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Abstract This chapter has two parts. In the first part we review the history of Mul-
tiple Correspondence Analysis (MCA) and Reciprocal Averaging Analysis (RAA).
Specifically we comment on the 1950s exchange between Burt and Guttman about
MCA, and the distinction between scale analysis and factor analysis. In the second
part of the chapter we construct an MCA alternative, called Deconstructed Multiple
Correspondence Analysis (DMCA), which is useful in the discussion of ”dimension-
ality”, ”variance explained”, and the ”Guttman effect”, concepts that were important
in the history covered in the first part.

1 Notation

Let us start by defining some of the notation used in this paper. We have 𝑖 = 1, · · · 𝑛
observations on each of 𝑗 = 1, · · · , 𝑚 categorical variables, where variable 𝑗 has
𝑘 𝑗 categories. We use 𝑘★ for the sum of the 𝑘 𝑗 , while the maximum number of
categories over all variables is 𝑘+ = max(𝑘1, · · · , 𝑘𝑚). We also define 𝑚𝑠 , with
𝑠 = 1, · · · , 𝑘+, where 𝑚𝑠 is the number of variables with 𝑘 𝑗 ≥ 𝑠. Thus both 𝑚1 and
𝑚2 are always equal to 𝑚. Also

∑𝑘+
𝑠=1 𝑚𝑠 = 𝑘★. The fact that variables can have a

different number of categories is a major notational nuisance. If they all have the
same number of categories 𝑘 then 𝑘+ = 𝑘 , 𝑘★ = 𝑚𝑘 , and all 𝑚𝑠 are equal to 𝑚.

The data are coded as 𝑚 indicator matrices 𝐺 𝑗 , with {𝐺 𝑗 }𝑖𝑘 = 1 if and only
if object 𝑖 is in category 𝑘 of variable 𝑗 and {𝐺 𝑗 }𝑖𝑘 = 0 otherwise. The 𝐺 𝑗 are
𝑛 × 𝑘 𝑗 , zero-one, and columnwise orthogonal (because the categories are mutually
exclusive). If we concatenate the𝐺 𝑗 horizontally we have the 𝑛× 𝑘★ matrix𝐺, which
we also call the indicator matrix (in French data analysis it is the ”tableau disjonctif
complet”, in Nishisato (1980) it is the ”response-pattern table”). The Burt table
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(”tableau de Burt”), is the 𝑘★ × 𝑘★ cross product matrix 𝐶 = 𝐺′𝐺. The univariate
marginals are in the diagonal matrix 𝐷 = diag(𝐶). The normalised Burt table is the
matrix 𝐸 = 𝑚

1
2 𝐷− 1

2𝐶𝐷− 1
2 .

Although we introduced 𝐺,𝐶, 𝐷 and 𝐸 as partitioned matrices of real numbers,
it is also useful to think of them as matrices with matrices as elements. Thus 𝐶, for
example, is an 𝑚 × 𝑚 matrix with as elements the matrices 𝐶

𝑗ℓ
= 𝐺′

𝑗
𝐺

ℓ
, and 𝐺 is

an 1 × 𝑚 matrix with as its 𝑚 elements 𝐺 𝑗 . Note that because we have divided the
cross product by 𝑛, all 𝐶 𝑗ℓ , and thus all 𝐷 𝑗 = 𝐶 𝑗 𝑗 , add up to one.

In the paper we often use the direct sum of matrices. If 𝐴 and 𝐵 are matrices, then
their direct sum is

𝐴
⊕

𝐵 =

[
𝐴 0
0 𝐵

]
, (1)

and if 𝐴𝑟 are 𝑠 matrices, then
⊕𝑠

𝑟=1 𝐴𝑟 is block-diagonal with the 𝐴𝑟 as diagonal
submatrices.

2 Introduction

Multiple Correspondence Analysis (MCA) can be introduced in many different ways.
Mathematically: MCA is the Singular Value Decomposition (SVD) of 𝑚− 1

2𝐺𝑦 =√
𝜆𝑥 and𝑚− 1

2𝐺′𝑥 =
√
𝜆𝐷𝑦, the Eigen Value Decomposition (EVD) 𝐸𝑦 = 𝜆2𝑦 for the

normalised Burt table, and the EVD of 𝑚−1𝐺′𝐷−1𝐺𝑥 = 𝜆2𝑥, the average projector.
Using 𝑚 in the equations seems superfluous, but it guarantees that 0 ≤ 𝜆 ≤ 1.

Statistically: MCA is a scoring method that minimises the within-individual and
maximises the between-individuals variance, it is a graphical biplot method that
minimises the distances between individuals and the categories of the variables they
score in, it is an optimal scaling method that maximises the largest eigenvalue of
the correlation matrix of the transformed variables, and that linearises the average
regression of one variable with all the others. It can also be presented as a special case
of Homogeneity Analysis, Correspondence Analysis, and Generalised Canonical
Correlation Analysis. See, for example, the review article by Tenenhaus and Young
(1985)

It is of some interest to trace the origins of these various MCA formulations,
and to relate them to an interesting exchange in the 1950’s between two of the
giants of psychometrics on whose proverbial shoulders we still stand. In 1950 Sir
Cyril Burt published, in his very own British Journal of Statistical Psychology,
a great article introducing MCA as a form of factor analysis of qualitative data
(Burt, 195r0). There are no references in the paper to earlier occurances of MCA in
the literature. This prompted Louis Guttman to point out in a subsequent issue of
the same journal that the relevant equations were already presented in great detail
in Guttman (1941). Guttman assumed Burt had not seen the monograph (Horst,
1941) in which his chapter was published, because of the communication problems
during the war, which caused ”only a handful of copies to reach Europe” (Guttman,
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1953). Although the equations and computations given by both Burt and Guttman
were identical, Guttman pointed out differences in interpretation between their two
approaches. These differences will especially interest us in the present paper. They
were also discussed in Burt’s reaction to Guttman’s note (Burt, 1953). The three
papers are still very readable and instructive, and in the first part of the present paper
we’ll put them in an historical context.

3 History

3.1 Prehistory

The history of MCA has been reviewed in De Leeuw (1973), Benzécri (177b),
Nishisato (180, Section 1.2),Tenenhaus and Young (1985),Gower (1990), and Lebart
and Saporta (2014), each from their own tradition and point of view. Although there
is agreement on the most important stages in the development of the technique,
there are some omissions and some ambiguities. Some of the MCA historians, in
their eagerness to produce a long and impressive list of references, do not seem to
distinguish multiple from ordinary Correspondence Analysis (CA), one-dimensional
from multidimensional analysis, binary data from multicategory data, and data with
or without a dependent variable.

