squares projections on
convex sets), then Meyer’s theorem applies. Actually, we have the following result
for generalized block methods.

Theorem: (Fiorot and Huard, [18]) If
o w€ Ay(w) for all w and s,
e A, is continuous on (2, i.e. both upper-semicontinuous and lower-semicontinuous,

¢ 1 has a unique minimum over A (w) for all w and s,

¢ Q= {w € N|P(w) < P(w®)} is compact,
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then
o the sequence w®) is asymptotically regular,
e each accumulation point of the sequence is a fixed point of each of the T',.

A fixed point (wy, - - - ,wp) is by definition a point such that w, is the unique minimum
of Y(wy,***,Ws—1,W,Ws41," "+ ,wp) over w € §, for all s. This does not imply that
the point is a local minimum of ¢ on § unless we impose extra conditions such
as convexity. Actually, convexity is not enough, as the Chebyshev approximation
example in section 4 shows.

If we drop the assumption that the partial minima of the subproblems are unique
(which is of course basically an identification condition, similar to assumptions needed
for consistency) then fixed points must be replaced by generalized fixed points. Also,
accumulation points are no longer generalized fixed points of all T',. In fact each
accumulation point w., has an associated index set S(weo) such that s € S(wo)
if the operation of maximizing over A, occurs an infinite number of times in the
subsequence. For the six edges in the Powell example, these index sets consist of a
single element.

Theorem: ((Fiorot and Huard, [18]) If
¢ w e A,(w) for all w and s,
e A, is continuous on {2, i.e. both upper-serﬁicontinuous and lower-semicontinuous,
o if { € A,(w) then A,(£) = As(w),
e O = {we N|Pw) < Pw®)} is compact,

then for every s € S(we) We have woo € IN's(Woo) and weo € I'yp1 (Woo)-

7. Quantitative convergence theory

We now switch from the qualitative or global theory of convergence to the quantitative
or local theory. We look into the question of convergence speed. To get this more
specific information on convergence, we again have to make stronger assumptions. To
be able to compute the rate, we need to be able to differentiate ¢ sufficiently many
times. Also, the solution of the subproblems needs to be unique in a neighborhood
of the true value. Thus we forget all references to point-to-set maps, and to free-
steering, because our techniques here simply cannot cope with that much freedom.
The basic result we use is due to Ostrowski [30].

Theorem: If
e the iterative algorithm w(**1) = A(z(®), converges to we,
¢ A is differentiable at we,,
0 0<p= [DAW] < 1,

then the algorithm is linearly convergent with rate p.

The norm in the theorem is the spectral norm, i.e. the modulus of the maximum
eigenvalue. Let us call the derivative of A the iteration matriz and write it as M. In
general block relaxation methods have linear convergence, and the linear convergence
can be quite slow. In cases where the accumulation points are a continuum we usually
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have sublinear rates. The same things is true if the local minimum is not strict, or if
we are converging to a saddle point.

In order to study the rate of convergence of block relaxation, we study the nonlinear
system

Dl(“’laf%&&"';ép) - 0’
D2(w17w2a€37”'7fp) = 0’
Dy(w1,ws, w3, -+ w,) = 0,

which defines the new solution w in terms of the old solution {. The D, are the partials
of ¢ with repect to the blocks. We assume that the assumptions for the implicit
function theorem are satisfied at the solution. Differentiating these equations again,
and solving for the derivatives, we find the iteration matrix

Dy 0 0 -~ 0\7'/0 Dy Dz - Dy,
M=— Dy Dy 0 --- 0 0 0 Dy .- Dy,
D.sl Da2 D.s3 e D,” 0 0 0 e 0

If there are only two blocks this simplifies to

Moo o) (6 %)= (0 o2, )
-D22 DZIDII D22 0 0 0 D22 Dzloll DIZ

Thus, in a local minimum, we find that the largest eigenvalue of M is the largest
squared canonical correlation p of the two sets of variables, and is consequently less
than or equal to one. We also see that a sufficient condition for local convergence to
a stationary point of the algorithm is that p < 1. This precludes having more than
one accumulation point, and it is always true for an isolated local minimum. If D%y
is singular at the solution, we find a canonical correlation equal to +1, and we do
not have linear convergence. Similar calculations can also be carried out in the case
of constrained optimization, i.e. when the subproblems optimize over differentiable
manifolds. We then use the implicit function calculations on the Langrangean con-
ditions, which makes them a bit more complicated, but essentially the same.

