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Abstract

We give an algorithm, with R code, to minimize the multidimensional scaling loss
function proposed in Shepard’s 1962 papers. We show the loss function can be justified
by using the classical rearrangement inequality, and we investigated its differentiability.

Contents

1 Introduction 2

2 Shepard’s Method 4
2.1 Kruskal and Carroll’s Reconstruction . . . . . . . . . . . . . . . . . . . . . . 6

3 More on Differentiability 7

4 Software 8

5 Examples 8
5.1 Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Dutch Political Parties 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Ekman Color Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Discussion 14

7 Appendix: Code 14
7.1 shepard.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2 auxilary.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 mdsUtils.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 smacofShepard62.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



References 22

Note: This is a working paper which will be expanded/updated frequently. All suggestions
for improvement are welcome. The directory deleeuwpdx.net/pubfolders/shepard has a pdf
version, the complete Rmd file with all code chunks, the bib file, and the R source code.

1 Introduction

After Torgerson (1958) had more or less finalized the treatment of metric multidimensional
scaling, Shepard had been searching for the function relating proximity judgments and dis-
tance, in what we now call the Shepard diagram (De Leeuw and Mair (2015)). His theory
(Shepard (1957)) suggested a negative exponential relationship, but the experimental results
were not convincing. The next major step was to let the data determine the nature of the re-
lationship, and showing that this could be done by using only ordinal proximity information.
This lead to the groundbreaking papers Shepard (1962a) and Shepard (1962b). Although
Shepard’s contributions were certainly not forgotten, they were definitely overshadowed by
the corresponding papers Kruskal (1964a) and Kruskal (1964b), published two years later
by Shepard’s “co-worker” and “mathematical colleague” Joseph Kruskal. In Google Scholar
the Shepard papers have 2364 and 1063 citations, the Kruskal papers have 6167 and 4167
(per 01/17/2017).
Shepard was well aware of the importance of his 1962 papers, which were the cumulation of
a long list of his earlier contributions to mapping measures of proximity.

I have always regarded the development reported in this paper as one of my most
original and significant accomplishments.

In the 1962 papers he developed an iterative technique, and a corresponding computer pro-
gram, that maintains monotonicity between distances and dissimilarities while concentrating
the variance of the configuration as much as possible in a small number of dimensions.
From Shepard (1979):

The idea of representing objects (such as colors, sounds, shapes, faces, word
meanings, etc.) as points in space, in such a way that the distances between the
points represented the perceived similarities between the objects, had occurred
to me while I was an undergraduate student in 1951. But it was not until ten
years later, when I gained access to the powerful computing facilities at the Bell
Telephone Laboratories, that I conceived of an iterative process for reconstructing
the implied spatial configuration even when the form of the monotone function
relating similarity and distance was completely unknown.

After a period of trial-and-error adjustment of the parameters of the iterative
process, success came with dramatic suddenness on March 17, 1961. According
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to the computer log, it was at precisely 2.33 p.m. EST on that day that the itera-
tive process first converged to a stationary configuration, revealing a remarkably
exact recovery of an underlying test configuration. The excitement of that mo-
ment was rivaled only by the birth of my daughter on the very next day. Since
then my daughter has developed into a fine young woman; and, thanks in part
to the subsequent contributions of my mathematical colleague Joseph Kruskal,
nonmetric multidimensional scaling is now finding wide application throughout
the cognitive, behavioral, and biomedical sciences.

Kruskal was politely critical of Shepard’s work. From Kruskal (1964a), page 2:

However, Shepard’s technique still lacks a solid logical foundation. Most notably,
and in common with most other authors, he does not give a mathematically
explicit definition of what constitutes a solution. He places the monotone rela-
tionship as the central feature, but points out (Shepard (1962a), p. 128) that
a low-dimensional solution cannot be expected to satisfy this criterion perfectly.
He introduces a measure of departure δ from this condition (Shepard 1962a, 136–
37) but gives it only secondary importance as a criterion for deciding when to
terminate his iterative process. His iterative process itself implies still another
way of measuring the departure from monotonicity.