What we call ”prehistory” is MCA before Guttman (1941), and what we find in the
prehistory is almost exclusively Reciprocal Averaging Analysis (RAA). We define
RAA, in the present paper, starting from the indicator matrix 𝐺. Take any set of trial
weights for the categories. Then compute the score for the individual by averaging
the weights of the categories selected by that individual, and then compute a new set
of weights for categories by averaging the scores of the individuals in the categories.
These two reciprocal averaging steps are iterated until convergence is attained, that
is when weights and scores do not change any more (up to a proportionality factor).

In various places it is stated, or at least suggested, that RAA (both the name and
the technique) started with richardson kuder 33. This seems incorrect. That paper
has no trace of RAA, although it does document a scale construction using Hollerith
sorting and tabulation machines. What seems to be true, however, is that both the
RAA name and the technique started at Proctor & Gamble in the early 1930s, in an
interplay between Richardson and Horst, both Proctor & Gamble employees at the
time. This relies on the testimony of Horst (1935), who does indeed attribute the
name and basic idea of RAA to Richardson:

The method which he suggested was based on the hypothesis that the scale value of each
statement should be taken as a function of the average score of the men for whom the
statement was checked and, further, that the score of each man should be taken as a function
of the average scale value of the statements checked for the man.

The definition given by Horst is rather vague, because ”a function of” is not
very specific. It also does even mention the iteration of RAA to convergence (or,
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as Guttman would say, internal consistency). This iterative extension again seems
to be due either to Horst or to Richardson. Horst was certainly involved at the time
in the development of very similar techniques for quantitative data (Horst, 1935,
Edgerton and kolby, 1936, Wilks, 1938). For both quantitative and qualitative data
these techniques are based on minimising within-person and maximising between-
person variance, and they all result in computing the leading principal component of
some data matrix. Horst (1935), starting from the idea to make linear combinations
to maximise between-individual variance, seems to have been the first one to realise
that the equations defining RAA are the same as the equations describing Principal
Component Analysis (PCA), and that consequently there are multiple RAA solutions
for a given data matrix.

There are some additional hints about the history of RAA in the conference
paper of Baker and Hoyt (1972). They also mostly credit Richardson, although they
mention he never published a precise description of the technique, and it has been
used ”informally” without a precise justification ever since. They also mention that
the first Hollerith type of computer implementation of RAA was by Mosier in 1942,
the first Univac program was by Baker in 1962, and the first FORTRAN program
was by Baker and Martin in 1969.

We have not mentioned in our prehistory the work of Fisher (1938, 1940)
and Maung (1941). These contributions, basically contemporaneous with Guttman
(1941), clearly introduced the idea of optimal scaling for categorical data, of Cor-
respondence Analysis of a two-way table, and even of nonlinear transformation of
the data to fit a linear (additive) model. They also came up with the first principal
component of a Gramian matrix as a solution, realising there are multiple solutions to
their equations. However, as pointed out by Gower (1990), they do not use MCA as it
is currently defined. And, finally, although Hill (1973) seems to have independently
come up with the RAA name and technique, its origins are definitely not in ecology.

3.2 Guttman 1941

RAA was used to construct a single one-dimensional scale, but horst 35 indicated
already its extension to more than one dimension. The first publication of the actual
formulas, using the luxuries of modern matrix algebra, was guttman 41, ironically in
a chapter of a book edited by Horst. This is really where the history of MCA begins,
although there are still some notable differences with later practice.

Guttman starts with the indicator matrix 𝐺, and then generalises and systema-
tises the analysis of variance approach to optimal scaling of indicator matrices. He
introduces three criteria of internal consistency: one for the categories (columns),
one for the objects (rows), and one for the entire table. All three criteria lead to the
same optimal solution, which we now recognise as the first non-trivial dimension of
MCA. We now also know, because we have been exposed to more matrix algebra
than was common in the 1940s and 1950s, that this merely restates the fact that for
any matrix 𝑋 the non-zero eigenvalues of 𝑋 ′𝑋 and 𝑋𝑋 ′ are the same, and moreover
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they are equal to the squares of the singular values of 𝑋 . The left and right singular
vectors of 𝑋 are the eigenvectors of 𝑋 ′𝑋 and 𝑋𝑋 ′.

For our purposes in this paper the following quotation from Guttman’s section
five is important. When discussing the multiple solutions of the MCA stationary
equations he says (pp. 330-331):

There is an essential difference, however, between the present problem of quantifying a class
of attributes and the problem of ”factoring” a set of quantitative variates. The principal axis
solution for a set of quantitative variates depends on the preliminary units of measurement
of those variates. In the present problem, the question of preliminary units does not arise
since we limit ourselves to considering the presence or absence of behavior.

Thus Guttman, at least in 1941, shows a certain reluctance to consider the addi-
tional dimensions in MCA for data analysis purposes.

In addition to the stationary equations of MCA, Guttman also introduces the
chi-square metric. He notes that the rank of 𝐶, and thus of 𝐸 , is that of the indicator
𝐺, which is at most 1 +∑𝑚

𝑗=1 (𝑘 𝑗 − 1) = 𝑘★ − (𝑚 − 1). Thus 𝐶 has at least 𝑚 − 1 zero
eigenvalues, inherited from the linear dependencies in 𝐺. In addition 𝐸 has a trivial
eigen pair, independent of the data, with eigenvalue equal to 1. Suppose the vector 𝑒
has all its 𝑘★ elements equal to +1. Then𝐶𝑒 = 𝑚𝐷𝑒 and thus 𝐸𝑦 = 𝑦, with 𝑦 = 𝐷 1

2 𝑒.
If we deflate the eigenvalue problem by removing this trivial solution then the sum
of squares of any off-diagonal submatrix of 𝐶 is the chi-square for independence of
that table.

Guttman also points out that the scores and weights linearise both regressions
if we interpret the indicator matrix as a discrete bivariate distribution. This follows
directly from the interpretation of MCA as a CA of the indicator matrix, because CA
linearises regressions in a bivariate table. Of course interpreting the binary indicator
matrix 𝐺 as a bivariate distribution is quite a stretch. Both the chi-square metric and
the linearised regressions were discussed earlier by Hirschfeld (1935) in the context
of a single bivariate table. Neither Hirschfeld nor Fisher are mentioned in Guttman
(1941).

There are no data and examples in Guttman’s article. Benzécri (1977b) remarks

L. Guttman avait défini les facteurs mêmes calculés par l’analyse des correspondances. Il ne
les avait toutefois pas calculés; pour la seule raison qu’en 1941 les moyens de calcul requis
(ordinateurs) n’existaient pas.

