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Abstract

We give necessary and sufficient conditions for solvability of Aj = XWjX ′, with
the Aj are m given positive semi-definite matrices of order n. The solution X is n × p
and the m solutions Wj are required to be diagonal, positive semi-definite, and adding
up to the identity. We do not require that p ≤ n.
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1 Introduction

There is by now a large literature on simultaneous diagonalization of matrices. The topic is of
importance in blind source separation, chemometrics, psychometrics, nonlinear optimization,
multilinear algebra, fast matrix multiplication, and quantum physics. We have no intention

1

http://deleeuwpdx.net/pubfolders/simul


of giving a complete overview of the literature, our purpose is mainly to present and generalize
the approach of De Leeuw and Pruzansky (1978).
The problem is the following. If A1, · · · , Am are real symmetric matrices of order n, then
we want to solve the system of equations Aj = XWjX

′, where X is any n × p matrix and
where the Wj are diagonal of order p. In this paper we will restrict our attention to the
case in which the Aj are positive semi-definite and in which we require the Wj to be positive
semi-definite as well. There are several important special cases that can be distinguished.
If p ≤ n then Schönemann (1972) presented the main algebraic result, in the context of
psychometric data analysis. His computational approach, however, left something to be
desired, and consequently it was improved, generalized, and implemented by De Leeuw and
Pruzansky (1978). We also note the special case in which m = 2, in which some additional
results can be obtained (De Leeuw (1982)).
In this paper we generalize the approach of Schönemann (1972) and De Leeuw and Pruzansky
(1978) to the case where we do not necessarily have p ≤ n. As in the more restrictive case,
we start by studying the decomposition Aj = XWjX

′ without the requirement that the
Wj are diagonal. We give necessary and sufficient conditions for the set of solutions to be
non-empty, and we describe the complete set of solutions in the case in which the system
is solvable. We then characterize the solutions, if any, in the set of all solutions which have
diagonal Wj.

2 l-rank

Start with a convenient defintion of the rank of a sequence of positive semi-definite matrices.
Defintion 1: [lrank] Suppose Aj are m positive semi-definite matrices of order n. The
tuple (A1, · · · , Am) has l-rank less than or equal to p if there is an n × p matrix X and there
are p × p positive semi-definite matrices Wj, with sum W• = I, such that Aj = XWjX

′. It
has l-rank equal to p if it has l-rank less than or equal to p, but not less than or equal to
p − 1. Note that we allow for p > n.
It may not be immediately obvious why we require W• = I. Suppose W• has rank r < p.
Its eigen decomposition is

W• =
[
N N⊥

] [
E 0
0 0

] [
N ′

N ′
⊥

]
with E diagonal and positive definite or order r. Write the Wj in the form

Wj =
[
N N⊥

] [
Dj Bj

B′
j Cj

] [
N ′

N ′
⊥

]

Thus C•, the sum of the Cj, is zero. And because the Cj are positive semi-definite this
means all Cj are zero. Also, lemma 1 tells us that if a diagonal element of a positive semi-
definite matrix is zero, then the whole corresponding row and column are zero. Thus the
Bj are zero as well. It follows that XWjX

′ = (XN)Dj(N ′X ′) and thus (A1, · · · , Am) has
l-rank less than or equal to r < p. Thus it makes sense to require W• to be at least positive
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definite. But then, using for example the Cholesky decomposition W• = SS ′, we see that
XWjX

′ = (XS)(S−1WjS
−T )(S ′X ′), so we may as well require W• = I.

Theorem 1: [lrank] (A1, · · · , Am), with sum A•, has l-rank r := rank(A•).
Proof: Suppose the l-rank of (A1, · · · , Am) is p < r. Then A• = XX ′, for some n×p matrix
X, and rank(A•) = rank(X) ≤ p < r, a contradiction. Thus l-rank(A1, · · · , Am) ≥ r.
To show l-rank(A1, · · · , Am) ≤ r we will actually construct the set of all solutions to Aj =
XWjX

′ with W• = I. Start with the eigenvalue decomposition of A•.

