
Croissants and Wedges in Multiple Correspondence Analysis

Jan de Leeuw

Version 2.01, December 16, 2015

Contents

1 Introduction 2

2 MCA 3

3 Synthetic Data: Normal Distribution 3

4 Real Data: GALO 7

4.1 MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Two-step MCA: PRIMALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Nonlinear PCA: PRINCALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4 Simultaneous Bilinearizing MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Real Data: Norway 20

5.1 MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Additive Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Additive and Equality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Simultaneous Bilinearizing MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Appendix: Code 28

7 Appendix: NEWS 32

References 33

Note: This is a working paper which will be expanded/updated frequently. The directory deleeuw-
pdx.net/pubfolders/croissants has a pdf copy of this article, the complete Rmd file with all code chunks,
and R and C files with the code. Unfortunately the Norway data cannot be shared, so that part of the
paper is not reproducible. If you want to knit the Rmd file, remove the Norway section.

1

http://deleeuwpdx.net/pubfolders/croissants
http://deleeuwpdx.net/pubfolders/croissants


Figure 1: croissants and wedges.

1 Introduction

In multiple correspondence analysis (MCA) we frequently observe two-dimensional scatter plots in which the
points are on or close to a convex function, with shape similar to a parabola. This is often referred to as the
horseshoe effect, but that name is not quite appropriate, since horseshoes fold back at the endpoints. Thus
we suggest to call such plots croissants, which seems especially suitable if there is considerable dispersion
around the convex function.

Croissants have a complicated history. In data analysis they were first described in the context of scale
analysis by Guttman (1950). The MCA eigenvectors of perfect scales satisfy a second order difference
equation, whose solution are the discrete orthogonal polynomials. The first and second component define
the croissant. In the French data analysis literature the horseshoe or croissant is consequently called the
Effet Guttman.

The next major contribution was Lancaster (1958), who described a family of bivariate distributions for
which the singular value decomposition of the density consisted of orthogonal polynomials. The most fa-
mous member of the family is the bivariate normal, which has the Hermite-Chebyshev polynomials as its
components. Lancaster’s work was generalized and extended by his students and co-workers. It was taken
up by Benzécri’s school, in particular in the thesis of Naouri (1970).

In ecology horseshoes were first discussed in the influential paper of Hill (1974). They were considered a
nuisance, and various techniues were developed to get rid of them (Hill and Gauch 1980). Ecologists work
with the Gaussian abundance model for environmental gradients, and Ihm and van Groenewoud (1975)
showed this resulted in horseshoes.

In multidimensional scaling quadratic structures were first discussed and analyzed by Levelt, Van De Geer,
and Plomp (1966) for musical intervals (a parabola) and by De Gruijter (1967) for political parties (an
ellipse). More information on horseshoes in the MDS context is in Diaconis, Goel, and Holmes (2008) and
De Leeuw (2007).

The application of Hermite-Chebyshev polynomials to the multivariate normal case in MCA was outlined in
section 3.8 of De Leeuw (1974). Gifi (1980) pointed out for the first time that oscillation matrices and total
positivity were the relevant mathematical theories, see also section 9.2 of Gifi (1990). Total positivity was
used in a general theory by Schriever (1983), Schriever (1985) that covers all previously discussed special
cases. The appropriate way to patch the decomposition of the various bivariate marginals together in the
multivariate case is due to De Leeuw (1982), see also Bekker and De Leeuw (1988). Much of the work of the
Gifi school on horseshoes was summarized in Van Rijckevorsel (1987).
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2 MCA

We give a very brief introduction to MCA to fix the terminology. We start with n measurements on m
categorical variables. Variable j has kj categories. We then expand each variable to an indicator matrix Gj ,
indicating category membership. Thus Gj is an n × kj binary matrix with exactly one element equal to
one in each column, and zeroes everywhere else. Define G :=

[
G1 | · · · | Gm

]
and C = G′G. The matrix C,

which contains the bivariate cross tables of the variables, is called the Burt Matrix (Tableau de Burt). Also
define D := diag(C), the diagonal matrix of univariate marginals. Both C and D are of order K :=

∑
kj .

MCA is defined as solving the generalized eigenvalue problem CY = mDY Λ, with Y ′DY = I. The gener-
alized eigenvectors Y are called the category quantifications, and the centroids X := 1

m GY are called the
object scores. In most cases we do not use all eigenvectors in the data analysis but only a small number of
them. The category quantifications are in an

∑
kj × p matrix, and the object scores are in an n × p matrix.

Note that with the normalization we have chosen 0 ≤ Λ ≤ I and X ′X = 1
m Λ.

In our computations we use the package geigen (Hasselman and Lapack authors 2015). Or, alternatively,
we define E := D− 1

2 CD− 1
2 , compute eigenvalues Z such that EZ = mZΛ, and then set Y = D− 1

2 Z.

Also, because of the singularities in G, there is one generalized eigenvalue equal to one (with a corresponding
generalized eigenvector y that has all elements equal) and there are m − 1 generalized eigenvalues equal to
zero.