Translation: L. Guttman has defined the same factors as calculated by Correspondence
Analysis. He did not calculate them, however, for the simple reason that in 1941 the neces-
sary calculation tools (computers) did not exist.

That is not exactly true. In Horst (1941) the chapter by Guttman is followed by
another chapter called ”Two Empirical Studies of Weighting Techniques”, which
does have an empirical application in it. It is unclear who wrote that chapter, but the
computations, which were carried out on a combination of tabulating and calculating
machines, were programmed by nobody less than Ledyard R. Tucker.
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3.3 Burt 1950

Guttman was reluctant to look at additional solutions of the stationary equations
(additional ”dimensions”), but burt 50 had no such qualms. After a discussion of
the indicator matrix 𝐺 and its corresponding cross product 𝐶 (now known as the
Burt table) Burt suggests a PCA of the normalised Burt table, i.e. solving the eigen
problem 𝐸𝑦 = 𝑚𝜆𝑦. By the way, Burt discusses PCA as an alternative method of
factor analysis, which is not in line with current usage clearly distinguishing PCA
and FA.

Most of Burt’s references are to previous PCA work with quantitative variables,
and much of the paper tries to justify the application of PCA to qualitative data. No
references to Guttman, Fisher, Horst, or Hirschfeld are given. The justifications that
Burt presents are from the factor analysis perspective: 𝐶 is a Gramian matrix, 𝐸 is
a correlation matrix, and the results of factoring 𝐸 can lead to useful classifications
of the individuals.

In the technical part of Burt’s 1950 paper he discusses the rank, the trivial
solutions, and the connection with the chi-squares of the bivariate subtables that we
have already mentioned in our guttman 41 section.

3.4 Guttman 1953

As we saw in the introduction guttman 53 starts his paper with the observation that
he already published the MCA equations in 1941. He gives this a positive spin,
however, stating (p. 1)

It is gratifying to see how Professor Burt has independently arrived at much the same
formulation. This convergence of thinking lends credence to the suitability of the approach.

I will now insert a long quote from Guttman(1953, p. 2), because it emphasizes
the difference with Burt, and it is of major relevance to the present paper as well.
Guttman really tells it like it is.

My own article goes on to point out that, while the principal components here are formally
similar to those for quantitative variables, nevertheless their interpretation may be quite
different. The interrelations among qualitative items are not linear, nor even algebraic, in
general. Similarly, the relation of a qualitative item to a quantitative variable is in general
non-algebraic. Since the purpose of principal components - or any other method of factor
analysis - is to help reproduce the original data, one must take into account this peculiar
feature.

The first principal component can possibly fully reproduce all the qualitative items
entirely by itself: the items may be perfect, albeit non-algebraic, functions of this component.
*Linear* prediction will not be perfect in this case, but this is not the best prediction technique
possible for such data. Therefore, if the first principal component only accounts for a small
proportion of the total variance of the data in the ordinary sense, it must be remembered
that this ordinary sense implies linear prediction. If the correct, but *non-linear*, prediction
technique is used, the whole variation can sometimes be accounted for by but the single
component. In such a case, the existence of more than one principal component arises merely
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from the fact that a linear system is being used to approximate a non-linear one. (Each item
is always a perfect linear function of *all* the principal components taken simultaneously.)

This was written after the publication of Guttman (1950) in which the MCA
of a perfect scale of binary items is discussed in impressive detail. The additional
dimensions in such an analysis are curvilinear functions of the first, in regular cases
in fact orthogonal polynomials of a single scale. Specifically, the second dimension
is a quadratic, or quadratic-looking, function of the first, which creates the famous
”horseshoe” or ”arch” (in French: the ”effect Guttman”). Since a horseshoe curves
back in at its endpoints that name is often not appropriate, and we will call these non-
linearities the Guttman effect. It seems that the second and higher curved dimensions
are just mathematical artifacts, and much has been published since 1950 to explain
them, interpret them, or to get rid of them (Hill and Gauch, 1980).

In the rest of Guttman (1953) gives an overview of more of his subsequent work
on scaling qualitative variables. This leads to material that goes beyond MCA (and
thus beyond the scope of our present paper).

3.5 Burt 1953

Burt (1953, p. 5), in his reply to Guttman (1953), admits there are different objectives
involved.

If, as I gather, he cannot wholly accept my own interpretations, that perhaps is attributable
to the fact that our starting-points were rather different. My aim was to factorize such data;
his to construct a scale.

This does not answer the question, of course, if it is really advisable to apply
PCA to the normalised Burt matrix. It also seems there also are some differences in
national folklore, since Burt (1953, p. 6) goes on to say

In the chapters contributed to *Measurement and Prediction* both Dr. Guttman and Dr.
Lazarsfeld draw a sharp distinction between the principles involved in these two cases.
Factor analysis, they maintain, has been elaborated solely with reference to data which is
quantitative *ab initio*; hence, they suppose, it cannot be suitably applied to qualitative data.
On this side of the Atlantic, however, there has always been a tendency to treat the two cases
together, and, with this double application in view, to define the relevant functions in such a
way that they will (so far as possible) cover both simultaneously. British factorists, without
specifying very precisely the assumptions involved, have used much the same procedures for
either type of material. Nevertheless, there must of necessity be certain minor differences in
the detailed treatment. These were briefly indicated in the paper Dr. Guttman has cited ; but
they evidently call for a closer examination. I think in the end it will be found that they are
much slighter than might be supposed.

Burt then goes on to treat the case of a perfect scale of binary items, previously
analyzed by Guttman (1950). He points out that a PCA of a perfect scale gives
(almost) the same results as those given by Guttman, and that consequently his
approach of factoring a table works equally well as the approach that constructs
a scale. Indeed, the differences between qualitative and quantitative factoring are
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”much slighter than might be supposed.” Although Burt is correct, he does not
discuss where the Guttman effect comes from, and whether it is desirable and/or
useful.

3.6 Benzécri 1977

French data analysis (”Analyse des Données”) views MCA as a special case of CA (Le
Roux and Rouanet, 2010). Benzécrfi (1977a) discusses the CA of the indicator matrix
and gives a great deal of credit to Ludovic Lebart. Lebart (175, 1976) are usually
mentioned as the first publications to actually use ”analyse de correspondences
multiples” and ”tableau de Burt”.

Benzécri also gives Lebart the credit for discovering that a CA of the indicator
matrix 𝐺 gives the same results as a CA of the Burt table 𝐶, which restates again
our familiar matrix result that the singular value decomposition of a matrix gives
the same results as the eigen decomposition of the two corresponding cross product
matruces.