The result for block-relaxation can also derived from a similar result for generalized
block relation, that has been used in an EM context by Meng [23]. We minimize v
over w under the condition that G.(w) = G,(£), where £ is the current solution. Once
again we can differentiate the stationary equations to find that

s S-I'H;(HJTJ—IH;)_IHS’
where H, is the Jacobian of G, at the solution, and where

T, = D2'¢" + Z A.‘:rDZ.qr.s-

r=1

Here g,, is the r—th restriction in the s—th system, and the \,, are the corresponding
Lagrange multipliers. If the G, are linear, the second term disappears, and all T}, are
equal to the Hessian of 4 at the solution. If we use a generalized block method that
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cycles over the constraints G,, then the matrix we need to find the spectral norm of
is simply

P
M=T[T'H.(H,T H))™"H,.
s=1
In the case of ordinary block relaxation the G, are linear, because they are the

indicator matrices selecting the blocks that do not change in a subproblem. For the
first subproblem G; = (0 | T), and we find

_ 0 D12(D22)—1

Ml - (0 T ) >

with the D** the blocks of the inverse of D). If we substitute the G, for the H,,
we find an alternative expression for the iteration matrix as a product of simpler
matrices.

8. Alternating least squares

We now go into the history of block-relation in statistics and data analysis. Alternat-
ing Least Squares (ALS) methods were first used systematically in Optimal Scaling
(OS). Optimal scaling is discussed in detail in the book by Gifi [19]. We only give a
brief introduction here.

Suppose we have n observations on two sets of variables z; and y;. We want to fit a
model of the form

Fo(®(z:)) = Ge(V (1))

where the unknowns are the structural parameters  and ¢ and the transformations
® and ¥. In ALS we measure loss-of-fit by

n

U(ovf’ V)= Z[Fﬁ(q)(‘tt)) - Gvf(\ll(yi))]2

=1

This loss function is minimized by starting with initial estimates for the transforma-
tions, minimizing over the structural parameters, keeping the transformations fixed
at their current values, and then minimizing over the transformations, with structural
values kept fixed at their new values. These two minimizations are alternated, which
produces a nonincreasing sequence of loss function values, bounded below by zero,
and thus convergent. This is a version of the trivial convergence theorem.

The first ALS example is due to Kruskal [22]. We have a factorial ANOVA, with,
say, two factors, and we minimize

a(¢,n,0,8) = i ik‘(yn‘) — (p+ai + B))%

i=1 j=1

Kruskal required ¢ to be monotonic. Minimizing loss for fixed ¢ is just doing an
analysis of variance, minimizing loss over ¢ for fixed i, a, B is doing a monotone re-
gression. Obviously also some normalization reugirement is needed to exclude trivial
zero solutions.

This general idea was extended by De Leeuw, Young, Takane around 1975 to

oG+ ) = L I60) ~ 3 i)

i=1
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This ALSOS work, in the period 1975-1980, is summarized in [38]. Subsequent work,
culminating in the book by Gifi [19], generalized this to ALSOS versions of prin-
cipal component analysis, path analysis, canonical analysis, discriminant analysis,
MANOVA, and so on. The classes of transformations over which loss was minimized
were usually step-functions, splines, monotone functions, or low-degree polynomials.
To illustrate the use of more sets in ALS, consider

n m

o(r,  Pmie, B) = 3 D (%i(zij) — zp:ais:,@ja)z'

i=1j5=1 s=1

This is principal component analysis (or partial singular value decomposition) with
optimal scaling. We can now cycle over three sets, the transformations, the compo-
nent scores a;, and the component loadings 3;,. In the case of monotone transforma-
tions this alternates monotone regression with two linear least squares problems.

The ACE methods, developed by Breiman and Friedman [6], “minimize” over all
“smooth” functions. A problem with ACE is that smoothers, at least most smoothers,
do not really minimize a loss function (except for perfect data). In any case, ACE is
less general than ALS, because not all least squares problems can be interpreted as
computing conditional expectations. Another obviously related area in statistics is
the Generalized Additive Models discussed extensively by Hastie and Tibshirani [20].

It is easy to apply the general results from the previous sections to ALS. The results
show that it is important that the solutions to the subproblems are unique. The least
squares loss function has some special structure in its second derivatives which we
can often exploit in a detailed analysis. If

n

o(w, &) = Y (filw) — gi(€))%

1=1

2 (S5 O GG -GH
o= (3 o)+ (Sve ).
with G and H the Jacobians of f and g, and with. §; and S; weighted sums of the
Hessians of the f; and g;, with weights equal to the least squares residuals at the
solution. If S; and S, are small, because the residuals are small, or because the f;
and g; are linear or almost linear, we see that the rate of ALS will be the canonical
correlation between G and H.

then

9. Augmentation methods

We take up the historical developments. Alternating Least Squares was useful for
many problems, but it some cases it was not powerful enough to do the job. In order
to solve some additional least squares problems, we can use augmentation. We first
illustrate this with some examples.

