
Gifi Update Notes

Jan de Leeuw

First created on September 30, 2019. Last update on May 08, 2022

library("MASS")
source ("gifiEngine.R")
source ("gifiUtilities.R")
source ("gifiCoding.R")
source ("gifiStructures.R")
source ("gifiMonotone.R")
source ("splineBasis.R")
source ("homals.R")

1 The data

The data for a gifiAnalysis is list of vectors (or factors), each of length n, possibly with
NA’s. Each vector can be numerical, character, or logical. Thus the data can be an R
dataframe. Each element of the data can be thought of as a variable. All variables are
functions defined on the same domain with n elements.
For a gifiAnalysis the data are partitioned into a number of sets of variables. Each set can
contain both active and passive variables. The active variables participate in the actual
computations of the gifiAnalysis, the passive (or supplementary) variables are used solely
for post-processing and presentation purposes.

2 The gifi structure

Information about the variables is coded in gifiVariables. A gifiVariable is a structure with
ten components, which are all objects that do not change during computation (parameters,
if you like). These are:

• data - vector or factor of n numbers, or chars, possibly with NA’s;
• basis - a matrix with a B-spline basis, n × ki;
• degree - degree of the spline di;

1

• copies - number of copies li;
• ordinal - true or false;
• missing - multiple, single, deleted, or average;
• active - true or false;
• set - integer code for set;
• name - name of variable;
• type - type (categorical, polynomial, or splinical).

A gifi is simply a list of gifiVariables.

3 Gifi loss

The gifi structure dictates the form of the loss function. Gifi loss, previously described in
Gifi (1990) as meet loss, is defined as

σ(X, Z, A) = 1
mp

m∑
j=1

SSQ (X −
∑
i∈Ij

HiZiAi). (1)

We use SSQ for the (unweighted) sum of squares of a numerical vector or matrix. The
outer summation in (1) is over active sets, the inner summation over the active variables
in the set (active sets are gifiSets with at least one active gifiVariable). Thus the index
set N = {1, 2, · · · , N}, where N is the total number of active variables in the analysis, is
partitined into the m index sets Ij, with Ij ∩ Il = ∅ and ⋃m

j=1 Ij = N .
In the loss function:

• X is n × p, object scores, observations by dimensions;
• Hi is the basis, n × ki, observations by basis, known and fixed;
• Zi are the coefficients, ki × li, basis by copies;
• Ai are the loadings, li × p, copies by dimensions.

In addition we impose the constraints:

• X is centered e′X = 0 and orthonormal X ′X = I.
• If a variable is ordinal there are inequality constraints on the non-missing elements of

Ti = HiZi (or directly on the elements of Zi).

4 The xGifi Structure

In the same way there is an xGifiVariable and an xGifi. Once again, an xGifi is a list of
xGifiVariables.
The xGifiVariable has the information about the variable that changes during the com-
putations of the gifiAnalysis, the estimates that are updated in each iteration. It has five
components:

2

• transform Ti = HiZi, orthogonalized, observations by copies, n × li;
• loadings Ai, copies by dimensions, li × p;
• scores Si = TiAi = HiZiAi, observations by dimensions, n × p;
• quantifications Qi = ZiAi, degrees by dimensions, ki × p;
• coefficients Zi, basis by copies, ki × li,

In previous versions of the gifiSystem a different terminology was used. The quantifications
Qi were restricted to be of rank less than or equal to li. There was no notion of copies,
which assumes or implies a variable enters into the gifiAnalysis more than once, and there
was no explicit decomposition Qi = ZiAi maintained. The notion of copies is more flexible
than the original approach.
There are some alternative ways to write Gifi loss that will come in handy. If we concatenate
the transforms Ti = HiZi horizontally and the loadings Ai vertically we can write

σ(X, Z, A) = 1
mp

m∑
j=1

SSQ (X − TjAj). (2)

We can also concatenate the quantifications Qj vertically and write

σ(X, Z, A) = 1
mp

m∑
j=1

SSQ (X − HjQj). (3)

This is basically what is used in the original gifiSystem, with rank constraints of the Qi.
And finally we can concatenate the bases horizontally and make Zj the direct sum of the
Zi in set j. Thus Zj is block diagonal, with the Zi as diagonal blocks. Then

σ(X, Z, A) = 1
mp

m∑
j=1

SSQ (X − HjZjAj). (4)

The following diagram may be helpful. Or not.