L. Lebart en apporta la meilleure justification : les facteurs sur J issus de l’analyse d’un tel
tableau I x J ne sont autres (àun coefficient constant près) que ceux issus de l’analyse du
vŕitable tableau de contingence J x J suivant : k(j,j’) = nombre des individus i ayant à la fois
la modalité j et la modalité j. Dès lors on rejoint le format original pour lequel a été conçue
l’analyse des correspondances.

Translation: L. Lebart has given the best justification: the factors on J from an analysis
of an I x J table are the same as those from the analysis of the actual J x J contingency table
with k(j,j’) = the number of individuals i that are both in category j en j’. And thus we are
back in the original format for which Correspondence Analysis was designed.

Benzécri also mentions the surprising generality and wide applicability of MCA.

Le succès maintenant bien compris des analyses de tableaux en 0,1 mis sous forme disjonc-
tive complète invite à rapprocher de cette forme, par un codage approprié, les données les
plus diverses.

Translation: The success, which we now understand well, of the analysis of (0,1) tables
in disjunctive complete form invites us to apply this form, by suitable coding, of the most
diverse forms of data.

This generality was later fully exploited in the book by Gifi(1990), which builds
a whole system of descriptive multivariate techniques on top of MCA.

3.7 Gifi 1980

Gifi (1990) was mostly written in 1980-1981 from lecture notes for a graduate course
in nonlinear multivariate analysis, and builds on previous work in De Leeuw (1973).
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Throughout, the main engine of the Gifi approach to multivariate analysis minimises
the meet-loss function

𝜎(𝑋;𝑌1, · · · , 𝑌𝑚) =
𝑚∑︁
𝑗=1

tr (𝑋 − 𝐺 𝑗𝑌 𝑗 )′ (𝑋 − 𝐺 𝑗𝑌 𝑗 ) (2)

over the 𝑛 × 𝑝 matrices of scores 𝑋 with 𝑋 ′𝑋 = 𝑛𝐼 and over the 𝑘 𝑗 × 𝑝 matrices
of loadings 𝑌 𝑗 that may or may not satisfy some constraints. Gifi calls this general
approach Homogeneity Anaysis (HA). Loss function (2) was partly inspired by
Carroll (1968), who used this least squares loss function in generalised canonical
analysis of quantitative variables.

The different forms of multivariate analysis in the Gifi framework arise by im-
posing additivity, and/or rank, and/or ordinal constraints on the 𝑌 𝑗 . See De Leeuw
and Mair (2009) for a user’s guide to the R package homals, which implements
minimization of meet-loss under these various sets of constraints.

If there are no constraints on the𝑌 𝑗 then minimizing (2) computes the 𝑝 dominant
dimensions of an MCA. What makes the loss function (2) interesting in our compar-
ative review of MCA is the distance interpretation and the corresponding geometry
of the joint biplot of objects and categories. Gifi minimises the sum of the squared
distances between an object and the categories of the variables that the object scores
are in. If we make a separate biplot for each variable 𝑗 it has 𝑛 objects points and 𝑘 𝑗
category points. The category points are in the centroid of the object points in that
category, and if we connect all those objects with their category points we get 𝑘 𝑗
star graphs in what Gifi calls the star plot. Minimizing (2) means making the joint
plot in such a way that the stars are as small as possible.

The homals package of De Leeuw and Mair (2009) actually computes the propor-
tion of individuals correctly classified if we assign each individual to the category it
is closest to (in 𝑝 dimensions). In this way we can indeed find, like Guttman, that a
single component can account for all of the ”variance”.

There are indications, especially in Gifi, 1990, Section 3.9, that they are isome-
what uncomfortable with the multidimensional scale construction aspects of MCA.
They argue that each MCA dimension gives a quantification or transformation of
the variables, and thus each MCA dimension can be used to compute a different
correlation matrix between the variables. These correlation matrices, of which there
are 𝑘★ − 𝑚, can then all be subjected to a PCA. So the single indicator matrix leads
to 𝑘★ − 𝑚 PCA’s. Gifi calls this ”data production”, and obviously does not like the
outcome. Thus, as an alternative to MCA, they suggest using only the first dimen-
sion and the corresponding correlation matrix, which is very close to RAA and to
Guttman (1941).

In the Gifi system the data production dilemma is further addressed in two ways.
In the geometric framework based on the loss function (2) a form of nonlinear PCA
is defined in which we restrict the 𝑘 𝑗 × 𝑝 category quantifications of a variable to
have rank one, i.e. the points representing the categories of a variable are on a line
through the origin. Gifi shows that this leads to the usual non-linear PCA techniques
(Young, Takane, and De Leeuw, 1978, De Leeuw, 2006). The second development



10 Jan de Leeuw

to get away from the ”data production” in MCA is the ”aspect” approach (De
Leeuw, 1988, Mair and De Leeuw, 2010, De Leeuw, Michailidis and Wang, 1999,
De Leeuw, 2004). There we look for a single quantification or transformation of
the variables that optimizes any real valued function (or aspect) of the resulting
correlation matrix. Nonlinear PCA is the special cases in which we maximize the
sum of the first 𝑝 eigenvalues of the correlation matrix, and MCA chooses the scale
to maximize the dominant eigenvalue. Other aspects lead to regression, canonical
analysis, and structural equation models. In this more recent methodology based on
aspects Guttman’s one-dimensional scale construction approach has won out over
Burt’s multidimensional factoring method.

4 Deconstructing MCA

4.1 Introduction

We are left with the following questions from our history section, and from the
Burt-Guttman exchange:

1. What, if anything, is the use of additional dimensions in MCA?
2. Where does the Guttman effect come from?
3. Is MCA really just PCA?
4. How many dimensions of MCA should we keep?
5. Which “variance” is “explained” by MCA?
6. How do we handle the “data production” aspects of MCA?

In De Leeuw (1982) several results are discussed that are of importance in answer-
ing these questions, and more generally for the interpretation (and deconstruction) of
MCA. Additional, and more extensive, discussion of these same results is in Bekker
and De Leeuw (1988) and De Leeuw (1988a)

To compute the MCA eigen decomposition we could, for example, use the Jacobi
method, which diagonalizes 𝐸 by using elementary plane rotations. It builds up 𝑌
by minimising the sum of squares of the off-diagonal elements. Thus 𝐸 is updated
by iteratively replacing it by 𝐽𝑠𝑡𝐸𝐽𝑠𝑡 , where 𝐽𝑠𝑡 with 𝑠 < 𝑡 is a Jacobi rotation, i.e.
a matrix that differs from the identity matrix of order 𝑘★ only in elements (𝑠, 𝑠)
and (𝑡, 𝑡), which are equal to 𝑢, and in elements (𝑠, 𝑡) and (𝑡, 𝑠) which are +𝑣 and
−𝑣, where 𝑢 and 𝑣 are real numbers with 𝑢2 + 𝑣2 = 1. We cycle through all upper-
diagonal elements 𝑠 < 𝑡 for a single iteration, and continue iterating until the 𝐸
update is diagonal (within some 𝜖).