And again, on page 6-7, there is an implicit criticism of Shepard’s use of the original proximity
measures to define fit.

Should we measure deviations between the curve and stars along the distance
axis or along the dissimilarity axis? The answer is “along the distance axis.” For
if we measure them along the dissimilarity axis, we shall find ourselves doing
arithmetic with dissimilarities. This we must not do, because we are committed
to using only the rank ordering of the dissimilarities.

From subsequent publications, and from some personal communications as well, I get the
impression that Shepard interpreted Kruskal’s contribution as a relatively minor technical
improvement of a procedure he had invented and published. I remember the consternation
when one of the versions of the KYST program for MDS stated that KYST was short
for Kruskal-Young-Seery-Torgerson. While Judith B. Seery, a programmer at Bell Labs,
certainly worked on the program, later versions made the important correction that KYST
stood for Kruskal-Young-Shepard-Torgerson. There seems to be some subtle acrimony in
Shepard’s retelling of the history. Shepard (1974), p 376-377:

Although my original method generally yielded spatial configurations that ap-
peared indistinguishable from those furnished by subsequent methods, my math-
ematical colleague Joseph Kruskal (Kruskal (1964a)) soon noted that the pre-
cise measure of departure from monotonicity that was being minimized by the
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method was neither explicitly defined nor even known to exist in an explicitly
definable form. Thus, despite the intuitive plausibility and practical success of
the method, it lacked the conceptual advantage of a strict mathematical spec-
ification of exactly what problem was being solved. Moreover, in the absence
of an explicitly defined loss function, general techniques for the minimization of
such functions (notably, gradient methods) were not apparently applicable. The
iterative method that was used consequently appeared somewhat ad hoc.

Now however, some twelve years following my initial report of that method, my
two former associates at the Bell Laboratories, Joe Kruskal (who succeeds me as
President of this Society) and Doug Carroll (who has just been elected to succeed
him), have jointly discovered that, unbeknown to all of us, my original method
was in fact equivalent to a gradient method. Moreover they have even determined
that the explicit form of the measure of departure from monotonicity that was
(implicitly) minimized is one that appears to be quite reasonable (Kruskal and
Carroll, personal communication; see Kruskal [in press]). Indeed, the method of
optimization that was used apparently turns out, with a minor alteration in a
normalizing factor, to belong to a class of “interchange methods” that Jan de
Leeuw (personal communication) has recently shown to offer some advantages in
the avoidance of merely local minima. However, these recently discovered aspects
of my original method are mentioned, here, for their inherent or historical interest
only; they do not form the basis for any of the recommendations that I shall offer
in what follows.

I am not sure what I communicated in 1973 to Shepard. One of the purposes of this current
paper is to try to reconstruct what I could possibly have meant by “interchange methods”.
There is a major clue in the references of Kruskal (1977). Kruskal refers to a paper of mine
from 1975, supposedly “in press”, titled “Nonmetric Scaling with Rearrangement Methods”.
I vaguely remember an unpublished manuscript with a title like that, written in 1973-1974
while I was visiting Bell Labs. It’s irretrievably lost. We’ll just pretend it still exists (De
Leeuw (1973a)). I will try to reconstruct some if it. The claim that Shepard’s original
method was “equivalent to a gradient method” that minimized a well defined “measure of
departure from monotonicity” still deserves some attention.
I agree that Kruskal’s improvement of Shepard’s technique was “mostly technical”, but
it definitely was not “merely technical”. The use of monotone regression, the emphasis on
explicit loss functions, and the use of gradient methods, created a whole new area of research
in psychometrics and multivariate analysis. Meulman’s contribution on page 1194-1197 of
Heiser et al. (2016) has some additional remarks on the impact of Kruskal’s work.

2 Shepard’s Method

A complete reconstruction of Shepard’s method would only be possible if we had the orig-
inal FORTRAN program, but that has disappeared into the folds of time. We do have,
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however, Kruskal and Carroll (1977), which discusses the gradient interpretation and the
rearrangement basis of the loss function.
The method as originally conceived had two somewhat contradictory objectives.

