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Abstract

We discuss projection on the intersection of a polyhedral convex cone and a sphere,
in particular when the target is in the polar cone. We also discuss projection on the
double cone formed by the cone and its negative.
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version, the bib file, and the complete Rmd file.

1 Introduction

Suppose E is a finite-dimensional Euclidean space with inner product ⟨•, •⟩ and corresponding
norm ∥ • ∥. Also S is the unit sphere in E , and B is the unit ball.
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The Gifi framework for descriptive multivariate analysis (Gifi (1990), Michailidis and De
Leeuw (1998), De Leeuw and Mair (2009)) covers both linear and bilinear nonmetric multi-
variate methods. In linear nonmetric techniques such as nonmetric regression, discriminant
analysis, and additivity analysis we have to solve the problem of minimizing σ(y, x) = ∥x−y∥2

over y ∈ L and over x ∈ K ∩ S, where K ⊆ E is a closed and pointed polyhedral convex cone
and L ⊆ E is a linear subspace. In bilinear nonmetric methods such as principal component
and canonical analysis this minimization problems has to be solved many times.
The standard way to solve this minimization problem is to use alternating least squares. We
alternate finding the optimal y for given x and the optimal x for given y until convergence.
The optimal y for given x is just a simple linear least squares problem. The optimal x for
given y is a normalized cone regression problem (De Leeuw (1975)). It can usually be solved
by first projecting y on the cone K and then normalizing the projection to unit length.
It has typically not been emphasized in the data analysis literature that normalized cone
regression can go astray, especially in early iterations and in situations where the least squares
fit is very bad. In these, admittedly rare, cases the projection of y on the cone K is the zero
vector, and we cannot normalize a zero vector.

2 History

Gifi (1990) briefly discusses the problem on pages 529-530, which happen to be the very last
pages of the book, right before the references and the index. We give the relevant quotation,
for those who do not want to spend the $ 330.95 to buy the book.

In the book we sometimed use normalized cone regression. This can be either
one of tow things. In the first place minimization of (y − x)′W (y − x)/x′Wx
over x in a cone C. This called implicit normalization. This name suggests
there is also something like explicit normalization. This is minimization of (y −
x)′W (y − x) over all x ∈ C that satisfy in addition x’Wx=1. It is basic result
of Kruskal and Carroll (1969) that in this simple case implicit normalization,
explicit normalization, and no normalization all give essentially the same solution.
All solutions are proportional to the projection of y on the cone, with only the
proportionality constant different for the different problems. The result does not
rely on convexity. There is one exception which should be noted. If y is in C⊖,
i.e y′Wz ≤ 0 for all z ∈ C, then the origin is the projection of y on C. In the
normalized problems the solution of x is one of the extreme rays of C, suitable
normalized. An extreme ray is any ray in the cone that cannot be written as a
nonnegative linear combination of two other rays in the cones. If C is a subspace
and y is in the W -orthogonal complement, then the infimum in the implicitly
normalized problem is one - not attained, but approached by letting x → ∞.
The infimum in the explicitly normalized problem is attained for any x ∈ C with
x′Wx = 1; it is equal to 1 + y′Wy. If C is the cone used in monotone regression,
then the extreme rays are the vectors with the first k element equal to zero and
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the last n−k elements equal to one (k = 1, · · · , n−1) together with the vectors u
and −u which span the intersection of C and C⊖. Thus the cone is not pointed.
The normalized regression problem must be solved by testing all these rays and
by keeping the best one.

Example 5.5.2 in Lange (2016 (in press)) discusses the special case in which K is the non-
negative orthant. On page 142 we see

The constraint set C in question is the intersection of the unit sphere and the
nonnegative orthant. Projection of an external point y onto C splits into several
cases. When all components of y are negative, PC(y) = ei, where yi is the least
negative component of y, and ei is the standard unit vector along coordinate
direction i. The origin O is equidistant from all all points of C. If any compo-
nent of y is positive then the projection is constructed by setting the negative
components of y equal to 0 and standardicing the truncated version of y to have
norm 1.