3 Synthetic Data: Normal Distribution

One simple way to reliably generate croissants is to discreticize a sample from a multinormal. Of course
there are various parameters to consider. The function discreteNormal() allows one to choose the size
of the sample n, the number of variables m, the correlation between the variables r, and the discretization
points (aka knots).

formals ("discreteNormal")

## $n
##
##
## $m
##
##
## $r
##
##
## $knots

Throughout this section we choose n = 10, 000. Our first normal croissant (category quantifications on the
left, object scores on the right) has four variables, knots at the integers from -3 to +3, and all correlations
equal to .75. We see somewhat more scatter or filling in the object score croissant, basically because object
scores are convex combinations of category quantifications.
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Figure 1: Normal Croissants, m = 4, r = .75

If we decrease the correlation to .25 the croissant crumbles. A correlation of .25 is too close to independence,
which means that not enough variation will be captured by the first two eigenvalues. Nevertheless if we
discard the outliers the croissant is still there.
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Figure 2: Normal Croissants, m = 4, r = .25

In the third simulation we increase the number of variables to 25, with correlation .75. The croissants are
tight and symmetric.
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Figure 3: Normal Croissants, m = 25, r = .75

Moreover for 25 variables we still see a clear croissant if the correlation is .25, although there obviously is more
filling. Lower correlation means objects scores will be convex combinations of more category quantifications,
and thus they will cluster more around the origin, which is the fattest part of the croissant.
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Figure 4: Normal Croissants, m = 25, r = .25

We can also study the influence of skewness by choosing the knots to be c(0,1,2,3), keeping the correlaton
between the four variables at .75. A truncated versions of the croissant appears.
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Figure 5: Normal Croissants, m = 4, r = .75, skew

Finally we can choose a correlation matrix which does not have all correlations the same. We use the
correlation matrix

## [,1] [,2] [,3] [,4]
## [1,] 1.000 -0.027 0.729 0.008
## [2,] -0.027 1.000 0.001 0.343
## [3,] 0.729 0.001 1.000 -0.027
## [4,] 0.008 0.343 -0.027 1.000

This has the effect of perturbing the croissant, because it becomes a mixture of different croissants for the
different variables.
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Figure 6: Normal Croissants, m = 4, r is various

In real data we have a combination of all these effects. We will have low correlations and/or skewness for
some of the variables. Thus croissants can be asymmetric and have a lot of scatter. And, of course, there
may be deviations from underlying normality as well, which can easily destroy the croissant.

4 Real Data: GALO

The GALO example has served us well for almost 40 years. The objects (individuals) are 1290 school
children in the sixth grade of elementary school in the city of Groningen (Netherlands) in 1959. There are
four variables

• Gender: M/F.
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• IQ: The original range (60 to 144) has been categorized into 9 ordered categories.
• SES:

– LoWC = Lower white collar;
– MidWC = Middle white collar;
– Prof = Professional, Managers;
– Shop = Shopkeepers;
– Skil = Schooled labor;
– Unsk = Unskilled labor.

• Teacher’s Advice Secondary Education:

– Agr = Agricultural;
– Ext = Extended primary education;
– Gen = General;

– Grls = Secondary school for girls;
– Man = Manual, including housekeeping;

– None = No further education;
– Uni = Pre-University.

4.1 MCA

We use the first two dimensions, which have eigenvalues 0.5391591 and 0.3915176. The category quantifi-
cations from MCA for each variable are in Figure 7: GALO Category Quantifications. Small croissants are
visible throughout.

−4 −2 0 2 4

−
4

0
4

GENDER

dimension 1

di
m

en
si

on
 2

MF

−4 −2 0 2 4

−
4

0
4

IQ

dimension 1

di
m

en
si

on
 2

4

7
5

6 2
3

8

1 9

−4 −2 0 2 4

−
4

0
4

ADVICE

dimension 1

di
m

en
si

on
 2

Man

Gen

ExtGrls
Uni

Agr
None

−4 −2 0 2 4

−
4

0
4

SES

dimension 1

di
m

en
si

on
 2

ShopSkil
UnskProfMidWC

LoWC

Figure 7: GALO Category Quantifications
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The croissant is somewhat clearer if we put the category quantification of all variables in a single plot.
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Figure 8: GALO Category Quantifications
We plot the object scores in a somewhat nonstandard way, by putting unnormalized object scores (centroids
of category quantifications) within the hull of the category quantifications. This illustrates that, at least to
some extent, the shape of the object score plot is determined by the shape of the category quantification
plot. We see an obvious croissant for these data.
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Figure 9: GALO Object Scores in Convex Hull of Quantifications

4.2 Two-step MCA: PRIMALS

One of the standard ways to get rid of MCA croissants is to impose constraints on the category quantifications.
In his canonical MCA paper Guttman (1941) already argued that only the first dimension of an MCA should
be used in linear multivariate analysis, because the remaining dimensions are components of non-linearity.
The MCA does not decompose variance, as PCA does in classical multivariate analysis, but it decomposes
chi-square, and thus its interpretation should be completely different.

There are various ways to incorporate this insight. The simplest one is to use the first MCA dimension to
quantify the variables, and to use these quantified variables in a standard linear technique such as PCA or
regression. The combination of MCA quantification and PCA is sometimes called PRIMALS (Meulman and
Gifi 1981).

The correlation matrix of the quantified variables is

## SEX IQ ADV SES
## SEX 1.0000000 0.2250425 0.1530414 0.2624973
## IQ 0.2250425 1.0000000 0.7838499 0.3591835
## ADV 0.1530414 0.7838499 1.0000000 0.3809945
## SES 0.2624973 0.3591835 0.3809945 1.0000000

with eigenvalues (divided by 4)

## [1] 0.53915911 0.23737936 0.17062083 0.05284071

and eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] -0.2968564 0.8447797 -0.4381085 -0.07927491
## [2,] -0.5990117 -0.2807262 -0.2625353 0.70246210
## [3,] -0.5930407 -0.3551810 -0.1553433 -0.70570362
## [4,] -0.4487360 0.2852833 0.8455794 0.04738025

Using the first two eigenvectors we can make a PCA plot.
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Figure 10: PRIMALS GALO PCA Plot