• It was looking for a configuration in which distances were as monotonic as possible
with the given measures of proximity.

• It was looking for a configuration which had as much variance as possible concentrated
in the first few principal components.

In other words, it was a form of full-dimensional scaling in which configurations vary in n−1
dimensions. After convergence the first p principal components of the result are reported as
the p-dimensional solution.
Because of the two different objectives the displacement of points in an iteration was a
compromise of two different displacements: one to improve monotonicity and one to improve
low-dimensionality. In this paper we will only look at the deviations from monotonicity and,
unlike Shepard, we will only look at configurations of a fixed dimension p. In this, of course,
we follow Kruskal. Versions of Shepard’s full-dimensional method will be treated in another
paper.
We change the notation somewhat, and we shift from working with measures of proximity to
working with dissimilarities. To measure departure from monotonicity we compare a vector
of dissimilarities δ and a vector of distances d(x). Distances are defined as dk(x) =

√
x′Akx,

where the Ak are matrices of the form (ei − ej)(ei − ej)′, or direct sums of p copies of such
matrices (De Leeuw (1993)).
The loss function implicitly used by Shepard to measure departure from monotonicity is

σ⋆(x) :=
K∑

k=1
(δ̂k − δk)dk(x). (1)

Here the δ̂k are dissimilarities permuted in such a way that they are monotonic with the
distances. Thus δ̂k is a function of both the numerical values of the dissimilarities and the
rank order of the distances. We clearly perform “arithmetic with dissimilarities”, although I
am not convinced that is necessarily a bad thing. Loss function (1) does not occur in Shepard
(1962a), but we infer it, basically by looking at his formula for displacements to optimize
monotonicity. So far, we have not shown that σM is continuous, let alone differentiable.
Using the classical rearrangement inequality (for example, Hardy, Littlewood, and Polya
(1952), section 10.2, theorem 368) we can write

σ⋆(x) = max
π

K∑
k=1

dk(x)δπ(k) −
K∑

k=1
dk(x)δk, (2)

where π varies over the set of permutations of {1, · · · , K}. An alternative notation, which
is sometimes useful, is

σ⋆(x) = max
P

δ′Pd(x) − δ′d(x), (3)
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with P varying over all permutation matrices. The representation using the rearrangement
inequality shows that σ⋆ is non-negative, and σ⋆(x) = 0 if and only if there are no violations
of monotonicity. Thus it is a proper loss function for non-metric scaling. The representation
(2) shows that σ⋆ is the difference of two convex functions, which implies it is continuous
and differentiable almost everywhere.
We assume throughout that dk(x) > 0 for all k. If there are no ties in δ or d(x) then the
maximizing permutation π̂ is unique, and, by Danskin’s theorem (Danskin (1966)), σM is
differentiable with

Dσ⋆(x) =
K∑

k=1

δπ̂(k) − δk

dk(x) Akx (4)

Equation (4) is basically the same as formula (4) on page 134 of Shepard (1962a).
Of course directly minimizing σM over x is not a useful technique, because if we set x = 0
then we trivially find σM(x) = 0. Thus we need some form of normalization. Shepard
(1962a), page 135, says

Finally, at the end of each iteration the adjusted coordinates undergo a “simi-
larity” transformation to re-center the centroid at the origin and to re-scale all
distances so that the mean interpoint separation is maintained at unity. (p 135)

which seems to imply normalization by ∑K
k=1 dk(x) = 1. Thus we set

σ(x) =
∑K

k=1(δ̂k − δk)dk(x)∑K
k=1 dk(x)

(5)

which makes
Dσ(x) = 1∑K

k=1 dk(x)

K∑
k=1

(δπ̂(k) − δk) − σ(x)
dk(x) Akx (6)

The usual gradient iterations are

x(k+1) = x(k) − λ(k)Dσ(x(k)), (7)

with λ(k) some appropriate step-size.