We shall discuss a different three-step method of approximately diagonalizsng
𝐸 , which, for lack of a better term, we call Deconstructed Multiple Correspondence
Analysis (DMCA). It also works by applying elementary plane rotations to 𝐸 , but it
is different from the Jacobi method because it is not intended to exactly diagonalize
any arbitrary real symmetric matrix, or any normalized Burt matrix for that matter.
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It uses its rotations to eliminate all off-diagonal elements of all 𝑚2 submatrices 𝐸𝑘𝑙 ,
where 𝑘, 𝑙 = 1, · · ·𝑚. If it cannot do this perfectly, it will try to find the best ap-
proximate diagonalisation. If DMCA does exactly diagonalize all submatrices, then
some rearranging and additional computation finds the eigenvalues and eigenvectors
of 𝐸 , and thus the MCA. The eigenvectors are, however, ordered differently (not by
decreasing eigenvalues), and provide more insight in the inner workings of MCA. If
an exact diagonalisation is not possible, the approximate diagonalisation often still
provides this insight.

We first discuss some theoretical cases in which DMCA leads to the MCA, and
after that some empirical examples are described in which the diagonalisation is only
approximate and DMCA and MCA differ. As you will hopefully see, both types of
DMCA examples show us what MCA as a data analysis technique tries to do, and
how the results help in answering the six questions given above, arising from the
Burt-Guttman exchange.

4.2 Mathematical Examples

4.2.1 Binary Data

Let’s start with the case of binary data, i.e. indicatior matrices for which all 𝑘 𝑗 are
equal to two. The normalised Burt table 𝐸 = 𝑚−1𝐷− 1

2𝐶𝐷− 1
2 consists of 𝑚 × 𝑚

submatrices 𝐸 𝑗ℓ of dimension 2 × 2. Suppose the marginals of variable 𝑗 are 𝑝 𝑗0
and 𝑝 𝑗1. For each 𝑗 make the 2 × 2 table

𝐾 𝑗 =

[
+√𝑝 𝑗0 +√𝑝 𝑗1
+√𝑝 𝑗1 −√𝑝 𝑗0

]
, (3)

and suppose 𝐾 is the direct sum of the 𝐾 𝑗 , i.e. the block-diagonal matrix with the 𝐾 𝑗

on the diagonal. Then 𝐹 = 𝐾 ′𝐸𝐾 again has𝑚×𝑚 submatrices of order two. For each
𝑗 , 𝑙 = 1, · · · .𝑚 the matrix 𝐹𝑗ℓ = 𝐾 ′

𝑗
𝐸 𝑗ℓ𝐾ℓ is diagonal, with element (1, 1) equal

to +1 and element (2, 2) equal to the point correlation (or phi-coefficient) between
binary variables 𝑗 and ℓ (and thus also equal to +1 if 𝑗 = 𝑙).

This means we can permute rows and columns of 𝐹 using a permutation matrix 𝑃
such that 𝑅 = 𝑃′𝐹𝑃 is the direct sum of two correlation matrices 𝑅11 and 𝑅22, both of
order 𝑚. 𝑅11 has all elements equal to +1, 𝑅22 has its off-diagonal elements equal to
the phi-coefficients. We collect the (1, 1) elements of all 𝐹𝑗𝑙 , which are all +1, in 𝑅11
and the (2, 2) elements in 𝑅22. Suppose 𝐿1 and 𝐿2 are the normalized eigenvectors
of 𝑅11 and 𝑅22, and 𝐿 is their direct sum. Then Λ = 𝑚−1𝐿𝑅𝐿 is diagonal, with
on the diagonal the eigenvalues of 𝐸 and with 𝐾𝑃𝐿 the normalised eigenvectors
of 𝐸 . Thus the eigenvalues of 𝐸 are those of 𝑚−1𝑅11, i.e. one 1 and 𝑚 − 1 zeros,
together with those of 𝑚−1𝑅22. This restates the well-known result, mentioned by
both Guttman (1941) and Burt (1950), that an MCA of binary data reduces to a PCA
of the phi-coefficients.
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4.2.2 Correspondence Analysis

Now let us look at Correspondence Analysis, i.e. MCA with 𝑚 = 2. There is only
one single off-diagonal 𝑝 × 𝑞 cross table 𝐶12 in the Burt matrix. Suppose without
loss of generality that 𝑝 ≥ 𝑞. Define 𝐾 as the direct sum the left and right singular
vectors of 𝐸12. Then

𝐹 = 𝐾 ′𝐸𝐾 =

[
𝐼 Ψ

Ψ′ 𝐼

]
(4)

where Ψ is the 𝑝 × 𝑞 diagonal matrix of singular values of 𝐸12, and

𝑅 = 𝑃′𝐹𝑃 =

{
𝑞⊕
𝑠=1

[
1 𝜓𝑠

𝜓𝑠 1

]}⊕
𝐼, (5)

where the identity matrix at the end of equation (5) is of order 𝑝 − 𝑞.
Thus the eigenvalues of 𝐸 are 1

2 (1 + 𝜓𝑠) and 1
2 (1 − 𝜓𝑠 for all 𝑠, and DMCA

indeed diagonalises 𝐸 . The relation between the eigen decomposition of 𝐸 and the
singular value decomposition of 𝐸12 is a classical result in Correspondence Analysis
(Benzécri (1977a)), and earlier already in canonical correlation analysis of two sets
of variables (Hotelling (1936)).

4.2.3 Multinormal Distribution

Suppose we want to apply MCA to an 𝑚-variate standard normal distribution with
correlation matrix 𝑅 = {𝜌𝑘ℓ }. Not to a sample, mind you, but to the whole distri-
bution. This means we have to think of the submatrices 𝐶 𝑗ℓ as bivariate standard
normal densities, having an infinite number of categories, one for each real number.
Just imagine it as a limit of the discrete case (Naouri (1970)).

In this case the columns of the𝐾 𝑗 , of which there is a denumerably infinite number,
are the Hermite-Chebyshev polynomials ℎ0, ℎ1, · · · on the real line. We know that
for the standard bivariate normal E 𝑗ℓ (ℎ𝑠 , ℎ𝑡 ) = 0 if 𝑠 ≠ 𝑡 and E 𝑗ℓ (ℎ𝑠 , ℎ𝑠) = 𝜌𝑠

𝑗ℓ
.