3

gifiVariable, xGifiVariable

Hi Zi Ai

ZiAi

HiZiAi

HiZi

quantifications

scores

transforms

basis coefficients loadings

n × ki ki × li li × p

5 Sanity

Before the analysis starts the gifiVariables and gifiSets are checked for sanity. If on eof the
following conditions is violated the analysis stops with the corresponding error message.

• A variable cannot be completely missing.
• A gifiAnalysis needs more than one active set.
• A gifiAnalysis needs more than one active variable.
• Sets need to be coded using consecutive integers.
• Each basis is non-negative, with rows that add up to one.
• A passive variable must be the only variable in its set.

6 The Gifi engine

We minimize Gifi loss using alternating least squares, combined with majorization. The
gifiEngine function The alternation is over X, the Zi and the Ai.
The orthonomality constraints on X are simple to handle, and minimizing over X for fixed
scores Sj = HiZiAi is an orthogonal Procrustus problem. The engine has the option to
use QR decomposition instead of Procrustus, which also gives a valid ALS method.

4

Because A is unconstrained, minimizing over the Aj for given X and Tj = HjZj is a simple
least squares problem, which can be solved for each set separately. Because our least squares
problems are often singular or ill-conditioned, we use the Moore-Penrose inverse function
ginv() from the MASS package.
The most complicated part is solving for the Zi for given A and X, and that is where
majorization comes in. We outline the majorization theory for minimizing gifiLoss in an
appendix. There are three possible ways to majorize discussed there, but only one of them
is implemented in the gifiEngine.

7 Active and Passive Variables

Passive variables are handled in two stages. In the first stage we minimize the loss function
(1) over X, Zi, and Ai. Then in the second stage we minimize

SSQ (X − HiZiAi) (5)

separately for each passive variable, using the optimal X from the first stage.
Fitting passive variables is actually implemented in the main iteration loop of the gifiEngine,
so we do not really need two stages. Each passive variable defines its own set, in which it is
the only variable. And these passive sets do not contribute to the loss and to the alternating
least squares step that updates X.

8 Choice of Basis

Note that in earlier versions of the gifiSystem all data were categorical. The basis always
was an indicator matrix. In this version the basis is either categorical, or a B-spline basis
(De Boor (2001)). For a B-spline basis the user has to give a vector of interior knots. The
exterior knots are always chosen to be the maximum and minimum of the data values,
which implies that for B-spline basis the data must be numerical. There can be missing data,
because the basis is only constructed for the non-missing data. After basis construction the
various missing data options are used to complete the basis to a non-negative basis-matrix
in which all rows add up to one. For categorical data, which do not have to be numerical,
an indicator matrix is used, which is also non-negative with rows adding up to one.
In actual computation we use a reduced basis, which is obtained from the basis matrix by
columnwise centering and then leaving off the last column. Columnwise centering has the
effect that all rows now add up to zero and the basis is singular. Leaving off the last column
can eliminate that singularity, and still gives a basis for the space of centered vectors in the
space spanned by the original basis. Moreover, a centered vector is a linear combination
of the original basis vectors with increasing coefficients if and only if it also is a linear
combination of the reduced basis vectors with increasing coefficients. This is important for
our treatment of ordinal variables.

5

9 Missing Data

For each variable there are four options for handling missing data. They are defined in
terms of the bases of the variables, and they preserve the non-negativity and unit-row-sum
property of the bases.

• single add a single 0/1 column to the basis with 1 for missing.
• multiple add a 0/1 column to the basis for each missing observation, i.e. append an

identity matrix.
• average for missing observations, use a basis row with all elements equal to the mean

of the non-missing rows.
• random for missing observations, use basis rows by sampling with replacement from

the non-missing rows.

10 Ordinal Restrictions

Monotone splines De Leeuw (2017)
If a variable has more than one copy (in original Gifi terminology this means the variable a
multiple quantification) then we require only the first r copies are constrained ordinally..
Because of the indeterminacy in the product Si = HiZiAi, the requirement that r copies are
monotonic with the data is actually equivalent to the requirement that there are r monotone
directions in the column space of the basis (and these directions can be highly correlated).
Busing

11 Wrappers

The following wrappers, and their defining properties, are included:

• homals: one variable per set, all variables ndim copies
• princals: one variable per set, all variables one copy
• primals: one variable per set, all variables one copy, ndim = 1
• canals: two sets, all variables one copy
• morals: two sets, one set has a single variable with one copy, ndim = 1
• criminals: two sets, one set has a single variable with ndim copies
• addals: two sets, one set one variable with one copy, other sets variables have ndim

copies, ndim = 1

For wrappers such as canals, princals, morals, addals, criminals the numerical output (the
results returned by the wrapper functions) should look as if ordinary regression, PCA, CDA,
etc. was applied to the transformed data.