2.1 Kruskal and Carroll’s Reconstruction

Kruskal and Carroll (1977) in Kruskal (1977) did very much the same thing as I am doing
here, and as I presumably did in De Leeuw (1973a). They also take the second component of
Shepard’s procedure into account, the one that aims at low-dimensionality. They reconstruct
the fit function as

σKC(x) :=
∑K

k=1(δ̂k − δk)dk(x) + α
∑K

k=1(δ̂k − δ)dk(x)√∑K
k=1 d2

k(x)
(8)
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Here δ is the average dissimilarity and α is a trade-off factor that weighs the two components
of the fit function. We have modified their treatment somewhat by formulating it in terms
of dissimilarities. Note that (8) is normalized using the root-mean square of the distances,
while (5) uses the mean. This difference may again be the “minor alteration in a normalizing
factor” that Shepard refers to.
Kruskal and Carroll (1977) note that minimizing (8) is equivalent to minimizing the nu-
merator over the quadratic surface {x | ∑K

k=1 d2
k(x) = 1}, which can be done by gradient

projection. Take a step along the negative gradient and then project on the surface. This
still leaves us with the problem of choosing the step-size and the trade-off factor α, which
Shepard solved basically by numerical experimentation. Kruskal and Carroll (1977) also
mention that when working in low-dimensional space Shepard sets α = 0, and thus uses (5),
except again for the different normalizing factor.

DσKC(x) = 1√∑K
k=1 d2

k(x)


K∑

k=1

δ̂k − δk

dk(x) − σKC(x)√∑K
k=1 d2

k(x)

 Akx (9)

In MDS problems we can also choose, by linear transformation of the coordinates, the Ak so
that they add up to the identity.

3 More on Differentiability

If there are ties in either δ or d(x) then the optimizing permutation will not be unique, and
σ⋆ may only be directionally differentiable. Again by Danskin’s theorem, the derivative in
the direction y is

dσ⋆(x, y) = max
π∈Π(x)

K∑
k=1

δπ(k) − δk

dk(x) y′Akx

where the maximum is over all permutations of the dissimilarities π̂ for which ∑K
k=1(δπ̂(k) −

δk)dk(x) = maxπ
∑K

k=1(δπ(k) − δk)dk(x). The subdifferential is

∂σ⋆(x) = conv
π∈Π(x)

{
δπ(k) − δk

dk(x) Akx

}
,

with conv the convex hull.
Ties in the dissimilarities do not in themselves lead to non-differentiability. Suppose there
are only ℓ different dissimilarity values, collect them in the vector η. The corresponding ℓ
marginal frequencies are in f . Thus δ = Gη for some k × ℓ indicator matrix (a binary matrix
with row sums equal to one). Then

σ⋆(x) = max
G∈G

η′Gd(x) − δ′d(x),

where G is the set of all n!
f1!···fℓ! indicator matrices with marginal frequencies f . If the elements

of d(x) are different, then the maximizer is unique and thus σ⋆ is differentiable.
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It is of some interest to see what happens if n0 dissimilarities are zero and n1 dissimilarities
are one. In that case we have σ⋆(x) = 0 if and only if the n1 distances corresponding with
δk = 1 are the largest distances. If the d[k](x) are the ordered distances, we have zero stress
if d[k] ≥ d[n0] for all k > n0. We have differentiability if merely d[n0](x) < d[n0]+1(x). Clearly
our loss function uses what Kruskal calls the “primary approach to ties”. In the extreme
case where all dissimilarities are equal loss is identically equal to zero.