To show how this analysis is related to MCA, we first normalize the category quantifications of variable j
to y′

jDjyj = 1. We then create the first column of Y by multiplying the yj by the corresponding entries of
the first eigenvector of the correlation matrix. And do the same for the second column of Y . We still have
Y ′DY = I, while tr Y ′CY is equal to the sum of the first two eigenvalues of the correlation matrix, i.e.
0.7765385. For the MCA the corresponding sum is 0.9306767.
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Figure 11: PRIMALS GALO Category Quantifications

The corresponding object scores are the left singular vectors of the matrix of quantified variables. There is
no croissant in sight any more.
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Figure 12: PRIMALS GALO Object Scores

4.3 Nonlinear PCA: PRINCALS

The PRIMALS approach is a two-step approach, in the sense that we first maximize by choosing the largest
eigenvalue of the Burt table and then we maximize by choosing the largest eigenvalues of the induced
correlation matrix. Thus there are two different criteria involved, and this could be seen as a disadvantage.
In the PRINCALS approach we choose quantifications of the variables that maximize the sum of the first p
eigenvalues of the induced correlation matrix. For p = 1 this is PRIMALS, but for p > 1 the two approaches
are different.

We perform the necessary computations, in the GALO case for p = 2, using the homals package (De Leeuw
and Mair 2009). Alternatively, the aspect package (Mair and De Leeuw 2010) could be used.

The correlation matrix of the quantified variables is

## SEX IQ ADV SES
## SEX 1.0000000 -0.2244279 -0.12125351 0.45990525
## IQ -0.2244279 1.0000000 0.76562735 -0.15187736
## ADV -0.1212535 0.7656274 1.00000000 -0.06738589
## SES 0.4599052 -0.1518774 -0.06738589 1.00000000

with eigenvalues (divided by 4)

## [1] 0.48435852 0.32475142 0.13424466 0.05664539
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and eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] 0.3900655 -0.5749471 -0.71482542 0.07943102
## [2,] -0.6262771 -0.3088909 -0.01377581 0.71566308
## [3,] -0.5860285 -0.4149193 -0.06307717 -0.69313337
## [4,] 0.3349575 -0.6339276 0.69631610 0.03291215

The largest eigenvalue is now 0.4843585, while for PRIMALS it was the larger value 0.5391591. But the
sum of the two largest eigenvalues for PRINCALS is 0.8091099, while for PRIMALS it is the smaller value
0.7765385.

Using the first two eigenvectors of the induced correlation matrix we can make a PCA plot.
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Figure 13: PRINCALS PCA Plot

In the same way as for PRIMALS we can make the PRINCALS category quantifications and object scores.
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Figure 14: PRINCALS GALO Category Quantifications
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Figure 15: PRINCALS GALO Object Scores

4.4 Simultaneous Bilinearizing MCA

A more complete and more revealing analysis is possible by using the theory in De Leeuw (1982), see also
Bekker and De Leeuw (1988) and De Leeuw (2015). We study an alternative way of diagonalizing the matrix
E = D− 1

2 CD− 1
2 .
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Suppose we can find square orthonormal Kj such that K ′
jKj = I and KjEjℓKℓ is diagonal for all j, ℓ =

1, · · · , m, say equal to the diagonal matrices Γjℓ. The condition is that if two submatrices of E have a
subscript in common, then then also have the corresponding set of singular vectors in common. De Leeuw
(1988) calls this simultaneous bilinearizability. Since that name is a bit verbose, we call the condition SBL.
We know SBL is possible for the continuous multinormal, with the Kj the Hermite-Chebyshev polynomials.
It is also possible if all variables are binary, and it is possible if m = 2. Those are some important gauges,
and we expect SBL to be true approximately in many practical situations.
Define the direct sum K := K1 ⊕ · · · ⊕ Km, and Γ := K ′EK. Under SBL all Γjℓ are diagonal. We can then
find a permutation P of rows and columns such that R := P ′ΓP is the direct sum of a number of correlation
matrices. If we start with m variables with k categories each, then R = R1 ⊕ · · · ⊕ Rk, where each Rs is of
order m. The eigenvectors of R are the direct sum L := L1 ⊕ · · · ⊕ Lk, and under SBL we have

L′RL = L′P ′ΓPL = L′P ′K ′EKPL = mΛ.

Thus under SBL the eigenvectors of E are given by Z = KPL and the eigenvalues of E are also the
eigenvalues of Γ and also the eigenvalues of R. Thus for each eigenvalue of E we can say which is the Rs it
belongs to.
If the variables have a different number of categories then under SBL we have k matrices Rs, where k is now
the maximum of the kj . The Rs are generally of different orders, because variable j is represented in Rs

if and only if kj ≥ s. Thus a binary variable only occurs in R1 and R2. In all cases the matrix R1 can be
chosen to be the m × m matrix with all elements equal to one. For all variables binary the matrix R2 is the
matrix of phi-coefficients (point correlations).
Now SBL will not be precisely be satisfied for empirical data, except in the trivial cases kj ≡ 2 or m = 2.
To create a suitable dat analysis techniue we choose the Kj in such a way that the sum of squares of the
off-diagonal elements of the Γjℓ is minimized, or, equivalently, the sum of squares of the diagonal elements
is maximized. The details and the code are in (deleeuw_R_08a?). For this paper the approximate
diagonalization procedure is in the function threeStepApprox() which uses kplSVD() to find the Kj and
kplPerm() to find the permutation P .
Because the SBL theory is somewhat more complicated than other MCA theory, we analyze a simple normal
example in detail.

set.seed (12345)
x <- discreteNormal(1000, 4, matrix (.75, 4, 4) + .25 * diag (4), repList (c(-2,2), 4))
b <- burtTable (x)
d <- 1 / sqrt (diag (b$c))
e <- b$c * outer (d, d)
h <- threeStepApprox (e, rep(3, 4))

