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Abstract. Meet the abstract. This is the abstract.

1. Introduction

Suppose we have n measurements on each of m variables. Collect

these measurements in an n ×m matrix Y . In this introductory

section we briefly review two classical factor analysis models, more

precisely linear common factor models. For a more comprehensive

discussion we refer to Anderson and Rubin [1956] and to Anderson

[1984].

In common factor analysis we suppose that Y is the sum of a com-

mon part and a unique part. This is analogous to discussing data

as composed of a signal and a noise part (or a fit and error part)

in other data analysis contexts. We write the model, informally, in

algebraic form1 as

Y
n×m

= F
n×m

+ U
n×m

,

F
n×m

= H
n×p

A
p×m

,

U
n×m

= E
n×m

D
m×m

.

Date: Saturday 14th January, 2012 — 14h 33min — Typeset in Lucida

Bright.
1Observe that we show the dimensions of a matrix by giving the numbers

of rows and columns under the symbol of the matrix.
1
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Thus the common part consists of linear combinations of p com-

mon factors, and the unique part of linear combinations of m
unique factors. There is also a notion that the common and unique

parts are orthogonal or independent in some sense. This last no-

tion will be formalized next.

2. Factor Analysis Models

There are various ways in which the general idea of factor analysis

can be made more precise by formulating it as an explicit statistical

model.

2.1. Random Factor Model. The matrix Y is supposed to be a re-

alization2 of a matrix-valued random variable Y .

In random score factor analysis we assume that the random vari-

able Y has a random common part F and a random unique part U .

Thus

Y
n×m

= F
n×m

+ U
n×m

.

The common part is a linear combination of a number, say p, of

common factors H, i.e.

F
n×m

= H
n×p

A′
p×m

.

The unique part is a linear combination of m unique factors E.

U
n×m

= E
n×m

D′
m×m

.

The rows of Y , corresponding with the different individuals, are as-

sumed to be independent. Moreover we assume the specific parts

are uncorrelated with the common factors, and with the other spe-

cific parts. For simplicity we assume all variables are centered, i..e

have expectation zero.

2We use the convention of underlining random variables [Hemelrijk, 1966].
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2.2. Fixed Factor Model. The random factor model explained above

was criticized soon after it was formally introduced by Lawley.

The point is that in factor analysis different individu-

als are regarded as drawing their scores from differ-

ent k-way distributions, and in these distributions the

mean for each test is the true score of the individual

on that test. Nothing is implies about the distribution

of observed scores over a population of individuals,

and one makes assumptions only about the error dis-

tributions [Young, 1940, pag. 52].

Young proposed the fixed factor model, which assumes

Y = F + E.

Now the common part is a bilinear combination of a number of

common factor loadings ajs and common factor scores uis , i.e.

F = UA′.

In the fixed model we merely assume the specific parts are uncor-

related with the other specific parts.

2.3. Covariance Models.

3. Estimation

3.1. Covariance Matrix Methods. The dominant estimation method

in factor analysis is multinormal maximum likelihood for the ran-

dom factor model. It was first proposed by Lawley [1939], and

then popularized and programmed by Jöreskog [1967]. The nega-

tive log-likelihood measures the distance between the sample and

population covariance model, and we must minimize

L(A,D) = n log |Σ| +n tr Σ−1S,

with S the sample covariance matrix of Y , and with Σ = AΩA′+∆2.
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In Anderson and Rubin [1956] the impressive machinery developed

by the Cowles Commission was applied to both the fixed and ran-

dom factor analysis model. Maximum likelihood was applied to

the likelihood function of the covariance matrix, assuming multi-

variate normality.

3.2. Data Matrix Methods. Lawley’s maximum likelihood proce-

dure was criticized soon after it appeared by Young [1940], be-

cause it was inappropriate for the fixed factor model that Young

favored.

Such a distribution is specified by the means and vari-

ances of each test and the covariances of the tests in

pairs; it has no parameters distinguishing different

individuals. Such a formulation is therefore inappro-

priate for factor analysis, where factor loadings of the

tests and of the individuals enter in a symmetric fash-

ion in a bilinear form [Young, 1940, pag. 52].

Young proposed to minimize the log-likelihood of the data

L(U,A,D) = n log |D| + tr (Y −UA′)′D−1(Y −UA′)

whereD is a known diagonal matrix with column (variable) weights.

The solution is given by a weighted singular value decomposition

of Y .