4 Software

We have a function smacofShepard62 in R (R Development Core Team (2017)) that imple-
ments this versions of Shepard’s approach to non-metric MDS (in a fixed dimensionality p).
The step size is determined optimally by using the base R function optimize. We find a
specific element of the subdifferential by using the R expression sort(delta)[rank(dist)]
to compute δ̂. The program can handle loss functions (5) (norm = 1), and (8) with α = 0
(norm = 2).
By default we bound the number of iterations at 1000, and we stop if loss changes less than
1e-10 from one iteration to the next. This is, of course, a much higher degree of precision
that we would normally need in practice.
Of course applying a steepest descent gradient method to a function that is not differentiable
everywhere, and that maybe not differentiable at the local minimum, is not ideal. We are
working on a better algorithm, based on majorization and more solid methods to minimize
non-differentiable functions (see, for example, Demyanov and Vasilev (1985)). Clearly the
lack of first-order differentiability in places is a disadvantage of the Shepard approach, as
compared to the Kruskal algorithm that uses monotone regression. Although even when
using monotone regression the second derivative of the loss function is non-smooth.

5 Examples

5.1 Rectangles

The data are from Borg and Leutner (1983), they also used in De Leeuw and Mair (2009).
Sixteen rectangles were rated on a scale by twenty one subjects. We first analyse the average
ratings, converted to dissimilarities. After 19 iterations we find loss 0.0260441133. The
gradient at the solution is

## [1] -0.0040997197 -0.0021769247 +0.0028452930 +0.0000908243
## [5] -0.0036702366 -0.0010409452 -0.0001183306 -0.0026829282
## [9] -0.0026619904 +0.0048608093 -0.0012972062 -0.0042111006
## [13] -0.0063236331 -0.0033453200 +0.0023046148 -0.0038151855
## [17] -0.0006189558 -0.0013737698 -0.0008316811 -0.0030426875
## [21] +0.0025641703 -0.0051642181 -0.0005219989 -0.0010259297
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## [25] +0.0008031559 -0.0023946489 -0.0018395040 -0.0007223413
## [29] +0.0001254659 +0.0004777816

To see how well our algorithm handles ties we repeat the analysis after discretizing the dis-
similarities in four categories, using delta <- round (delta / 2) + 1. After 28 iterations
we find loss 0.0114487481618192 and gradient

## [1] -0.0043767904 -0.0026949419 +0.0002384000 -0.0021812559
## [5] +0.0031950094 +0.0012736883 +0.0052692789 +0.0004468935
## [9] +0.0042379649 +0.0089562390 -0.0053889865 -0.0012988065
## [13] +0.0028749642 -0.0020801670 -0.0083507192 +0.0014794542
## [17] -0.0062311389 +0.0011878037 +0.0013099271 +0.0061721520
## [21] -0.0019896892 +0.0025115137 -0.0028971343 -0.0014098529
## [25] +0.0027660560 -0.0004434338 +0.0026077414 +0.0017670046
## [29] +0.0032764732 +0.0049423680
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Figure 1: Rectangle Data, Configuration, Original Left, Rounded Right
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Figure 2: Rectangle Data, Shepard Plot, Original Left, Rounded Right
We also compute the solution using loss function (8) with α = 0 instead of (5). After 27
iterations we find loss 0.2599461335. The gradient at the solution is

## [1] -0.0113608096 -0.0250533980 -0.0408756652 -0.0161631777
## [5] -0.0002057251 -0.0050065534 +0.0066604542 +0.0379161260
## [9] -0.0125971516 +0.1150186075 +0.0232458853 -0.0250746073
## [13] -0.1010942820 -0.0124928245 +0.0463359565 -0.0318470031
## [17] -0.0235788956 -0.0270356593 -0.0219621241 -0.0233640711
## [21] +0.0628012417 -0.0828424001 -0.0372465663 +0.0404878813
## [25] -0.0032539793 -0.0017713694 -0.0279650949 -0.0116352730
## [29] +0.0048682831 -0.0240054592

The solution in figure 3 is virtually indistinguishable from the one in figures 1 and 2.
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Figure 3: Rectangle Data, Normalized by RMS

5.2 Dutch Political Parties 1967

As the next illustration we use data from De Gruijter (1967), with average dissimilarity
judgments between Dutch political parties in 1967. The data are