The Burt Table is

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 25 0 0 9 16 0 9 16 0 9 16 0
## [2,] 0 943 0 18 913 12 14 920 9 15 915 13
## [3,] 0 0 32 0 21 11 0 20 12 0 27 5
## [4,] 9 18 0 27 0 0 8 19 0 12 15 0
## [5,] 16 913 21 0 950 0 15 920 15 12 929 9
## [6,] 0 12 11 0 0 23 0 17 6 0 14 9
## [7,] 9 14 0 8 15 0 23 0 0 9 14 0
## [8,] 16 920 20 19 920 17 0 956 0 15 927 14
## [9,] 0 9 12 0 15 6 0 0 21 0 17 4
## [10,] 9 15 0 12 12 0 9 15 0 24 0 0
## [11,] 16 915 27 15 929 14 14 927 17 0 958 0
## [12,] 0 13 5 0 9 9 0 14 4 0 0 18
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The normalized Burt Table E is

## 1.0000 0.0000 0.0000 0.3464 0.1038 0.0000 0.3753 0.1035 0.0000 0.3674 0.1034 0.0000
## 0.0000 1.0000 0.0000 0.1128 0.9646 0.0815 0.0951 0.9690 0.0640 0.0997 0.9627 0.0998
## 0.0000 0.0000 1.0000 0.0000 0.1204 0.4055 0.0000 0.1143 0.4629 0.0000 0.1542 0.2083
## 0.3464 0.1128 0.0000 1.0000 0.0000 0.0000 0.3210 0.1183 0.0000 0.4714 0.0933 0.0000
## 0.1038 0.9646 0.1204 0.0000 1.0000 0.0000 0.1015 0.9654 0.1062 0.0795 0.9738 0.0688
## 0.0000 0.0815 0.4055 0.0000 0.0000 1.0000 0.0000 0.1146 0.2730 0.0000 0.0943 0.4423
## 0.3753 0.0951 0.0000 0.3210 0.1015 0.0000 1.0000 0.0000 0.0000 0.3831 0.0943 0.0000
## 0.1035 0.9690 0.1143 0.1183 0.9654 0.1146 0.0000 1.0000 0.0000 0.0990 0.9687 0.1067
## 0.0000 0.0640 0.4629 0.0000 0.1062 0.2730 0.0000 0.0000 1.0000 0.0000 0.1199 0.2057
## 0.3674 0.0997 0.0000 0.4714 0.0795 0.0000 0.3831 0.0990 0.0000 1.0000 0.0000 0.0000
## 0.1034 0.9627 0.1542 0.0933 0.9738 0.0943 0.0943 0.9687 0.1199 0.0000 1.0000 0.0000
## 0.0000 0.0998 0.2083 0.0000 0.0688 0.4423 0.0000 0.1067 0.2057 0.0000 0.0000 1.0000

and its eigenvalues are

## 4.0000 2.1028 1.9429 0.9545 0.7356 0.6493 0.6118 0.5338 0.4695 0.0000 0.0000 -0.0000

After application of kplSVD() to E we have

## 1.0000 0.0000 0.0000 1.0000 -0.0000 -0.0000 1.0000 0.0000 -0.0000 1.0000 0.0000 -0.0000
## -0.0000 1.0000 0.0000 -0.0000 0.3313 -0.0209 -0.0000 0.3622 -0.0212 -0.0000 0.3529 -0.0049
## 0.0000 0.0000 1.0000 -0.0000 -0.0226 0.3858 -0.0000 -0.0218 0.4459 -0.0000 -0.0080 0.1868
## 1.0000 -0.0000 -0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 -0.0000 1.0000 0.0000 -0.0000
## -0.0000 0.3313 -0.0226 0.0000 1.0000 -0.0000 -0.0000 0.3054 -0.0141 -0.0000 0.4590 -0.0102
## -0.0000 -0.0209 0.3858 0.0000 -0.0000 1.0000 -0.0000 -0.0136 0.2541 -0.0000 -0.0117 0.4289
## 1.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 1.0000 0.0000 -0.0000
## 0.0000 0.3622 -0.0218 0.0000 0.3054 -0.0136 -0.0000 1.0000 0.0000 0.0000 0.3692 -0.0024
## -0.0000 -0.0212 0.4459 -0.0000 -0.0141 0.2541 -0.0000 0.0000 1.0000 -0.0000 -0.0042 0.1883
## 1.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 1.0000 0.0000 -0.0000 1.0000 -0.0000 -0.0000
## 0.0000 0.3529 -0.0080 0.0000 0.4590 -0.0117 0.0000 0.3692 -0.0042 -0.0000 1.0000 0.0000
## -0.0000 -0.0049 0.1868 -0.0000 -0.0102 0.4289 -0.0000 -0.0024 0.1883 -0.0000 0.0000 1.0000

Permuting rows and columns gives the matrix R = R1 ⊕ R2 ⊕ R3

## 1.0000 1.0000 1.0000 1.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
## 1.0000 1.0000 1.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000
## 1.0000 1.0000 1.0000 1.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
## 1.0000 1.0000 1.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
## -0.0000 -0.0000 -0.0000 -0.0000 1.0000 0.3313 0.3622 0.3529 0.0000 -0.0209 -0.0212 -0.0049
## -0.0000 0.0000 -0.0000 -0.0000 0.3313 1.0000 0.3054 0.4590 -0.0226 -0.0000 -0.0141 -0.0102
## 0.0000 0.0000 -0.0000 0.0000 0.3622 0.3054 1.0000 0.3692 -0.0218 -0.0136 0.0000 -0.0024
## 0.0000 0.0000 0.0000 -0.0000 0.3529 0.4590 0.3692 1.0000 -0.0080 -0.0117 -0.0042 0.0000
## 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0226 -0.0218 -0.0080 1.0000 0.3858 0.4459 0.1868
## -0.0000 0.0000 -0.0000 -0.0000 -0.0209 -0.0000 -0.0136 -0.0117 0.3858 1.0000 0.2541 0.4289
## -0.0000 -0.0000 -0.0000 -0.0000 -0.0212 -0.0141 0.0000 -0.0042 0.4459 0.2541 1.0000 0.1883
## -0.0000 -0.0000 -0.0000 -0.0000 -0.0049 -0.0102 -0.0024 0.0000 0.1868 0.4289 0.1883 1.0000