Neither Gifi nor Lange provide an actual proof for their statements. Exercise 5.6.14 in Lange
(2016 (in press)) asks the reader to come up with a proof. All the machinery and proofs one
can possibly want were recently made available in Bauschke, Bui, and Wang (2018). That
article provides a very thorough and complete analysis of projection on the intersection of a
cone and a sphere (or a ball). On page 2158 the authors say

Inspired by an example in the recent and charming book [12], our aim in this
paper is to systematically study the case in which K is a closed convex cone and S
is either the (convex) unit ball or (nonconvex) unit sphere centered at the origin.

The “recent and charming” book in the quotation is, of course, Lange (2016 (in press)).
The authors do not refer to Gifi, which is probably because Gifi’s book is neither recent nor
charming.

3 Unnormalized Cone Projection

We review some basic facts about unnormalized cone projection problems. Any book on
convex analysis (for example Rockafellar (1970)) will provide the necessary discussion and
proofs.
Definition 1: [Projection] The projection PA(x) of x on a set A ⊆ E is the set of all y ∈ A
such that ∥x − y∥ = minz∈A ∥x − z∥. Projections need not be singletons and can be empty.
Definition 2: [Polar Cone] The polar cone K⊖ of a cone K is the set of all y such that
⟨x, y⟩ ≤ 0 for all x ∈ K.
Result 1: [Cone Projection]
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1. If K is convex the projection is a singleton. In that case we also use PK(x) for the
unique element of the projection.

2. y = PK(x) if and only if ⟨y, x−y⟩ = 0 and ⟨x, x−y⟩ ≤ 0 for all x ∈ K. Thus y = PK(x)
if and only if x − y = PK⊖(x).

3. x = PK(x) + PK⊖(x) or PK⊖(x) = x − PK(x).

4. ∥x∥2 = ∥PK(x)∥2 + ∥PK⊖(x)∥2

5. The projection PK(x) of x on K is zero if and only if x ∈ K⊖.

Here are two more definitions for later use.
Definition 3: [Negative of a Cone] The negative K− of a cone K is the set of all y such
that y = −x for some x ∈ K.
Definition 4: [Double of a Cone] The double K⋆ of a cone K is the double cone K ∪K−.
In the figure below the cone is red, the polar is the union of green and blue, the negative is
blue, and the double is the union of red and blue.
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4 Normalized Cone Regression

We give a brief summary of the results in De Leeuw (1975) with somewhat different proofs.
We discuss the relations between unnormalized, explicitly normalized, and implicitly normal-
ized cone regression. Similar results were first discussed, somewhat informally, in Kruskal
and Carroll (1969).

4.1 Target not in Polar Cone

Theorem 1: [Unnormalized]

1. If y ∈ K⊖ then minx∈K ∥x − y∥2 = ∥y∥2, and the minimum is attained for x = 0.

2. If y ∈ E\K⊖ then argminx∈K ∥x − y∥2 = ⟨x̂, y⟩x̂, with x̂ ∈ argmaxx∈K∩S⟨x, y⟩.

Proof: All we need is the following simple decomposition of the problem.

min
x∈K

∥x − y∥2 = min
x∈K∩S

min
α≥0

∥αx − y∥2 =

min
x∈K∩S

min
α≥0

{α2 + ∥y∥2 − 2α⟨x, y⟩} = ∥y∥2 − max
x∈K∩S

max(0, ⟨x, y⟩)2. (1)

If y ∈ K⊖ then max(0, ⟨x, y⟩) = 0 for all x ∈ K. ■

Corollary 1: [Non-Polar Target]

If y ∈ E\K⊖ then

PK∩S(x) = PK(x)
∥PK(x)∥ .