## KVP PvdA VVD ARP CHU CPN PSP BP
## PvdA 5.63
## VVD 5.27 6.72
## ARP 4.60 5.64 5.46
## CHU 4.80 6.22 4.97 3.20
## CPN 7.54 5.12 8.13 7.84 7.80
## PSP 6.73 4.59 7.55 6.73 7.08 4.08
## BP 7.18 7.22 6.90 7.28 6.96 6.34 6.88
## D66 6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36

The process converges in 1 iterations to loss function value 0.0608337153. The gradient at
the solution is

## [1] +0.0383537062 -0.0269860729 -0.0070010447 +0.0679214435
## [5] +0.0398656552 -0.0249395387 +0.0328295341 +0.0398362480
## [9] -0.0535789667 +0.0325866817 -0.0084396850 +0.0048037436
## [13] -0.0442231766 -0.0398739407 +0.0398860706 -0.0068587271
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Figure 4: De Gruijter Data, Configuration
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Figure 5: De Gruijter Data, Shepard Plot

5.3 Ekman Color Data

The final example are the color data from Ekman (1954).
The process converges in 10 iterations to loss function value 0.000691019569788179. The
gradient at the solution is

## [1] -0.0000367902 -0.0000779380 +0.0001384306 +0.0000224097
## [5] -0.0000037734 +0.0000384179 +0.0000173195 +0.0000232389
## [9] +0.0000506693 +0.0000092402 -0.0001170717 +0.0000488963
## [13] +0.0000048512 -0.0000573564 -0.0000726227 -0.0000319959
## [17] +0.0000783031 -0.0000253779 +0.0000025421 +0.0000458412
## [21] -0.0000764069 +0.0000647808 -0.0000525668 +0.0000393908
## [25] -0.0000533072 +0.0000420934
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6 Discussion

As an aside the Shepard loss function is similar to the loss function used in the Guttman-
Lingoes programs (Guttman (1968), Lingoes and Roskam (1973)).

σ⋆
GL(x) := 1

2

K∑
k=1

(dk(x) − d⋆
k(x))2 =

K∑
k=1

(dk(x) − d⋆
k(x))dk(x),

where the d⋆
k(x) are the rank-images, i.e. the dk(x) permuted in such a way that they are

monotonic with the dissimilarities. Thus instead of sort(delta)[rank(dist)] we use
sort(dist)[rank(delta)]. There is no arithmetic done with dissimilarities, only their
rank order is used. But the rank images do not have any clear optimality properties. As a
consequence they are considerably less smooth than loss based on monotone regression or on
Shepard’s rearrangements. The report De Leeuw (1973b) is of interest in this context, in part
because the pdf includes a copy of the report agressively annotated by Joseph Kruskal, as
well as some obfuscating correspondence with Jim Lingoes. Also see Appendix 2 of Kruskal
(1977).
If one wants to use rank images, it would make more sense to use

σ⋆
LG :=

K∑
k=1

(d⋆
k − dk)δk,

because, again, by the rearrangement inequality this is a directionally differentiable difference
of two convex functions similar to the one used by Shepard.
Shepard himself evaluates the departure from monotonicity, after convergence, using

1
2

K∑
k=1

(δk − δ̂k)2 =
K∑

k=1
(δk − δ̂k)δk =

K∑
k=1

(δ̂k − δk)δ̂k,

which is again hopelessly non-smooth.

7 Appendix: Code

7.1 shepard.R

suppressPackageStartupMessages (library (mgcv, quietly = TRUE))

source("auxilary.R")
source("mdsUtils.R")
source("smacofShepard62.R")
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7.2 auxilary.R

ei <- function (i, n) {
return (ifelse(i == (1:n), 1, 0))

}

aij <- function (i, j, n) {
u <- ei(i, n) - ei (j, n)
return (outer (u, u))

}

kdelta <- function (i, j) {
ifelse (i == j, 1 , 0)

}

mprint <- function (x, d = 10, w = 15, flag = "+") {
print (noquote (formatC (

x, di = d, wi = w, fo = "f", flag = flag,
)))

}

mnorm <- function (x) {
return (sqrt (sum (x ˆ 2)))

}

anorm <- function (x) {
return (max (abs (x)))