And we can now diagonalize the blocks.
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## 4.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000
## -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000
## -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
## -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
## -0.0000 -0.0000 -0.0000 -0.0000 2.0923 -0.0000 0.0000 0.0000 -0.0395 -0.0077 -0.0066 -0.0015
## 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.7349 -0.0000 -0.0000 -0.0037 0.0047 -0.0058 -0.0110
## 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.6412 0.0000 0.0045 -0.0007 -0.0144 0.0158
## -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 0.5315 -0.0083 -0.0058 0.0038 0.0126
## -0.0000 0.0000 -0.0000 -0.0000 -0.0395 -0.0037 0.0045 -0.0083 1.9532 -0.0000 -0.0000 -0.0000
## 0.0000 -0.0000 -0.0000 0.0000 -0.0077 0.0047 -0.0007 -0.0058 -0.0000 0.9543 0.0000 0.0000
## 0.0000 0.0000 -0.0000 -0.0000 -0.0066 -0.0058 -0.0144 0.0038 -0.0000 0.0000 0.6185 0.0000
## 0.0000 0.0000 -0.0000 -0.0000 -0.0015 -0.0110 0.0158 0.0126 -0.0000 0.0000 0.0000 0.4740

and we can sort the diagonal elements

## 4.0000 2.0923 1.9532 0.9543 0.7349 0.6412 0.6185 0.5315 0.4740 0.0000 -0.0000 -0.0000

to find they are really close to the eigenvalues of E. The correlations between the eigenvector of E and the
SBL approximations are

## -1.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000
## -0.0000 -0.0000 0.0000 0.0000 -0.9669 -0.0007 0.0007 -0.0014 0.2551 0.0065 0.0043 0.0009
## -0.0000 0.0000 0.0000 0.0000 -0.2551 0.0029 -0.0033 0.0057 -0.9669 0.0020 0.0013 0.0003
## -0.0000 -0.0000 0.0000 0.0000 -0.0068 -0.0215 0.0023 0.0138 -0.0002 -0.9996 0.0006 0.0009
## -0.0000 -0.0000 0.0000 0.0000 -0.0003 0.9976 0.0009 -0.0030 0.0030 -0.0216 -0.0500 -0.0420
## -0.0000 -0.0000 -0.0000 -0.0000 0.0019 0.0182 -0.9045 0.0044 0.0032 -0.0022 0.4180 -0.0826
## 0.0000 0.0000 -0.0000 -0.0000 0.0041 0.0472 0.4154 0.0503 -0.0008 0.0011 0.9057 0.0486
## 0.0000 -0.0000 -0.0000 -0.0000 0.0002 0.0091 -0.0356 0.9786 0.0059 0.0134 -0.0490 0.1957
## -0.0000 -0.0000 0.0000 0.0000 0.0009 0.0404 -0.0901 -0.1987 -0.0007 -0.0029 -0.0020 0.9751
## -0.0000 -0.4023 0.6898 -0.6019 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
## 0.0000 0.0000 -0.6575 -0.7535 -0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000
## -0.0000 -0.9155 -0.3032 0.2645 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000

Thus the eight non-trivial eigenvectors of E correspond, repectively, with first of R2, first of R3, second of R3,
second of R2, third of R2, third of R3, fourth of R2, fourth of R3. In terms of the polynomials underlying the
category quantifications this means linear, quadratic, quadratic, linear, linear, quadratic, linear, quadratic.

Back to GALO. For GALO the eigenvalues of E/4 are

## 1.0000 0.5392 0.3915 0.3833 0.3465 0.3083 0.2764 0.2702 0.2569 0.2517 0.2454 0.2414 0.2379 0.2282 0.2183 0.1902 0.1706 0.1519 0.1283 0.1150 0.0490 0.0000 0.0000 -0.0000

The direct sum of the eigenvalues of the Rs/m, which have orders 4, 4, 3, 3, 3, 3, 2, 1, 1, is

## 1.0000 0.0000 -0.0000 -0.0000
## 0.5376 0.2471 0.1636 0.0517
## 0.3908 0.2425 0.1167
## 0.3505 0.2442 0.1553
## 0.3238 0.2527 0.1735
## 0.2688 0.2606 0.2206
## 0.2716 0.2284
## 0.2500
## 0.2500
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and if we sort these we find

## 1.0000 0.5376 0.3908 0.3505 0.3238 0.2716 0.2688 0.2606 0.2527 0.2500 0.2500 0.2471 0.2442 0.2425 0.2284 0.2206 0.1735 0.1636 0.1553 0.1167 0.0517 0.0000 -0.0000 -0.0000

Note that the orders of the matrices Rs in this case are 4, 4, 3, 3, 3, 3, 2, 1, 1.

Clearly the approximate eigenvalues from the KPL diagonalization and the actual eigenvalues are very
similar, especially the larger ones and the smaller ones. The correlation between actual eigenvectors and
approximate eigenvectors is Q := Z ′KPL. Let us look at the first three non-trivial eigenvectors of E, which
correspond with rows 2, 3, and 4 of Q. Regress them on the non-trivial columns of KPL, which are all
columns except the first four. The percentage of variance explained by the colums of KPL are the squares
of the elements of rows 2, 3, and 4 of Q.