The basic problem with Young’s method is that it supposes the

weights to be known. One solution, suggested by Lawley [1942], is

to estimate them along with the loadings and scores.

Lawley suggests to alternate minimization over (U,A), which is

done by weighted singular value decomposition, and minimization

over diagonal D, which simply amounts to computing the average

sum of squares of the residuals for each variable. Iterating these

two minimizations produces a block relaxation algorithm intended

to minimize the negative log-likelihood. Although the algorithm
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obviously produces a decreasing sequence of loss function values,

it does not work.

A rather disconcerting feature of the new method is,

however, that iterative numerical solutions of the es-

timation equations either fail to converge, or else con-

verge to unacceptable solutions in which one of more

of the measurements have zero error variance. It is

apparently impossible to estimate scale as well as lo-

cation parameters when so many unknowns are in-

volved [Whittle, 1952, pag. 224].

In fact, if we look at the loss function we can see it is unbounded

below. We can choose scores to fit one variable perfectly, and then

let the corresponding variance term approach zero [Anderson and

Rubin, 1956].

Several other remedies have been proposed to rescue the weighted

least squares methods. Whittle [1952] suggested to take D pro-

portional to the variances of the variables. This amounts to do-

ing a singular value decomposition of the standardized variables.

Jöreskog [1962] makes the more reasonable choice of setting D
proportional to the reciprocals of the diagonals of the inverse of

the covariance matrix of the variables (i.e. to the residual variances

when regressing each variable on the others). Of course in these

approaches the weights themselves depend on the data Y , which

means that simple weighted least squares theory does not apply.

An original approach was suggested by McDonald [1979]. Also

see Etezadi-Amoli and McDonald [1983]. He proposes to maximize

the determinant of the correlation matrix of the matrix of residuals

R = Y −UA′. This criterion can be derived by using the fact that if

we minimize over diagonal D, then

min
D
L(U,A,D) = n log |diagR′R|,
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while if we minimize over unrestricted S we have

min
S
L(U,A, S) = n log |R′R|,

The difference of the two is the logarithm of the determinant of

the correlation matrix of the residuals. The approach is clearly

scale-free, and the maximum of zero is attained if we can make

the residuals exactly uncorrelated. Computational and statistical

properties of this so-called maximum likelihood ratio method are

quite complicated, however.

4. Unweighted Least Squares

4.1. General Considerations.

4.2. Non-negativity Constrains.

5. Least Squares on the Covariances

5.1. Loss. The least squares loss function used in LSFAC is

(1) φ(A,D) ∆= 1
2

SSQ(C −AA′ −D).

where A ∈ Rm×p and D ∈ Dm, the diagonal matrices of order m.

5.2. Projections. We also define the two projected or concentrated

loss functions, in which one set of parameters is “minimized out”,

(2a) φ(A) ∆= min
D∈Dm

φ(A,D) =
∑

1≤j<`≤m
(cj` − a′ja`)2,

and

(2b) φ(D) ∆= min
A∈Rm×p

φ(A,D) = 1
2

m∑
s=p+1

λ2
s (C −D).

Note that φ is used as a generic symbol for these LSFAC loss func-

tions, because it will be clear from the context which φ we are

using.
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5.3. Algorithms. There have been four major approaches to mini-

mizing this loss function.

5.3.1. Thomson’s Principal Factor Analysis. PFA [Thomson, 1934]

is an alternating least squares (ALS) method [De Leeuw, 1994], in

which we alternate minimizing over A for D fixed at its current

value and minimizing over D for A fixed at its current value.

The minimum over D for fixed A is attained at D = diag(C −AA′).
If C − D = KΛK′ is the eigen-decomposition of C − D, and we

write Λp and Kp for the p largest eigenvectors and corresponding

eigenvectors, then the minimum over A for fixed D is A = KΛ 1
2 . If

fewer than p eigenvalues are positive, then the negative elements

in Λp are replaced by zeroes.

Because D = diag(C −AA′) we always have D . diag(C), but there

is no guarantee that convergence is to a D for which both D & 0

and C −D & 0.

5.3.2. Comrey’s MRFA. Comrey [1962] proposed minimum resid-

ual factor analysis, which was a (non-rigorous) attempt to mini-

mize the projected loss function. The method was put on a more

solid footing by Zegers and Ten Berge [1983].

5.3.3. Harman’s MINRES. In MINRES [Harman and Jones, 1966; Har-

man and Fukuda, 1966] we project out D. We use ALS to minimize

the projected loss function psi(A) from (2a) over A, using the m
rows as blocks.