}

basis <- function (i, j, n) {
s <- sqrt (2) / 2
a <- matrix (0, n, n)
if (i == j)

a[i, i] <- 1
else {

a[i, j] <- a[j, i] <- s
}
return (a)

}

center <- function (x) {
return (apply (x, 2, function (z) z - mean (z)))

}
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doubleCenter <- function (x) {
n <- nrow (x)
j <- diag(n) - (1 / n)
return (j %*% x %*% j)

}

squareDist <- function (x) {
d <- diag (x)
return (outer (d, d, "+") - 2 * x)

}

lowerTrapezoidal <- function (x) {
n <- nrow (x)
p <- ncol (x)
if (p == 1) return (x)
for (i in 1:(p - 1))

for (j in (i + 1):p) {
a <- diag (p)
y <- x[i, c(i, j)]
y <- y / sqrt (sum (y ˆ 2))
a[i, c (i, j)] <- c(1, -1) * y
a[j, c (j, i)] <- y
x <- x %*% a

}
return (x)

}

symmetricFromTriangle <- function (x, lower = TRUE, diagonal = TRUE) {
k <- length (x)
if (diagonal)

n <- (sqrt (1 + 8 * k) - 1) / 2
else

n <- (sqrt (1 + 8 * k) + 1) / 2
if (n != as.integer (n))

stop ("input error")
nn <- 1:n
if (diagonal && lower)

m <- outer (nn, nn, ">=")
if (diagonal && (!lower))

m <- outer (nn, nn, "<=")
if ((!diagonal) && lower)

m <- outer (nn, nn, ">")
if ((!diagonal) && (!lower))

m <- outer (nn, nn, "<")
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b <- matrix (0, n, n)
b[m] <- x
b <- b + t(b)
if (diagonal)

diag (b) <- diag(b) / 2
return (b)

}

triangleFromSymmetric <- function (x, lower = TRUE, diagonal = TRUE) {
n <- ncol (x)
nn <- 1:n
if (diagonal && lower)

m <- outer (nn, nn, ">=")
if (diagonal && (!lower))

m <- outer (nn, nn, "<=")
if ((!diagonal) && lower)

m <- outer (nn, nn, ">")
if ((!diagonal) && (!lower))

m <- outer (nn, nn, "<")
return (x[m])

}

columnBasis <- function (n) {
x <- matrix (0, n, n - 1)
x[outer (1:n, 1:(n - 1), "<=")] <- -1
x[outer (1:n, 1:(n - 1), function (i, j)

i - j == 1)] <- 1:(n - 1)
return (apply (x, 2, function (y)

y / sqrt (sum (y ˆ 2))))
}

matrixBasis <- function (n, p) {
x <- matrix (0, n * p, p * (n - 1))
for (j in 1:p) {

x [((j - 1) * n) + (1:n), ((j - 1) * (n - 1)) + (1:(n - 1))] <-
columnBasis (n)

}
return (x)

}

17



7.3 mdsUtils.R

torgerson <- function (delta, p = 2) {
z <- slanczos(-doubleCenter((delta ˆ 2) / 2), p)
w <- matrix (0, p, p)
v <- pmax(z$values, 0)
diag (w) <- sqrt (v)
return(z$vectors %*% w)

}

basisPrep <- function (n, w = rep (1, n * (n - 1) / 2)) {
m <- n * (n - 1) / 2
v <- -symmetricFromTriangle (w, diagonal = FALSE)
diag (v) <- -rowSums(v)
ev <- eigen (v)
eval <- ev$values[1:(n - 1)]
evec <- ev$vectors[, 1:(n - 1)]
z <- evec %*% diag (1 / sqrt (eval))
a <- array (0, c(n - 1, n - 1, m))
k <- 1
for (j in 1:(n-1)) {

for (i in (j+1):n) {
dif <- z[i,] - z[j,]
a [, , k] <- outer (dif, dif)
k <- k + 1

}
}
return (list (z = z, a = a))