## 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

## 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

## 0.00 0.31 0.01 0.00 0.01 0.01 0.00 0.20 0.07 0.00 0.26 0.02 0.00 0.01 0.08 0.00 0.00 0.00 0.00 0.01

Thus we see the first non-trivial eigenvector of E corresponds with the first eigenvector of R2, which the
next eigenvector of E corresponds with the first eigenvector of R3. The third non-trivial eigenvector of E is
most closely related to the second eigenvector of R2, but there are also contributions of the first eigenvectors
of R4 and R5.

There is a somewhat more rigorous method to match the eigenvectors in Z and KPL. The Hadamard
product Q ∗ Q is doubly stochastic. Finding the permutation matrix closest in the least suares sense to
Q ∗ Q is a linear assignment problem that can be solved by using lp.assign() from the lpSolve package
(Berkelaar et al. 2015). We indicate for each row the column where the permutation matrix has a one.

## [1] 1 5 9 6 12 15 21 18 23 24 13 16 10 22 20 7 17 14 19 11 8 4 3 2

Again this indicates that the first three non-trivial eigenvectors of E correspond with the dominant eigenvalue
of R2, the dominant eigenvalue of R3, and the second eigenvalue of R2. If the eigenvectors in K correspond
with the orthogonal polynomials, as they do in the multinormal case, then the first two nontrivial eigenvectors
produce a croissant, because they come from the linear and quadratic transformations, respectively. But if
we select the first and the third non-trivial eigenvector of E to plot, then they both come from the linear
quantifications and they do not produce a croissant.

We first plot Y = D− 1
2 KPL, using the columns corresponding to the first two non-trivial eigenvectors of E.

This shows the croissant.
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Figure 16: SBL GALO Category Quantifications, Different R

If we choose the first and second eigenvector of R2, i.e. the solution corresponding to the first and third non-
trivial eigenvectors of E, there is no croissant. In fact, the solution is similar to the one given by PRIMALS,
consisting of a line through the origin for each variable, with the category quantifications on the line.
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Figure 17: SBL GALO Category Quantifications, Same R

We can compare this to the solution we get by actaully plotting the first and third non-trivial eigenvector
of E. There is no croissant in this case either.
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Figure 18: GALO Category Quantifications, Skip One Dimension

5 Real Data: Norway

The data is register data from Norway, with information on a high number (n = 159539) of individuals. The
analysis is part of a social mobility study conducted by Arild Danielsen, Department of History, Sociology and
Innovation, Faculty of Economics and Social Sciences, University College of Southeast Norway. See Danielsen
(2015). The data have four variables with data on class-fractions (based on occupational categories) of the
individual’s two parents (in 2008) and two grand-fathers (in 1980).

Thus we have information for each of the 159539 individuals about the membership of Mother, Father,
Father’s Father, and Mother’s Father in the following categories.

1. Cultural elite
2. Professional elite
3. Economic elite
4. Cultural upper-middle
5. Professional upper-middle
6. Economic upper-middle
7. Cultural lower-middle
8. Professional lower-middle
9. Economic lower-middle

10. Skilled workers
11. Unskilled and semi-skilled workers
12. Benefits (family / unempl. / social)
13. Not possible to classify
14. Missing observations

In order to simplify our analysis we decided to eliminate all individuals with scores in categories 12-14.
This reduces the number of observations to 81259. For the actual sociological analysis this would probably
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be a wasteful and unwise decision, but for our croissant illustration it makes sense. The marginals of the
remaining eleven categories are as follows.

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [1,] 716 3290 1117 2081 4902 6618 1308 3229 4799 18730 34469
## [2,] 650 3451 1072 1996 4987 6873 1384 3265 5030 18868 33683
## [3,] 1373 3839 3710 4198 11458 11078 860 4534 8630 17506 14073
## [4,] 639 1069 284 6466 10570 2587 3090 14977 7225 17579 16773

5.1 MCA

The first two eigenvalues of an MCA on these data are 0.4486663 and 0.3095208. We plot the category
quantifications of the four variables. Calling the shape of the plot a croissant is a stretch, it is better to call
it a wedge.
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Figure 19: Norway Category Quantifications, Joint

The first nine categories have factorial structure, combining the three possibilities Cultural, Professional,
Economic with the three Elite, Upper Middle, and Lower Middle. We use this factorial structure to connect
the nine categories by lines. The line “Cultural”” connects points 1, 4, 7, the line “Elite” connects points
1, 2, 3, and so on. In total there are six lines. Categories 10 and 11, skilled and unskilled labour, are not
connected. We’ll leave the interpretation to people who know what they are talking about.
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Figure 20: Norway Category Quantifications, Separate

We can replot the separate category quantifications, labeled by the category frequencies. Obviously the sharp
point of the wedge corresponds with the categories with the highest frequencies, illustrating the general point
that in MCA heavily populated categories tend to be close to the origin of the plot.
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Figure 21: Norway Category Quantifications, Frequencies
The 81259 object scores form a very sharp and well-filled wedge.
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Figure 22: Norway Object Scores
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5.2 Additive Constraints

In figure Figure 20 we have used the factorial 3 × 3 structure of the nine first categories to draw a grid in the
plot. Instead, we can require that the nine points for each variable are on a regular grid, by using a design
matrix that forces the “Cultural Elite” category point to be the sum of a “Cultural” point and an “Elite”
point. And so on for all nine combinations. The grids for the four variables are generally different. The MCA
under these constraints has first two eigenvalues 0.4470581 and 0.3038511, which is only marginally smaller
than the unconstrained eigenvalues 0.4486663 and 0.3095208. The grid lines clearly display the structure
within the wedge.
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Figure 23: Norway Category Quantifications, Additive