A• =
[
K K⊥

] [
Λ2 0
0 0

] [
K ′

K ′
⊥

]
,

where Λ2 is diagonal and positive definite of order r.
Because A• = XX ′ it follows from lemma 2 that X = KΛL′, with a p × r orthonormal L.
It remains to solve Aj = KΛL′WjLΛK ′. Write

Aj =
[
K K⊥

] [
Pj Qj

Q′
j Rj

] [
K ′

K ′
⊥

]

Now A•K⊥ = 0 implies that AjK⊥ = 0 for all j, and thus Qj = 0 and Rj = 0 for all j.
Consequently

Λ−1K ′AjKΛ−1 = L′WjL

This means
Wj =

[
L L⊥

] [
Λ−1K ′AjKΛ−1 Uj

U ′
j Vj

] [
L′

L′
⊥

]
(1)

where the Uj and Vj are arbitrary, except for the fact that we must have Wj positive semi-
definite, and we must have U• = 0 and V• = I. Remember that L and L⊥ are also arbitrary,
except for their orthonormality. One convenient solution for Wj, with minimal Frobenius
norm, is Wj = LΛ−1K ′AjKΛ−1 = X+Aj(X+)′, where X+ is the Moore-Penrose inverse of
X. QED

3 d-rank

We now turn to the case in which the Wj are required to be diagonal, and they still have to
add up to the identity.
Defintion 2: [drank] The sequence (A1, · · · , Am) has d-rank less than or equal to p if there
is an n × p matrix X and there are p × p diagonal positive semi-definite matrices Wj, with
sum W• = I, such that Aj = XWjX

′. It has d-rank equal to p if it has d-rank less than or
equal to p, but not less than or equal to p − 1. Note that again we allow for p > n.
Clearly l-rank is less than or equal to d-rank, which implies by theorem 1 that d-rank is
larger than or equal to r = rank(A•). In order to proceed we need another definition.
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Defintion 3: [pextension] Any p × p symmetric matrix of order p which has the r × r
matrix A as its leading principal submatrix is a p-extension of A.
Theorem 2: [drank] The d-rank of (A1, · · · .Am) is less than or equal to p if and only if
there exist for each j = 1, · · · , m pairwise commuting positive semi-definite p-extensions Cj

of Bj = Λ−1K ′AjKΛ−1 that add up to one.
Proof: Equation (1) in the proof of theorem 1 shows there must exist Uj and Vj such that[

Λ−1K ′AjKΛ−1 Uj

U ′
j Vj

]
=

[
L′

L′
⊥

]
Wj

[
L L⊥

]
But this is the same as saying there must be p-extensions of the Bj that commute. QED

It seems that in general for p > n and m > 2 commuting p-extensions are difficult to work
with. But in some cases theorem 2 simplifies.
Corollary 1: [small_d_rank] The d-rank of (A1, · · · , Am) is r = rank(A•) if and only if
AjA

+
• Aℓ = AℓA

+
• Aj for all j, ℓ.

Proof: The Λ−1K ′AjKΛ−1 must commute without any p-extension. This translates to the
condition in the theorem. QED

Finally, we also have as a corollary a version of the basic result of De Leeuw (1982).
Corollary 2: [m=2] The d-rank of (A1, A2) is rank(A1 + A2).
Proof: Because Λ−1K ′A1KΛ−1 + Λ−1K ′A2KΛ−1 = I we see from lemma 4 that
Λ−1K ′A1KΛ−1 and Λ−1K ′A2KΛ−1 commute. QED

4 Appendix: Some Lemmas

Lemma 1: [diagonal] If A is positive semi-definite and aii = 0 then aij = aji = 0 for all j.
Proof: Suppose

A =
[
0 r′

r S

]

is positive semi-definite. Define z =
[
1 −ϵr

]
with ϵ > 0. Then z′Az = −2ϵr′r + ϵ2r′Sr.