If we want to fit a factorial ANOVA model to an unbalanced two-factor design, we
minimize

wijk(Yik — (b + i + B;))%,

M~
M=

o(p,e,f) =3

i=1j=1k
where the weights w;;x are either one (there) or zero (not there). Instead of this we
can also minimize

]
—
1
-

K
Y (zijk — (1 + i + ;)%

k=1

M~
M«

0'(/1,, a, ﬂ,z) =

-
[}

-
[
1]

-
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We give another, more serious, example from the area of mixed-model fitting. This
is from a paper of De Leeuw and Liu [13], which describes the algorithm in detail.
We simply give a list of results that show augmentation at work.

Lemma: If A = B+ TCT', with B,C > 0,
y'A™'y = min(y - Te)' B~ (y — Tz) +2'C7'z.

Lemma: If A= B+ TCT', with B,C > 0,
log| A|=log | B|+log |C|+log|C'+T'B7'T|.

Theorem: If A= B+ TCT’, then

log| Al +y'A™y = min log| B|+log|C |+
+ log |C'+T'B7'T | +
+ (y—Tz)YB'(y—Tz)+2'C'a.

Lemma: If T > 0, then

— —1p _
log|T|—x§1>1(r)110g]5|+trS T —p,

with the unique minimum attained at S = T.

Theorem:

log |A|+y'Aly = min log| B|+log|C |+
+ log|S|+tr STHC+T'B™'T)+
+ (y—Tz)YB'(y—Tz)+2'C'z.
Minimize over z, S, B, C using block-relaxation. The minimizers are
C~'+T'B7'T,
S 4 22!,
TS'T' + (y—Tz)(y — Tz)',
(T'B'T+C 1) 'T'B™y.

8 WQwn
I

10. Majorization methods

The next step (history again) was to find systematic ways to do augmentation (which
is an art, remember). We start with examples. The first is an algorithm for MDS,
developed by De Leeuw [10]. We want to minimize

m m

a(X) =203 wis(&; — dis(X))?,

=1 j=1
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with .

o {y;jk, if wijx =1

iik free, otherwise.

Minimizing this by ALS is due to Yates an others, see Wilkinson [37] for references.
Augmentation reduces the fitting to the balanced case (where we can simply use row,
column, and cell means), with an additional step to impute the missing y;;x. The idea
of adding variables that augment the problem to a simpler one is very general. It is
also at the basis, for instance, of the Lagrange multiplier method.

In LS factor analysis we want to minimize

o(A) = f: f: wij(ri; — i aisaj,)?,

i=1 j=1

with 0 ifici

if i = j,

Wi, = ’ . . .

K { 1, if¢#j.
We augment by adding the communalities, i.e. the diagonal elements of R as vari-
ables, and by using ALS over A and the communalities. For a complete R, mini-
mizing over A just means computing the p dominant eigenvalues-eigenvectors. This

algorithm dates back to the thirties, were it was proposed by Thomson and others.

A final example, less trivial in a sense. Suppose we want to minimize

o(X) =323 (6 — di;(X))?,

=1 j=1
:vith 7(X) = (zi—2;)'(zi — ;) squared Euclidean distance. This can be augmented
o

o(X,m) =33

i=1j=

i(mju = (i — ;) (zx — z0))%,

14=1

o,

k:

where of course 7;;;; = 6;; and the others are free. After some computation, ALS again
leads to a sequence of eigenvalue-eigenvector problems. This shows that augmentation
is an art (like integration). The augmentation is in some cases not obvious, and there
are no mechanical rules.

Formalizing augmentation is easy. Suppose ¢ is a real valued function, defined for all
w € {2, where } C R™. Suppose there exists another real valued function 1, defined
on ) x =, where = C R™, such that

¢(6) = min{(6,¢) | ¢ € E}.

We also suppose that minimizing ¢ over © is hard, while minimizing 3 over © is easy
for all £ € =. And we suppose that minimizing 1 over £ € = is also easy for all 8 € O.
This last assumption is not too far-fatched, because we already know what the value
at the minimum is.

I am not going to define hard and easy. What may be easy for you, may be hard
for me. Anyway, by augmenting the function we are in the block-relaxation situation
again, and we can apply our general results on global convergence and linear con-
vergence. Augmentation is used in other areas of statistics [36], where integration is
used instead of minimization. If it is difficult to sample from p(w) and easy to sample
from p(w, ), then we sample from the joint distribution and integrate out the ¢ by
summation.
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We give another, more serious, example from the area of mixed-model fitting. This
is from a paper of De Leeuw and Liu [13], which describes the algorithm in detail.
We simply give a list of results that show augmentation at work.

Lemma: If A = B+ TCT', with B,C > 0,
y'A™'y = min(y - Te)' B~ (y — Tz) +2'C7'z.

Lemma: If A= B+ TCT', with B,C > 0,
log| A|=log | B|+log |C|+log|C'+T'B7'T|.