Proof: By theorem 1 we have PK(x) = ⟨x̂, y⟩x̂, where x̂ = PK∩S . Thus ∥PK(x)∥ = ⟨x̂, y⟩,
and the result follows. ■

Theorem 2: [Explicit Normalization]

argmin
x∈K∩S

∥x − y∥2 = argmax
x∈K∩S

⟨x, y⟩.

Proof: In this case
min

x∈K∩S
∥x − y∥2 = 1 + ∥y∥2 − 2 max

x∈K∩S
⟨x, y⟩.

■

Theorem 3: [Implicit Normalization]

argmin
x∈K

∥x − y∥2

∥x∥2 = argmax
x∈K∩S

⟨x, y⟩.
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Proof: In this case

min
x∈K

∥x − y∥2

∥x∥2 = min
x∈K∩S

min
α≥0

α2 + ∥y∥2 − 2α⟨x, y⟩
α2 =

min
x∈K∩S

min
β≥0

1 + β2∥y∥2 − 2β⟨x, y⟩ = 1 − 1
∥y∥2 max

x∈K∩S
max(0, ⟨x, y⟩)2

■

Thus when y ∈ E\K⊖, for both normalized and unnormalized cone projection, it suffices to
compute

argmax
x∈K∩S

⟨x, y⟩ = argmax
x∈K∩B

⟨x, y⟩,

i.e. to compute the support function of the compact convex set K ∩ B at y.

4.2 Target in Polar Cone

Theorem 4: [Polar Target] Suppose K is the set of all non-negative linear combinations
of m distinct unit-length vectors zj. If y ∈ K⊖ then

max
x∈K∩S

⟨y, x⟩ = mmax
j=1

⟨y, zj⟩.

Proof: We have x ∈ K ∩ S if and only if

x = α(λ)
m∑

j=1
λjzj,

where the 0 ≤ λj ≤ 1, and the λj add up to one, and where

α(λ) = 1
∥ ∑m

j=1 λjzj∥
.

Because the norm is stricly convex we have

∥
m∑

j=1
λjzj∥ ≤

m∑
j=1

λj∥zj∥ = 1, (2)

and thus α(λ) ≥ 1 with equality if and only if exactly one of the λj is equal to one (and the
others are zero).
Because y ∈ K⊖ in addition

m∑
j=1

λj⟨y, zj⟩ ≤ mmax
j=1

⟨y, zj⟩ ≤ 0. (3)

Thus, from (2) and (3),

⟨y, x⟩ = α(λ)
m∑

j=1
λj⟨y, zj⟩ ≤ mmax

j=1
⟨y, zj⟩.

■
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5 Double Cone Regression

If we come across an instance, in our alternating least squares iterative processes, where the
target is in the polar cone it may be too much work to test all extreme rays of the cone to
find the projection on K ∩ S. There is, however, a convenient way around the problem.
Remember that in our algorithms we alternate minimization of ∥x − y∥2 over y ∈ L for
fixed x and over x ∈ K ∩ S for fixed y. Thus we are in trouble if in some iteration we
have y ∈ L ∩ K⊖. The ad hoc solution, which is basically what is used in some of the Gifi
programs, is to compute PK∩S(−y) and then replace y by −y. This essentially means we
project y on the intersection of S and the double cone K⋆ = K ∪ K−.
Theorem 5: [Negative]

PK−(x) = PK(−x)

Proof: We have y = PK(−y) if and only if ⟨x, x + y⟩ ≤ 0 for all x ∈ K and ⟨y, x + y⟩ = 0.
We have y = PK− if and only if ⟨x, x−y⟩ ≤ 0 for all x ∈ K−, i.e. if and only if ⟨−x, −x−y⟩ =
⟨x, x + y⟩ ≤ 0 for all x ∈ K. ■

In an actual implementation we can follow two strategies. The first is to compute PK(y) and
PK−(y) = PK(−y) and normalize the one with the best fit. The second strategy, which is
slightly more economical, is to compute PK(y). If this is nonzero, we normalize it. If it is
zero, we compute PK(−y) and normalize it (and replace y by −y).
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