If r′Sr = 0 and r′r > 0 then z′Az < 0 for all ϵ > 0, which contradicts that A is positive
semi-definite. If r′Sr > 0 and r′r > 0 then

min
ϵ>0

z′Az = −(r′r)2

r′Sr
< 0,

which again contradicts that A is positive semi-definite. Thus r′r = 0, i.e. r = 0. QED

Lemma 2: [crossprod] Suppose the positive semi-definite matrix A of order n has eigen-
value decomposition

A =
[
K K⊥

] [
Λ2 0
0 0

] [
K ′

K ′
⊥

]
,
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with Λ2 a positive definite diagonal matrix of order r = rank(A). The equation A = XX ′,
with X an n × p matrix has a solution if and only if p ≥ r. All solutions are of the form
X = KΛL′, with L is a p × r orthonormal matrix.
Proof: Write X as

X =
[
K K⊥

] [
U
V

]
,

which gives

XX ′ =
[
K K⊥

] [
UU ′ UV ′

V U ′ V V ′

] [
K ′

K ′
⊥

]
.

Thus XX ′ = A• if and only if V = 0 and UU ′ = Λ. It follows that X = KΛL′, with a p × r
orthonormal L. Also rank(X) = rank(A•) = r and p ≥ r. QED

Lemma 3: [simultaneous] Suppose (A1, · · · , Am) is a sequence of real symmetric matrices
of order n. Then there exist a square orthonormal X and diagonal Wj such that Aj = XWjX

′

if and only if the Aj commute in pairs, i.e. if and only if AjAℓ = AℓAj for all j ̸= ℓ.
Proof: It is obvious that simultaneously diagonalizability implies that the Aj commute in
pairs.
The interesting part of the proof is to show that pairwise commuting implies simultaneous
diagonalizability. The standard proof, repeated most recently in Jiang and Li (2016), uses
induction, starting from the fact that the lemma is trivially true for m = 1. We give the
proof in our notation and make it perhaps a bit more explicit and computational.
So let us suppose the real symmetric matrices (A1, · · · , Am) commute in pairs. And suppose
Am has eigenvalue decomposition

Am =
[
K1 K2 · · · Kr

]

λ1I 0 · · · 0
0 λ2I · · · · · ·
... ... . . . ...
0 0 · · · λrI



K ′

1
K ′

2
...

K ′
r

 ,

with all λs different. Set K :=
[
K1 K2 · · · Kr

]
. Then for all j = 1, · · · , m − 1

AmAjKs = AjAmKs = λ1AjKs

and thus AjKs are eigenvectors of Am with eigenvalue λs, i.e. AjKs = Ks(K ′
sAjKs). Write

this as

K ′AjK =


K ′

1AjK1 0 · · · 0
0 K ′

2AjK2 · · · · · ·
... ... . . . ...
0 0 · · · K ′

rAjKr

 .

Now obviously the matrices K ′AjK commute in pairs, which implies that that the m − 1
matrices (K ′

sA1Ks, · · · , K ′
sAm−1Ks) commute in pairs for each s. By the induction hypoth-

esis there are square orthonormal Ls and diagonal Φjs such that K ′
sAjKs = LsΦjsL

′
s. Define
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L :=
[
L1 L2 · · · Lr

]
. Then

L′K ′AjKL =


Φj1 0 · · · 0
0 Φj2 · · · · · ·
... ... . . . ...
0 0 · · · Φjr

 ,

for j = 1, · · · , m − 1, while of course

L′K ′AjKL =


λ1I 0 · · · 0
0 λ2I · · · · · ·
... ... . . . ...
0 0 · · · λrI

 .

QED

Lemma 4: [commute] If A and B are symmetric matrices with A + B = I then A and B
commute.
Proof: AB = A(I − A) = A − A2, which is symmetric. Another way to see this is that A
and B = I − A have the same eigenvectors L, and L diagonalizes both matrices. QED
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