6

For this the results in Appendix 1 are helpful. We use the fact that the classical multivariate
techniques can all be formulated as finding eigenvalues and eigenvectors of the generalized
eigenvalue problem Cx = mλDx, where C = T ′T and D = ⊕m

j=1 Tj. Here T is the horizontal
concatenation of the Tj = HjZj.
Thus, after convergence of the gifiAnalysis, each wrapper recovers corresponding classical
multivariate analysis results in their familiar form.
The wrappers far from exhaust all possible gifiAnalyses. Using the two functions makeGifi()
and gifiEngine() users can write their own wrappers, or do perform analyses that deviate
from the standard wrappers (such as analyses with variables having different numbers of
copies within a set). Here is an example,

data (sleeping, package="homals")
nobs <- length (sleeping[[1]])
nvar <- length (sleeping)
ndim <- 2
set.seed <- NULL
x <- ortho (center (matrix (rnorm (nobs * ndim), nobs, ndim)))
g <-

makeGifi(
sleeping,
knots = list(c(-5,0,5),c(500, 1000, 1500, 2000, 2500),100*1:7,NULL),
degrees = c (2, 2, 2, -1),
copies = c (1, 1, 1, 2),
ordinal = c (0, 0, 0, 0),
missing = rep ("r", 4),
active = rep (TRUE, 4),
names = names (sleeping),
sets = c(1, 1, 2, 1)

)
f <- xGifi(g, x)
h <-

gifiEngine(
g,
ndim = ndim,
use_qr = FALSE,
itmax = 1000,
eps = 1e-6,
seed = 123,
verbose = TRUE

)

7

12 Appendix: Three problems

Consider the function, called meet-loss by Gifi,

σ(Y, B) =
m∑

j=1
SSQ (X − TjAj). (6)

Here the Tj are given n × kj matrices, and we want to minimize σ over the n × p matrix X
and the m kj × p matrices Aj. Obviously we need some sort of normalization to make this
problem interesting, because otherwise X = 0 and Aj = 0 trivially solve the minimization
problem. The three problems we discuss in this appendix use three different normalizations.
First we simplify the notation. Define Dj = T ′

jTj , and the direct sum D = ⊕m
j=1 Dj. Thus

D is block diagonal, with the Dj as the diagonal blocks. Also define

T =
[
T1 | · · · | Tm

]
,

and

A =


A1
...

Am

 .

Then
σ(X, A) = m tr X ′X − 2 tr X ′TA + tr A′DA.

12.1 First Problem

The first problem we discuss is minimization of σ over X constrained by mX ′X = I, with
no constraints on A.
If mX ′X = I then

min
B

σ(X, A) = p − tr X ′TD+T ′X,

where the minimum is attained for A = D+T ′X, with D+ the Moore-Penrose inverse. It
follows that problem 1 is solved by choosing X equal to the eigenvectors corresponding with
the p largest eigenvalues of TD+T ′X = mXΦ, normalize them by mX ′X = I, and then
setting A = D+T ′X.

12.2 The Second Problem

The second problem has no constraints on X, but requires A′DA = I. If A′DA = I then

min
Y

σ(X, A) = p − 1
m

tr A′CA,

where C = T ′T . The minimum is attained for X = 1
m

TA. Problem 2 is solved by finding
the eigenvectors corresponding with the p largest eigenvalues of CA = mDAΨ, normalize
them by A′DA = I, and then setting X = 1

m
TA.

8

12.3 The Third Problem

The third problem is to use both mX ′X = I and A′DA = I. Then

σ(X, A) = 2(p − tr X ′TA).

Problem 3 is solved by finding the left and right singular vectors corresponding with the
largest singular values of TA = mXΛ and T ′X = DAΛ, both appropriately normalized.
It follows that Φ = Ψ = Λ2, and the solutions to the three problems are essentially the
same, except for the scaling of dimensions. If A with A′DA = I and X with mX ′X = I
solve the singular value problem 3, then X and D+T ′X = AΛ solve problem 1, and A and
1
m

TA = XΛ solve problem 2.