It is somewhat surprising that the object scores show a pattern which is quite different from the unconstrained
scores in Figure 22. The wedge is still there, but it is clearly partitioned into five or six parallel clouds of
individuals.
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Figure 24: Norway Object Scores, Additive

5.3 Additive and Equality Constraints

We can go a step further with constraining the solution by requiring additivity, as before, and in addition
that all four grids are the same. The MCA under these constraints has first two eigenvalues 0.4227509 and
0.2935249, which are somewhat smaller than the previous eigenvalues.
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Figure 26: Norway Object Scores, Additive and Equality

The object scores show the same clouds within the wedge, but because many more individuals get the same
scores there are fewer points and the clouds are far less dense.
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Figure 26: Norway Object Scores, Additive and Equality

5.4 Simultaneous Bilinearizing MCA

Using additivity does not really get rid of the wedge, but allows us to study it in more detail and take it
apart. SBL theory gives us another tool to look at the wedge.
For Norway the eigenvalues of E/4 are

## 1.0000 0.4487 0.3095 0.2912 0.2783 0.2745 0.2620 0.2607 0.2594 0.2585 0.2569 0.2561 0.2550 0.2537 0.2527 0.2517 0.2512 0.2501 0.2498 0.2484 0.2481 0.2477 0.2470 0.2468 0.2457 0.2449 0.2446 0.2426 0.2425 0.2414 0.2387 0.2380 0.2365 0.2339 0.2304 0.2288 0.2198 0.2134 0.1984 0.1845 0.1580 0.0000 -0.0000 -0.0000

The direct sum of the eigenvalues of the Rs/m is

## 1.0000 0.0000 -0.0000 0.0000
## 0.4486 0.2054 0.1869 0.1591
## 0.3081 0.2430 0.2407 0.2082
## 0.2909 0.2470 0.2413 0.2208
## 0.2742 0.2479 0.2452 0.2328
## 0.2766 0.2497 0.2438 0.2299
## 0.2597 0.2530 0.2482 0.2391
## 0.2577 0.2522 0.2471 0.2430
## 0.2576 0.2500 0.2466 0.2457
## 0.2577 0.2510 0.2488 0.2425
## 0.2551 0.2534 0.2497 0.2418

Note that each row here adds up to one. Also note that the orders of the matrices Rs in this case are 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, because all variables have 11 categories. If we sort the eigenvalues of all Rs/m we find

## 1.0000 0.4486 0.3081 0.2909 0.2766 0.2742 0.2597 0.2577 0.2577 0.2576 0.2551 0.2534 0.2530 0.2522 0.2510 0.2500 0.2497 0.2497 0.2488 0.2482 0.2479 0.2471 0.2470 0.2466 0.2457 0.2452 0.2438 0.2430 0.2430 0.2425 0.2418 0.2413 0.2407 0.2391 0.2328 0.2299 0.2208 0.2082 0.2054 0.1869 0.1591 0.0000 0.0000 -0.0000

The two sets of sorted eigenvalues are plotted in Figure 27. It is pretty obvious they are close.
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Figure 27: Eigenvalues of E and R for Norway Example

The assignment problem for the eigenvectors gives the solution

## [1] 1 5 9 13 21 17 25 33 29 26 37 42 30 22 41 38 43 31 27 34 19 39 18 35 36
## [26] 14 40 32 10 23 15 28 11 44 20 24 16 12 6 7 8 4 3 2

Again we see the familiar pattern: eigenvalues of E are the first eigenvalue of (trivial) R1, followed by the
first eigenvalue of R2, of R3, and of R4. The remaining eigenvalue of R2 are actually the smallest ones of
the whole sequence, except for the trivial zeroes. This tells us that these data are highly one-dimensional.
We see the familiar wedge again in Figure 28, which plots the dominant eigenvectors corresponding to R2
and R3.
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Figure 28: SBL Norway Category Quantifications, Different R

6 Appendix: Code

discreteNormal <- function(n, m, r, knots) {
x <- matrix(rnorm(n * m), n, m)
x <- x %*% chol(r)
for (j in 1:m) {

x[, j] <- apply(outer(x[, j], c(knots[[j]], Inf), ">"), 1, which.min)
}
return(x)

}

repList <- function(x, m) {
z <- vector("list", m)
return(lapply(z, function(i) x))
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}

burtTable <- function(x, degrees = rep(-1, ncol(x)), knots = NULL, center = FALSE,
standardize = FALSE, orthonormalize = FALSE) {
n <- nrow(x)
m <- ncol(x)
g <- matrix(0, n, 0)
l <- rep(0, m)
for (j in 1:m) {

z <- x[, j]
if (degrees[j] < 0) {

h <- ifelse(outer(z, sort(unique(z)), "=="), 1, 0)
} else {

h <- bsplineBasis(z, degrees[j], knots[[j]])
}
if (center) {

h <- center(h)[, -1]
}
if (standardize) {

h <- standardize(h)
}
if (orthonormalize) {

h <- gs(h)$q
}
g <- cbind(g, h)
l[j] <- ncol(h)

}
return(list(c = crossprod(g), g = g, ord = l))

}

directSum <- function(x) {
m <- length(x)
nr <- sum(sapply(x, nrow))
nc <- sum(sapply(x, ncol))
z <- matrix(0, nr, nc)
kr <- 0
kc <- 0
for (i in 1:m) {

ir <- nrow(x[[i]])
ic <- ncol(x[[i]])
z[kr + (1:ir), kc + (1:ic)] <- x[[i]]
kr <- kr + ir
kc <- kc + ic

}
return(z)