Thus 𝐹 = 𝐾 ′𝐸𝐾 is an 𝑚 ×𝑚 matrix of diagonal matrices, where each 𝐹𝑘𝑙 submatrix
is of denumerably infinite order and has all the powers of 𝜌𝑘ℓ along the diagonal.
Then 𝑅 = 𝑃′𝐹𝑃 is the infinite direct sum of elementwise powers of the matrix of
correlation coefficients, or

𝑅 = 𝑃′𝐹𝑃 =

∞⊕
𝑠=0

𝑅 (𝑠) , (6)

and Λ = 𝐿′𝑅𝐿 is diagonal, with the first 𝑚 eigenvalues of 𝑅 (0) = 𝑒𝑒′, then the
𝑚 eigenvalues of 𝑅 (1) = 𝑅, then the 𝑚 eigenvalues of 𝑅 (2) = {𝜌2

𝑗𝑙
}, and so on to

𝑅 (∞) = 𝐼. Each MCA solution is composed of Hermite-Chebyshev polynomials of
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the same degree. Again, this restates a known result, already given in De Leeuw
(1973).

These results remain true for what Yule called “strained multinormals”, i.e. mul-
tivariate distributions that can be obtained from the multivariate normal by separate
and generally distinct smooth monotone transformations of each of the variables. It
also applies to mixtures of multivariate standard normal distributions with different
correlation matrices (Sarmanov and Bratoeva (1967)), to Gaussian copulas, as well
as to other multivariate distributions whose bivariate marginals have diagonal ex-
pansions in systems of orthonormal functions (the so-called Lancaster probabilities,
after Lancaster (1958).

The multinormal is a perfect example of the Guttman effect, i.e. the eigenvector
corresponding with the second largest eigenvalue usually is a quadratic function
of the first, the next eigenvector usually is a cubic, and so on. We say “usually”,
because Gifi (1990), page 382-384, gives a multinormal example in which the
first two eigenvectors of an MCA are both linear transformations of the underlying
scale (i.e. they both come from 𝑅22). However, the Guttman effect is observed
approximately in many (if not most) empirical applications of MCA, especially
if the categories of the variables have some natural order and if the number of
individuals is large enough.

4.2.4 Common Mathematical Structure

What do our three previous examples have in common mathematically? In all three
cases there exist orthonormal 𝐾 𝑗 and diagonal Φ 𝑗ℓ such that 𝐸 𝑗ℓ = 𝐾 𝑗Φ 𝑗𝑙𝐾

′
ℓ
. Or, in

words, the matrices 𝐸 𝑗ℓ in the same row-block of 𝐸 have their left singular vectors
𝐾 𝑗 in common, and matrices 𝐸 𝑗ℓ in the same column-block of 𝐸 have their right
singular vectors 𝐾ℓ in common. Equivalently, this requires that for each 𝑗 the 𝑚
matrices 𝐸 𝑗ℓ𝐸ℓ 𝑗 commute.

Another way of saying this is that there are vectors 𝑦1, · · · , 𝑦𝑚 so that 𝐶 𝑗ℓ 𝑦ℓ =

𝜌 𝑗ℓ𝐷 𝑗 𝑦 𝑗 , i.e. so that all bivariate regressions are linear (De Leeuw, 1988a). Not
only that, we assume that such a set of weights exist for every dimension 𝑠, as
long as 𝑘 𝑗 ≥ 𝑠. If 𝑘 𝑗 = 2 then trivially all regressions are linear, because you can
always draw a straight line through two points. If𝑚 = 2 all Correspondence Analysis
solutions linearise the regressions in a bivariate table. In the multinormal example the
Hermite polynomials provide the linear regressions. Simultaneous linearisability of
all bivariate regressions seems like a strong condition, which will never be satisfied
for observed Burt matrices. But our empirical examples, analysed below, suggest it
will be approximately satisfied in surprisingly many cases. And, at the very least,
assuming simultaneous linearisibility is a far-reaching generalization of assuming
multivariate normality.

In all three mathematical examples we used the direct sum of the𝐾 𝑗 to diagonalize
the 𝐸 𝑗ℓ , then use a permutation matrix 𝑃 to transform 𝐹 = 𝐾 ′𝐸𝐾 into the direct
sum 𝑅 = 𝑃′𝐹𝑃 of correlation matrices, and then use the direct sum 𝐿 to diagonalize
𝑅 to Λ = 𝐿′𝑅𝐿. This means that 𝐾𝑃𝐿 has the eigenvectors of 𝐸 , but ordered by
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decreasing or increasing eigenvalues. It also means that the eigenvectors have a
special structure.

First, 𝐹 is an 𝑚 ×𝑚 matrix of matrices 𝐹𝑗ℓ , which are 𝑘 𝑗 × 𝑘ℓ . If all 𝑘 𝑗 are equal
to, say, 𝑘 , then 𝑅 is a 𝑘 × 𝑘 matrix of matrices 𝑅𝑠𝑡 , which are all of order 𝑚. If
the variables have a different number of categories, then 𝑅 is a 𝑘+ × 𝑘+ matrix of
correlation matrices, with 𝑅𝑠𝑡 of order 𝑚𝑠 ×𝑚𝑡 , where 𝑚𝑠 is defined as before as the
number of variables with 𝑘 𝑗 ≥ 𝑠.
𝐾𝑃 is an orthonormal 𝑚 × 𝑘+ matrix of matrices, in which column-block 𝑠 is

the direct sum of the 𝑚𝑠 column vectors 𝐾 𝑗𝑒𝑠 , with 𝑒𝑠 unit vector 𝑠 (equal to
zero, except for element s, which is one). In a formula {𝐾𝑃} 𝑗𝑠 = 𝐾 𝑗𝑒𝑠𝑒

′
𝑠 and

{𝐾𝑃} 𝑗𝑠𝐿𝑠 = 𝐾 𝑗𝑒𝑠𝑒
′
𝑠𝐿𝑠 . Matrix {𝐾𝑃𝐿} 𝑗𝑠 is the 𝑘 𝑗 × 𝑚𝑠 outer product of column

𝑠 of 𝐾 𝑗 and row 𝑠 of 𝐿𝑠 . Each 𝑅𝑠𝑠 is computed with a single quantification of the
variables, and there are only 𝑘+ − 1 different non-trivial quantifications, instead of
the 𝑘★ − 𝑚 ones from MCA.

That the matrix 𝐾𝑃𝐿 is blockwise of rank one connects DMCA with non-linear
PCA, which is MCA with rank one restrictions on the category quatifications. We
see that imposing rank one restrictions on MCA forces non-linear PCA to choose its
solutions from the same 𝑅𝑠𝑠, thus preventing ”data production”.