13 Appendix: Majorization

In this appendix we consider the problem of minimizing

σ(Zj) = SSQ (X − HjZjAj)

over Zj, where Hj has the Hi for i ∈ Ij concatenated horizontally, the Aj have the Ai

concatenated vertically, and the Zj is the direct sum of the Zi. Also define the transforms
Tj = HjZj, which have the Ti = HiZi concatenated horizontally, and the quantifications
Qj = ZjAj, which have the Qi = ZiAi concatenated vertically.
We start with expanding σ around the current best solution Z̃j. Define the residuals
R̃j = X − HjZ̃jAj. Then

σ(Zj) = SSQ(X − Hj{Z̃j + (Zj − Z̃j)}A) = SSQ(R̃j − H(Zj − Z̃j)Aj)
= σ(Z̃j) − 2 tr (Zj − Z̃j)′H ′

jR̃jA
′
j + tr (Zj − Z̃j)′H ′

jHj (Z − Z̃)AjA
′
j

From here we can go at least three ways.

13.1 First Majorization

The first majorization uses the result that for any positive semi-definite F and G of the same
order we have tr FG ≤ λmax(F)tr G, where λmax(F) is the largest eigenvalue of F . The
proof is simple, using the eigen-decomposition F = KΛK ′.

tr FG = tr KΛK ′G = tr ΛK ′GK ≤ λmax(F)tr K ′GK = λmax(F)tr G.

We apply this result to our minimization problem. Suppose κj is the largest eigenvalue of
A′

jAj. Then

σ(Zj) ≤ σ(Z̃j) − 2 tr (HjZj − HjZ̃j)′R̃jA
′
j + κj tr (HjZj − HjZ̃j)′(HjZj − HjZ̃j)

9

This gives the majorization function that must be minimized over Z. By completing the
square this can be done by minimizing SSQ (HjZj − Ũj), where Ũj = HjZ̃j + κ−1

j R̃jA
′
j.

If we majorize in this way for every set we obtain the majorizing function
m∑

j=1

∑
i∈Ij

SSQ (HiZi − Ũi),

with Ũi = HiZ̃i + κ−1
j R̃jA

′
i. Note that R̃j, and thus Ũi, depends on the current best scores

of the other variables in the set. Nevertheless it is fine from the algorithmic point of view
to update the R̃j after all Zi have been adjusted (think about the distinction between the
Gauss-Jordan and the Gauss-Seidel method for iteratively solving linear equations).

13.2 Second Majorization

Alternatively, we can use another inequality. If F and G are two positive semi-definite
matrices, then for any E for which the matrix product E ′FEG is defined tr E ′FEG ≤
λmax(F)λmax(G)SSQ(E). The proof uses e = vec(E) and the Kronecker product.

tr E ′FEG = e′(F ⊗ G)e ≤ λmax(F ⊗ G)e′e = λmax(F)λmax(G)SSQ(E).

If µj is the largest eigenvalue of H ′
jHj then

σ(Zj) ≤ σ(Z̃j) − 2 tr (Zj − Z̃j)′H ′
jR̃jA

′
j + κµ SSQ (Zj − Z̃j)

and this majorization function can be minimized by minimizing SSQ(Zj − Ṽj), with Ṽj =
Z̃j + κ−1

j µ−1
j H ′

jR̃jA
′
j.

The second majorization minimizes
m∑

j=1

∑
i∈Ij

SSQ (Zi − Ṽi).

with Ṽi = Z̃i + κ−1
j µ−1

j H ′
iR̃jA

′
i.

13.3 Third majorization

There is a third majorization, which also may be useful. We now expand around Q̃i = Z̃iÃi.
Using the same reasoning as in the other two majorizations, we arrive at

m∑
j=1

∑
i∈Ij

SSQ (ZiAi − Ỹi).

with Ỹi = Z̃iÃi + µ−1H ′
iR̃j and R̃j = X − HjZ̃jÃj.

10

13.4 Comparison

The first majorization makes most sense when the ordinal constraints are on the columns of
Ti = HiZi, the second one when they are on the columns of Zi. Of course in general Ti will be
much larger than Zi, so the second and third majorization optimize in much smaller spaces.
The third majorization is particularly useful if there are no ordinal constraints, because
minimizing over ZiAi is just a singular value problem, which is usually small (the minimum
of the number of columns in the basis and the dimensionality). For both the second and
third majorization we have to compute the µj, but they do not change over iterations, so
that only has to be done once.