5.3.4. Gradient and Newton Methods. Gradient methods can be most

conveniently applied by projecting out A. Thus we work withφ(D)
from (2b), and minimize over D. Now use

Djλs(D) = −z2
js ,

Djz`s(D) = zjs(C −D − λsI)+jl,
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where zs is the normalized eigenvector corresponding with eigen-

value λs and (C−D−λs)+jl is the (j, `) element of the Moore-Penrose

inversee of C − D − λsI. This directly gives formulas for the first

and second derivatives of the loss function.

Djφ(D) = −
m∑

s=p+1

λsz2
js ,

Dj`φ(D) =
m∑

s=p+1

(
z2
`sz

2
js − 2λszjszls(C −D − λsI)+j`

)

6. Least Squares on the Data Matrix

6.1. Loss. The loss function used in LSFAY is

ψ(X,U,A,D) = 1
2

SSQ(Y −XA′ −UD).

We minimize over X ∈ Rn×p, U ∈ Rn×m, A ∈ Rm×p and D ∈ Rm×m,

under the conditions X′X = I, U ′U = I, X′U = 0.

Our approach may seem to be quite similar to the approach pro-

posed by Paul Horst in his book [Horst, 1965]. Where we differ

from Horst is in the additional assumptions that D is diagonal and

that U has the same size as the data Y . This puts us solidly in

the common factor analysis framework. Horst, on the contrary,

only makes the assumption that there is a small number of com-

mon and residual factors, and he then finds them by truncating the

singular value decomposition. Separating common and unique fac-

tors is be done later by using rotation techniques. For Horst factor

analysis is just principal component analysis with some additional

interpretational tools.

6.2. Advantages. LSFAY over LSFAC: independence more realistic,

optimal scaling easy (FACTALS), D always positive
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6.3. Projection. We use the result in Appendix A to define a pro-

jected version of the LSFAY loss function.

ψ(A,D) = 1
2

min
U,X

SSQ(Y −XA′ −UD) =

= 1
2

SSQ(Y)+ 1
2

SSQ(A | D)−
m∑
s=1

σs(YA | YD),

where the σs(YA | YD) are the ordered singular values of (YA |
YD). Note that (YA | YD) is n× (m+ p), but its rank is less than

or equal to m. Thus at least p of the singular values are zero.

The singular values are the square roots of the ordered eigenvalues

λs of

(3) E ∆=
A′CA A′CD
DCA DCD

 .
Thus we can also write

ψ(A,D) = 1
2

tr(C)+ 1
2

SSQ(A)+ 1
2

SSQ(D)−
m∑
s=1

√
λs(E).

6.4. Algorithms.

6.4.1. Alternating Least Squares. The first algorithm to minimize

our loss function is of the ALS type. It was first proposed by De

Leeuw [2004], and has since then been used by Unkel and Trendafilov

[2010]; Trendafilov and Unkel [2011].

We start with an initial estimate A(0) and D(0) and then alternate[
X(k) | U (k)

]
∈ Procrustus

[
YA(k) | YD(k)

]
,(4a)

A(k+1) = Y ′X(k),(4b)

D(k+1) = diag(Y ′U (k)).(4c)

The Procrustus transformation of a matrix is defined in terms of

its singular value decomposition. If the n ×m matrix T has rank

m and singular value decomposition T = KΛL′, then we define
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Procrustus(T) ∆=KL′. Alternatively, we can use the Moore-Penrose

inverse and the matrix symmetric square root, because

Procrustus(T) =
√
(TT ′)+T = T

√
(T ′T)+.

If rank(T) = r < min(n,m) then we define the Procrustus trans-

formation as a (closed) set of matrices. See Appendix A for the

details.

It is important that we can use the symmetric square root to con-

struct a version of the algorithm that does not depend on the num-

ber of observations n, and that can be applied to examples that are

only given as covariance or correlation matrices. We can combine

the equations in (4) to

A(k+1) = CA(k)
√
(E(k))+,(5a)

D(k+1) = diag(CD(k)
√
(E(k))+).(5b)

This version of the algorithm no longer uses Y , only C . It can be

thought of as an adapted version of Bauer-Rutishauser simultane-

ous iteration [Rutishauser, 1969].