}

configurationInBasis <- function (x, z) {
n <- nrow (x)
p <- ncol (x)
r <- p * (n - 1)
y <- rep (0, r)
for (s in 1:p) {

k <- (s - 1) * (n - 1) + 1:(n - 1)
y[k] <-

crossprod (z, x[, s]) / diag (crossprod (z))
}
return (y)

}
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columnCenter <- function (x) {
return (apply (x, 2, function (z) z - mean (z)))

}

doubleCenter <- function (x) {
n <- nrow (x)
j <- diag(n) - (1 / n)
return (j %*% x %*% j)

}

squareDistances <- function (x) {
d <- diag (x)
return (outer (d, d, "+") - 2 * x)

}

7.4 smacofShepard62.R

smacofShepard62 <-
function (delta,

p = 2,
xini = torgerson (symmetricFromTriangle (delta, diagonal = FALSE), p),
top = 100,
norm = 1,
itmax = 1000,
eps = 1e-10,
verbose = FALSE) {

sdelta <- sort (delta)
m <- length (delta)
n <- (1 + sqrt (1 + 8 * m)) / 2
r <- p * (n - 1)
h <- basisPrep (n, rep (1, m))
xold <- rep (0, r)
for (s in 1:p) {

k <- (s - 1) * (n - 1) + 1:(n - 1)
xold[k] <-

crossprod (h$z, xini[, s]) / diag (crossprod (h$z))
}
d <- rep (0, m)
itel <- 1
repeat {

bmat <- matrix (0, n - 1, n - 1)
xx <- matrix (xold, n - 1, p)
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for (k in 1:m) {
ak <- h$a[, , k]
d[k] <- sqrt (abs (sum (xx * (ak %*% xx))))

}
sumd <- ifelse (norm == 1, sum (d), sqrt (sum (d ˆ 2)))
dhat <- sdelta[rank (d)]
sold <- (sum (dhat * d) - sum (delta * d)) / sumd
e <- ifelse (d == 0, 0, 1/d)
for (k in 1:m) {

ak <- h$a[, , k]
if (norm == 1)

bmat <- bmat + ((dhat [k] - delta[k] - sold) / e[k]) * ak
else

bmat <- bmat + ((dhat [k] - delta[k]) / e[k] - sold / sumd ) * ak
}
bmat <- bmat / sumd
grad <- as.vector (bmat %*% xx)
hstp <-

optimize (
gfunc,
c(0, top),
x = xold,
grad = grad,
delta = delta,
sdelta = sdelta,
a = h$a,
norm = norm

)
snew <- hstp$objective
xnew <- xold - hstp$minimum * grad
if (verbose)

cat(
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"sold: ",
formatC (

sold,
digits = 8,
width = 12,
format = "f"

),
"snew: ",
formatC (

snew,
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digits = 8,
width = 12,
format = "f"

),
"stepsize: ",
formatC (

hstp$minimum,
digits = 8,
width = 12,
format = "f"

),

"\n"
)

if ((itel == itmax) || ((sold - snew) < eps))
break

xold <- drop (xnew)
itel <- itel + 1

}
xconf <- matrix (0, n, p)
for (s in 1:p) {

k <- (s - 1) * (n - 1) + 1:(n - 1)
xconf[, s] <- h$z %*% xnew[k]

}
return (list (

delta = delta,
dist = d,
x = xconf,
xvec = xnew,
grad = grad,
itel = itel,
stress = snew

))
}

gfunc <- function (y, x, grad, delta, sdelta, a, norm) {
m <- dim (a)[3]
n <- dim (a)[1]
p <- length (x) / n
z <- x - y * grad
xx <- matrix (z, n, p)
d <- rep (0, m)
for (k in 1:m) {

ak <- a[, , k]
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d[k] <- sqrt (abs(sum (xx * (ak %*% xx))))
}
dhat <- sdelta[rank (d)]
sumd <- ifelse (norm == 1, sum (d), sqrt (sum (d ˆ 2)))
val <- (sum (dhat * d) - sum (delta * d)) / sumd
return (val)

}
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