}

kplPerm <- function(cc, k) {
kl <- unlist(sapply(k, function(i) 1:i))
p <- ifelse(outer(1:sum(k), order(kl), "=="), 1, 0)
return(list(pcp = t(p) %*% cc %*% p, perm = p, ord = as.vector(table(kl))))

}
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makeE <- function(cc, k) {
dd <- mInvSqrt(blockSelect(cc, k))
return(dd %*% cc %*% dd)

}

mInvSqrt <- function(x) {
ex <- eigen(x)
ew <- abs(ex$values)
ev <- ifelse(ew == 0, 0, 1/sqrt(ew))
ey <- ex$vectors
return(ey %*% (ev * t(ey)))

}

blockSelect <- function(cc, k) {
l <- unlist(lapply(1:length(k), function(i) rep(i, k[i])))
return(cc * ifelse(outer(l, l, "=="), 1, 0))

}

kplSVD <- function(e, k, eps = 1e-06, itmax = 500, verbose = TRUE, vectors = TRUE) {
m <- length(k)
sk <- sum(k)
ll <- kk <- ww <- diag(sk)
itel <- 1
ossq <- 0
klw <- 1 + cumsum(c(0, k))[1:m]
kup <- cumsum(k)
ind <- lapply(1:m, function(i) klw[i]:kup[i])
for (i in 1:m) kk[ind[[i]], ind[[i]]] <- t(svd(e[ind[[i]], ])$u)
kek <- kk %*% e %*% t(kk)
for (i in 1:m) for (j in 1:m) ww[ind[[i]], ind[[j]]] <- ifelse(outer(1:k[i],

1:k[j], "=="), 1, 0)
repeat {

for (l in 1:m) {
if (k[l] == 2)

(next)()
li <- ind[[l]]
for (i in (klw[l] + 1):(kup[l] - 1)) for (j in (i + 1):kup[l]) {

bi <- kek[i, -li]
bj <- kek[j, -li]
wi <- ww[i, -li]
wj <- ww[j, -li]
acc <- sum(wi * biˆ2) + sum(wj * bjˆ2)
acs <- sum((wi - wj) * bi * bj)
ass <- sum(wi * bjˆ2) + sum(wj * biˆ2)
u <- eigen(matrix(c(acc, acs, acs, ass), 2, 2))$vectors[, 1]
c <- u[1]
s <- u[2]
kek[-li, i] <- kek[i, -li] <- c * bi + s * bj
kek[-li, j] <- kek[j, -li] <- c * bj - s * bi
if (vectors) {

ki <- kk[i, li]
kj <- kk[j, li]
kk[i, li] <- c * ki + s * kj
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kk[j, li] <- c * kj - s * ki
}

}
}
nssq <- sum(ww * kekˆ2) - sum(diag(kek)ˆ2)
if (verbose)

cat("Iteration ", formatC(itel, digits = 4), "ssq ", formatC(nssq, digits = 10,
width = 15), "\n")

if (((nssq - ossq) < eps) || (itel == itmax))
(break)()

itel <- itel + 1
ossq <- nssq

}
return(list(kek = kek, kk = kk, itel = itel, ssq = nssq))

}

inducedR <- function(c, y, k) {
m <- length(k)
l <- unlist(lapply(1:m, function(i) rep(i, k[i])))
g <- ifelse(outer(l, 1:m, "=="), 1, 0)
s <- g * matrix(y, length(y), m)
r <- crossprod(s, c %*% s)
e <- abs(diag(r))
d <- ifelse(e == 0, 0, e)
return(r/sqrt(outer(d, d)))

}

threeStepApprox <- function(e, k, eps = 1e-06, itmax = 500, verbose = FALSE, vectors = TRUE) {
ee <- eigen(e)
ev <- ee$vectors
ea <- ee$values
f <- kplSVD(e, k, eps = eps, itmax = itmax, verbose = verbose, vectors = TRUE)
ef <- f$kek
kf <- f$kk
g <- kplPerm(ef, k)
eg <- g$pcp
kg <- crossprod(g$perm, kf)
gg <- g$ord
gl <- cumsum(gg)
lg <- 1 + c(0, gl)[-length(gl) - 1]
bb <- lapply(1:length(gl), function(i) eigen(eg[lg[i]:gl[i], lg[i]:gl[i]])$vectors)
vc <- directSum(bb)
eh <- crossprod(vc, eg %*% vc)
kh <- crossprod(kg, vc)
cc <- crossprod(ev, kh)
mc <- apply(cc, 1, function(x) max(abs(x)))
wc <- apply(cc, 1, function(x) which.max(abs(x)))
yc <- apply(cc, 2, function(x) max(abs(x)))
vc <- apply(cc, 2, function(x) which.max(abs(x)))
return(list(eval = ea, evec = ev, aval = diag(eh), avec = kh, bval = ef, cval = eg,

dval = eh, cc = cc, mc = mc, wc = wc, yc = yc, vc = vc, gg = gg))
}
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7 Appendix: NEWS

0.01 12/04/15

• First working version posted

0.02 12/06/15

• more runs of examples

0.03 12/07/15

• normal examples

1.00 12/08/15

• added text
• added constrained examples
• first published version

1.01 12/09/15

• GALO text
• GALO single
• GALO PCA

1.02 12/10/15

• subsections
• removed Norway data from repository
• short MCA introduction
• added PRIMALS section to GALO
• added PRINCALS section to GALO

1.03 12/12/15

• code for three-step MCA
• GALO analysis by three-step MCA

1.04 12/13/15

• GALO analysis by three-step MCA
• intro theory for simultaneous bilinearity

2.00 12/14/15

• GALO analysis with SBL completed
• Norway analysis with SBL
• That’s it for now

2.01 12/16/15

• small detailed SBL example
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