6.4.2. Gradient and Newton Methods. Suppose the eigenvector zs
of E in (3) corresponding with λs , is partitioned, by putting the

first p elements in vs and the last m elements in ws . Then [De

Leeuw, 2007]

∂
√
λs(E)
∂ajr

= 1√
λs(E)

vrsc′j(Avs +Dws),

∂
√
λs(E)
∂djj

= 1√
λs(E)

wjsc′j(Avs +Dws),

where cj is column j of C . Collecting terms gives

D1σ(A,D) = A− CA
√
E+,

D2σ(A,D) = D − diag(CD
√
E+),
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which shows that the alternating least squares algorithm (5) can be

written as a gradient algorithm with constant step-size

A(k+1) = A(k) −D1σ(A(k),D(k)),

D(k+1) = D(k) −D2σ(A(k),D(k)).

To derive a suitable form of Newton’s algorithm we do an extra

projection. Let ∆=min
X,U,A
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Appendix A. Augmented Procrustus

Suppose X is an n×m matrix of rank r . Consider the problem of

maximizing tr U ′X over the n×m matrices U satisfying U ′U = I.
This is known as the Procrustus problem, and it is usually studied

for the case n ≥m = r . We want to generalize to n ≥m ≥ r . For

this, we use the singular value decomposition

X =
[
K1
n×r

K0
n×(n−r)

] Λ
r×r

0
r×(m−r)

0
(n−r)×r

0
(n−r)×(m−r)


 L′1

r×m
L′0

(m−r)×m

 .
Theorem A.1. The maximum of tr U ′X over n × m matrices U
satisfying U ′U = I is tr Λ, and it is attained for any U of the form

U = K1L′1+K0VL′0, where V is any (n−r)×(m−r)matrix satisfying

V ′V = I.

Proof. Using a symmetric matrix of Lagrange multipliers leads to

the stationary equations X = UM , which implies X′X = M2 or

M = ±(X′X)1/2. It also implies that at a solution of the stationary

equations tr U ′X = ±tr Λ. The negative sign corresponds with the

minimum, the positive sign with the maximum.

Now

M =
[
L1
m×r

L0
m×(m−r)

] Λ
r×r

0
r×(m−r)

0
(m−r)×r

0
(m−r)×(m−r)


 L′1

r×m
L′0

(m−r)×m

 .
If we write U in the form

U =
[
K1
n×r

K0
n×(n−r)

] U1
r×m
U0

(n−r)×m


then X = UM can be simplified to

U1L1 = I,

U0L1 = 0,



LEAST SQUARES METHODS FOR FACTOR ANALYSIS 15

with in addition, of course, U ′1U1+U ′0U0 = I. It follows that U1 = L′1
and

U0
(n−r)×m

= V
(n−r)×(m−r)

L′0
(m−r)×m

,

with V ′V = I. Thus U = K1L′1 +K0VL′0. �
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Appendix B. The Fundamental Theorem of Factor Analysis

There is a closely related theorem which is known, or used to be

known, as the fundamental theorem of factor analysis. It took the

cumulative efforts of many fine minds, starting with Spearman,

about 25 years to come up with a proof of this theorem. The fact

that it follows easily from the singular value decomposition shows

the power of modern matrix algebra tools.

Theorem B.1. Suppose X
n×m

and A
m×p

are such that X′X = AA′. Then

there is an U
n×p

such that U ′U = I and X = UA′.

Proof. From X′X = AA′ we know that A has singular value decom-

position

A =
[
L1
m×r

L0
m×(m−r)

] Λ
r×r

0
r×(p−r)

0
(m−r)×r

0
(m−r)×(p−r)



V ′1
r×p

V ′0
(p−r)×p

 ,
where r ≤ p is the rank of both X and A. Observe that the left

singular vectors of A are the right singular vectors of X.

Now we still have to solve X = UA′. Write

U =
[
K1
n×r

K0
n×(n−r)

] U1
r×p

U0
(n−r)×p

 .
Then X = UA′ simplifies to

I = U1V1,

0 = U0V1,

with in addition, of course, U ′1U1+U ′0U0 = I. It follows that U1 = V ′1
and

U0
(n−r)×p

= W
(n−r)×(p−r)

V ′0
(p−r)×p

,

with W ′W = I. Thus U = K1V ′1 +K0WV ′0. �
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Appendix C. Code

Department of Statistics, University of California, Los Angeles, CA

90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu

E-mail address, Jia Chen: joshchen@stat.ucla.edu

URL, Jia Chen: http://directory.stat.ucla.edu/jia-chen
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