14 Appendix: Copy Expansion

If we adopt the modification suggsted in this appendix we may have to change the basic
structures. If variable i has l copies then S = HZ can be written as

S =
l∑

s=1
Hzsas,

or, in words, having a variable with l copies is exactly the same as having l variables with
one copy, where all l variables have the same basis. In that sense the notion of copies (or
the older notion of rank) is superfluous, and our gifiStructures could reflect that.
The main reason to use copies is to save storage (only one basis for all copies). In addition
we must make sure the different coefficients zs corresponding with the same basis H are, and
remain, linearly independent. One alternative way of handling copies is to define a gifiCopy,
and define a gifiVariable as a list of gifiCopies. Or we can leave the gifiVariable as is, and
treat each copy as a different xGifiVariable.

data(hartigan, package = "homals")
h <- homals (hartigan)

0.5157418 in 172

hortigan <-
data.frame(

hartigan[[1]],
hartigan[[1]],
hartigan[[2]],
hartigan[[2]],
hartigan[[3]],
hartigan[[3]],
hartigan[[4]],
hartigan[[4]],

11

hartigan[[5]],
hartigan[[5]],
hartigan[[6]],
hartigan[[6]]

)
x <- ortho (center (matrix(rnorm(48), 24, 2)))
g <-

makeGifi(
hortigan,
knots = rep (NULL, 12),
degrees = rep(-1, 12),
ordinal = rep (0, 12),
copies = rep(1, 12),
missing = rep ("r", 12),
active = rep (TRUE, 12),
names = names(hortigan),
sets = c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6)

)
f <- xGifi(g, x)
h <-

gifiEngine(
g,
ndim = 2,
use_qr = FALSE,
itmax = 1000,
eps = 1e-6,
seed = NULL,
verbose = FALSE

)

0.5157504 in 250

15 Appendix: Upgrades

In the future I will use basically the same approach using a variable structure (will not
change much from the gifiVariable) and an engine to implement some upgrades. First, we
will add burtEngine, which will allow us to add (generalized) correspondence analysis.
Then, gifiEngine will give birth to nextEngine, which implements the theory of De Leeuw
(2004). We add orthoBlock to the possible types of a variable and require a pattern matrix
to code the SEM. This allows us to add pathals, dynamals, lisrals, lineals, MIMIC, factals
etc. Then, we will add aspectEngine, which implements De Leeuw (1988).

12

15.1 Appendx: Burt Engine

The gifiEngine operates on a list of gifiVariables that are generated from a dataframe. The
burtEngine works on a burtTable, which is the crossproduct of the horizontal concatenation
of all bases. We can generate the burtTable from a gifiStructure, but there is also an option
to generate it from a single frequency table (to do generalized correspondence analysis).
We must maximize tr Q′CQ over all Q satisfying Q′DQ = I. Now

tr Q′CQ ≥ tr Q̃′CQ̃ + 2 tr (Q − Q̃)′CQ̃ = 2 tr Q′CQ̃ − tr Q̃′CQ̃.

Thus majorization theory tells us to maximize tr Q′CQ̃ over Q′DQ = I. This is a weighted
procrustus problem with solution Q = D− 1

2 KL′, using the SVD D− 1
2 C = KΛL′. Thus K is

an orthonormal basis for the column space of D− 1
2 C. Any other orthonormal basis for this

space is a rotation of K and consequently gives the same value of tr Q′CQ. Also note that
D

1
2 can be the symmetric square root, but it can also be a (triangular) Cholesky factor. In

any case, it does not change during computations, so it only has to be computed once.

References
De Boor, C. 2001. A Practical Guide to Splines. Revised Edition. New York: Springer-

Verlag.
De Leeuw, J. 1988. “Multivariate Analysis with Optimal Scaling.” In Proceedings of the

International Conference on Advances in Multivariate Statistical Analysis, edited by S.
Das Gupta and J. K. Ghosh, 127–60. Calcutta, India: Indian Statistical Institute.

———. 2004. “Least Squares Optimal Scaling of Partially Observed Linear Systems.” In
Recent Developments in Structural Equation Models, edited by K. van Montfort, J. Oud,
and A. Satorra. Dordrecht, Netherlands: Kluwer Academic Publishers.

———. 2017. “Computing and Fitting Monotone Splines.” 2017.
Gifi, A. 1990. Nonlinear Multivariate Analysis. New York, N.Y.: Wiley.

13

	The data
	The gifi structure
	Gifi loss
	The xGifi Structure
	Sanity
	The Gifi engine
	Active and Passive Variables
	Choice of Basis
	Missing Data
	Ordinal Restrictions
	Wrappers
	Appendix: Three problems
	First Problem
	The Second Problem
	The Third Problem

	Appendix: Majorization
	First Majorization
	Second Majorization
	Third majorization
	Comparison

	Appendix: Copy Expansion
	Appendix: Upgrades
	Appendx: Burt Engine

	References