5 The Chi-square Metric

In the Correspondence Analysis of a single table it has been known since Hirschfeld
(1935) that the sum of squares of the non-trivial singular values is equal to the chi-
square (the total inertia) of the table. Although both Burt and Guttman pay homage to
chi-square in the context of MCA, they do not really work through the consequences.
In this section we analyze the total chi square (TCS), which is the sum of all𝑚(𝑚−1)
off-diagonal bivariate chi-squares.

De Leeuw (1973, p. 32), shows that the TCS is related to the MCA eigenvalues
by the simple equation ∑︁∑︁

1≤ 𝑗≠ℓ≤𝑚
X2

𝑗ℓ = 𝑛
∑︁
𝑠

(𝑚𝜆𝑠 − 1)2, (7)

where the sum on the right is over all 𝑘★ − 𝑚 nontrivial eigenvalues. The same
formula was given by Benzécri (1979). Equation (7), the MCA decomposition of the
TCS, gives us a way to quantify the contribution of each non-trivial eigenvalue.

We now outline the DMCA decomposition of the TCS. An identity similar to (7)
is ∑︁∑︁

1≤ 𝑗≠ℓ≤𝑚
X2

𝑗ℓ = tr 𝐸2 − (𝐾 + 𝑚(𝑚 − 1)). (8)

Equation (8) does not look particular attractive, until one realises that the constant
subtracted on the right is the number of trivial elements in 𝐹 = 𝐾 ′𝐸𝐾 (and thus
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in 𝑅 = 𝑃′𝐾 ′𝐸𝑃𝐾) equal to one. There are 𝐾 elements on the main diagonal, and
𝑚(𝑚 − 1) elements from the off-diagonal elements of the trivial matrix 𝑅11𝑔.

Thus the TCS can be partitioned using 𝑅, which is a 𝑘+ × 𝑘+ matrix of matrices
into (𝑘+−1)2 non-trivial components. The most interesting ones are the 𝑘+−1 sums
of squares of the off-diagonal elements of the diagonal submatrices 𝑅22 · · · , 𝑅𝑘+𝑘+ ,
which is actually the quantity maximized by DMCA. And then there are the (𝑘+ −
1) (𝑘+ − 2) sums of squares of the off-diagonal submatrices of 𝑅, which is actually
what DMCA minimizes. The sum of squares of each diagonal block separately is its
contribution to the DMCA fit, and total contribution to chi-square over all diagonal
blocks shows how close DMCA is to MCA, i.e. how well DMCA diagonalizes 𝐸 . In
the mathematical examples from section 4.2 DMCA is just a rearranged MCA, and
all of the TCS comes from the diagonal blocks.

6 Computation

So, computationally, DMCA works in three steps. All three steps preserve orthonor-
mality, guaranteeing that if DMCA diagonalisation works we have actually found
eigenvalues and eigenvectors of 𝐸 , i.e. the MCA solution.

In the first step we compute the𝐾 𝑗 by approximately diagonalising all off-diagonal
𝐸 𝑗ℓ . This is is done in the mathematical examples by using known analytical results,
but in empirical examples by Jacobi rotations that minimize the sum of squares of
all off-diagonal elements of the off-diagonal 𝐾 ′𝐸𝐾 (or, equivalently, maximize the
sum of squares of the diagonal elements).

Each 𝐾 𝑗 is 𝑘 𝑗 × 𝑘 𝑗 and square orthonormal. We always set the first column of 𝐾 𝑗

equal to 𝑛− 1
2
√︁
𝑑 𝑗 , with 𝑑 𝑗 the marginals of variable 𝑗 , to make sure the first column

captures the non-zero trivial solution. This is done by setting the initial 𝐾 𝑗 to the left
singular vectors of row-block 𝑗 of 𝐸 and not rotating pairs of indices (𝑠, 𝑡) when 𝑠
or 𝑡 is one. This usually turns out to be a very good initial solution.

In the second step we permute the rows and columns of 𝐹 = 𝐾 ′𝐸𝐾 into direct
sum form. The (1, 1) matrix 𝑅11 in 𝑅 = 𝑃′𝐾 ′𝐸𝐾𝑃 has the (1, 1) elements of all
𝐹𝑗ℓ , the (1, 2) matrix 𝑅12 has the (1, 2) elements of all 𝐹𝑗ℓ , and so on. Thus, if the
first step has diagonalised all off-diagonal 𝐸 𝑗ℓ , then all off-diagonal matrices in 𝑅
are zero. The square symmetric matrices along the diagonal, of which there are 𝑘+,
are of order 𝑚, or of order 𝑚𝑠 if not all 𝑘 𝑗 are equal. The first two, 𝑅11 and 𝑅22, are
always of order 𝑚. 𝑅11 takes care of all 𝑚 trivial solutions and has all its elements
equal to one.

Then, in the third step, we diagonalise the matrices along the diagonal of 𝑅
by computing their eigenvalues and eigenvectors. This gives Λ = 𝐿′𝑅𝐿, which is
diagonal if the first step succeeded in diagonalising all off-diagonal 𝐸 𝑗ℓ . All the
loss that can make DMCA an imperfect diagonalisation method is in the first step,
computing both 𝑃 and 𝐿 does not introduce any additional loss. Note again that the
direct sums 𝐾 and 𝐿 and the permutation matrix 𝑃 are all orthonormal, and thus so
are 𝐾𝑃 and 𝐾𝑃𝐿.
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Finally we compute 𝑌 ′𝐾𝑃𝐿, with 𝑌 the MCA solution, to see how close 𝑌 and
𝐾𝑃𝐿 are, and which 𝑅𝑠𝑠 the MCA solutions come from. Note that 𝑌 ′𝐾𝑃𝐿 is also
square orthonormal, which implies sums of squares of rows and columns add up to
one, and squared elements can be interpreted as proportions of “variance explained”.