Theorem: If A= B+ TCT’, then

log| Al +y'A™y = min log| B|+log|C |+
+ log |C'+T'B7'T | +
+ (y—Tz)YB'(y—Tz)+2'C'a.

Lemma: If T > 0, then

— —1p _
log|T|—x§1>1(r)110g]5|+trS T —p,

with the unique minimum attained at S = T.

Theorem:

log |A|+y'Aly = min log| B|+log|C |+
+ log|S|+tr STHC+T'B™'T)+
+ (y—Tz)YB'(y—Tz)+2'C'z.
Minimize over z, S, B, C using block-relaxation. The minimizers are
C~'+T'B7'T,
S 4 22!,
TS'T' + (y—Tz)(y — Tz)',
(T'B'T+C 1) 'T'B™y.

8 WQwn
I

10. Majorization methods

The next step (history again) was to find systematic ways to do augmentation (which
is an art, remember). We start with examples. The first is an algorithm for MDS,
developed by De Leeuw [10]. We want to minimize

m m

a(X) =203 wis(&; — dis(X))?,

=1 j=1
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with d;;(X) again Euclidean distance, i.e. d;;(X) = \/(:1:,- — z;)'(z; — z;), and thus,
by Cauchy-Schwarz,

(zi — ;) (yi — y;)
di;(X) 2 .
This implies

m

o (X)<n(X,V)ESY wish—

i=1 j=1
m m i
+ 2 wij (2 — z5) (yi — y;)+
ZZ ]d,J(Y) J)( J)

i=1 j=1

+ i f: wijdii (X)*.

i=1j=1

Here is another example: Suppose we want to maximize ¢(w) = log [ n(w, z)dz. By
Jensen’s inequality

I n(w, z)dz 1o fn(ﬁ,x)'l,?,f)dw >
€ o)de ~ 8 Jn(E z)dz
I n(¢,z)log Heds

n(€,w)
I (¢, z)d=
_ In(§x)logn(w,z)dz [ (¢, z)logn(¢, x)dz
(¢ z)dz (¢, z)dz )

It follows that
¢("‘)) 2 ¢(£) + K(w7£) - n(&ﬁ),

Maximizing the right-hand-side by block relaxation is the EM algorithm [14].

As before, we now stop and wonder what these two examples have in common. We
have a function ¢(w) on 2, and a function ¥(w,§) on @ ®  such that

pw) < P(w,§) Yw, e,
dw) = P(w,w) Vwel

This is just another way of saying

¢(w) = Iggél 1/’(0-’, 6),

and thus we are in the ordinary block relaxation situation. We say that ) majorizes ¢,
and we call the block relaxation algorithm corresponding with a particular majoriza-
tion function a majorization algorithm. It is a special case of our previous theory,
because = = and because £(w) = w. This implies that cDa(w,w) = 0 for all w, and
consequently Dy = —Dsa. Thus M = —Di1' D1z2. The E-step of the EM algorithm,
in our terminology, is the construction of a new majorization function. We prefer a
nonstochastic description of EM, because maximizing integrals is obviously a more
general problem.

Again, to some extent, finding a majorization function is an art. Many of the classi-
cal inequalities can be used (Cauchy-Schwarz, Jensen, Holder, AM-GM, and so on).
Here are some systematic ways to find majorizing functions.
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1) If ¢ is concave, then ¢(w) < ¢(€) + 7'(w — €), with n € 9¢(¢), the subgradient
of ¢ at . Thus concave functions have a linear majorizer.

2) f D?¢(¢€) < D for all £ € R, then

$(w) < $(§) + (w = €)'VH() + 'fo(w — €)' D(w — €).
Let n(§) = § — D7'V¢(¢), then

pw) < #(€) ~"/LVe(E)'DIV(£)+
+ 'h(w = (&) D(w — n(£)).

Thus here we have quadratic majorizers.

3) For d.c. functions (differences of convex functions) such as ¢ = a — 3 we can
write ¢(w) < a(w) — B(€) — n'(w — €), with n € 8B(¢). This gives a convex
majorizer. Interesting, because basically all continuous functions are d.c.

We close with a final example. Suppose v is a convex and differentiable function
defined on the space of all correlation matrices R between m random variables
Ty, ,Tm. Suppose we want to maximize Y(R(ni(z1)," -, 7m(zm))) over all trans-
formations 7;. Now

$(R) 2 ¢(S) + tr V§(S)(R-S).

Collect the gradient in the matrix G. A majorization algorithm can maximize

i igij(S)E(mm),

i=1 j=1

over all standardized transformations, which we do with block relaxation using m
blocks. In each block we must maximize a linear function under a quadratic constraint
(unit variance), which is usually very easy to do. This algorithm generalizes ACE,
CA, and many other forms of MVA with OS. It was proposed first by De Leeuw
[11], with many variations. The function 1 can be based on multiple correlations,
eigenvalues, determinants, and so on.
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