DMCA has an interesting relationship with the Ordered Multiple Correspondence
Analysis (OMCA) of Lombardo and Meulman (2010). DMCA choose the 𝐾 𝑗 that
make the 𝐸 𝑗𝑙 as diagonal as possible, in order to concentrate as much of the TCS
in the diagonal correlation matrices 𝑅𝑠𝑠 . In OMCA the 𝐾 𝑗 are chosen as orthogonal
polynomials for variable 𝑗 of degrees 0, · · · , 𝑘 𝑗 − 1, with again 𝐾 their direct sum.
Then compute 𝐹 = 𝐾 ′𝐸𝐾 and 𝑅 = 𝑃′𝐹𝑃 and Λ = 𝐿′𝑅𝐿 as in DMCA. This
gives the same type of partitioning of the TCS, and the same blockwise rank one
approximate eigenvectors 𝐾𝑃𝐿, but of course with less of the total TCS concentrated
on the diagonal. In the case of binary data and a continuous multinormal OMCA and
DMCA are the same. If there are only two variables they are different, and the OMCA
results are a rearrangement of those in Beh (1997). Of course if the 𝐾 𝑗 computed by
DMCA are not polynomials, for example if categories are unordered nominal, the two
methods can give very different results. But a more detailed comparison on various
real examples would be useful. Web directory https://jansweb.netlify.app/
post/code/ also has R code for MCA and OMCA.

6.1 The Program

For the empirical examples in the present paper we use the R function DMCA, a
further elaboration of the R function jMCA from De Leeuw and Ferrari (2008).
The program, and all the empirical examples with the necessary data manipula-
tions, can be downloaded from https://jansweb.netlify.app/post/code/.
The program maximises the percentage of the TCS in the diagonal blocks of the
DMCA. It is called with arguments

• burt, the Burt matrix,
• k, the number of categories of the variables,
• eps, iteration precision, defaults to 1e-8,
• itmax, maximum number of iterations, defaults to 500,
• verbose, prints DMCA fit for all iterations, defaults to TRUE,
• vectors, DMCA eigenvectors, if FALSE only DMCA eigenvalues, defaults to

TRUE,

and it returns a list with

• kek, the matrix 𝐾 ′𝐸𝐾 ,
• pkekp, the matrix 𝑃′𝐾 ′𝐸𝐾𝑃,
• lpkekpl, the matrix 𝐿′𝑃′𝐾 ′𝐸𝐾𝑃𝐿,
• k, the block-diagonal matrix 𝐾 ,
• p, the permutation 𝑃,
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• l , the block-diagobal matrix 𝐿,
• kp, the matrtix 𝐾𝑃,
• kpl, the matrix 𝐾𝑃𝐿,
• chisquares, the 𝑚(𝑚 − 1) chi-squares
• chipartition, the DMCA chi-partition,
• chipercentages = chipartition / TCS,
• itel, thenumber of iterations,
• func , the optimum value of trace of chipercentages

7 Empirical Examples

We analysed DMCA in our previous examples by relying solely on specific math-
ematical properties. There are some empirical examples in the last section of De
Leeuw (1982), but with very little detail, and computed with a now tragically de-
funct APL program. Showing the matrices 𝐾, 𝑃, 𝐿 as well as 𝐹, 𝑅 and Λ in this
chapter would take up too much space, so we concentrate on how well DMCA re-
produces the MCA eigenvalues. We also discuss which of the correlation matrices
in 𝑅 the first and last MCA vectors of weights (eigenvectors) are associated with,
and we give the partitionings of the TCS.

7.1 Burt Data

The data for the example in Burt (1950) were collected by him in Liverpool in or
before 1912, and are described in an outrageously politically incorrect paper (Burt
(1912)). Burt used 𝑚 = 4, with variables hair-color (fair, red, dark), eye color (light,
mixed, brown), head (narrow, wide), and stature (tall, short) for 100 individuals
selected from his sample. This is not very interesting as a DMCA or MCA example,
because the data are so close to binary and thus there is not much room for DMCA
to work with. We include the Burt data, using the Burt table from Burt(1950), for
historical reasons.

The Burt table is of order 𝑘★ = 10, so there are 𝑘★−𝑚 = 6 nontrivial eigenvalues.
DMCA takes one single iteration cycle to convergence to fit 0.9462 from the initial
SVD solution. Figure 1 plots the sorted MCA and DMCA non-trivial eigenvalues. In
these plots we always remove the trivial points (0, 0) and (1, 1) because they would
anchor the plot and unduly emphasize the closeness of the two solutions.

The matrix 𝑅 has two diagonal blocks 𝑅11 and 𝑅22 of order four, and one block
𝑅33 of order two. Thus the 𝑚𝑠 are (4, 4, 2). The first non-trivial MCA solution
correlates 0.9997 with the first non-trivial DMCA solution, which corresponds with
the dominant eigenvalue of 𝑅22. The second MCA solution correlates -0.7319 with
the second DMCA solution from 𝑅22 and -0.3749 and -0.5675with the two DMCA
solutions from 𝑅33. The fifth and sixth MCA solutions (the ones with the smallest
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Fig. 1 Burt MCA/DMCA Eigenvalues

non-trivial eigenvalues) correlate 0.9824 and 0.9937 with the remaining two DMCA
solutions from 𝑅22. Thus almost all the variation comes from 𝑅22, because with the
𝑘 𝑗 as small as (3, 3, 2, 2) we are very close to the case where all variables only take
two values and all the variation is in the phi-coefficients in 𝑅22.

We can further illustrate this with the chi-square partitioning. Of the TCS of
156.68 the diagonal blocks 𝑅22 and 𝑅33 contribute, respectively, 148.1664(95%)
and 0.08237 (0.05%), while the off-diagonal blocks contribute 8.4319 (5%).

7.2 GALO Data

The GALO data (Peschar (1975)) are a mainstay Gifi example. The individuals are
𝑛 = 1290sixth grade school children in the city of Groningen, The Netherlands, about
to go into secondary education. The 𝑚 = 4 variables are gender (2 categories), IQ (9
categories), teachers advice (7 categories), and socio-economic status (6 categories).
The Burt matris is of order 𝑘★ = 24, and thus there are 𝑘★ − 𝑚 = 20 non-trivial
dimensions. Matrix 𝑅 = 𝑃′𝐹𝑃 has 9 diagonal correlation blocks, with 𝑅11 and 𝑅22
of order four, 𝑅33, · · · , 𝑅66 of order three, 𝑅77 of order two, and 𝑅88 and 𝑅99 of order



Deconstructing Multiple Correspondence Analysis 19

one. DMCA takes 37 iteration cycles to a fit of 0.8689. The 20 sorted non-trivial
MCA and DMCA eigenvalues are plotted in figure 2.
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Fig. 2 GALO MCA/DMCA Eigenvalues

The strong Guttman effect in the GALO data is reflected in the close corre-
spondence between MCA and DMCA solutions. The first non-trivial MCA solution
correlates 0.9967 with the dominant DMCA solution from 𝑅22, the second MCA
solution correlates 0.9915 with the dominant DMCA solution from 𝑅33. After that
correlations become smaller, until we get to the smallest eigenvalues. The worst
MCA solution correlates -0.9882 with the solution corresponding to smallest eigen-
value of 𝑅22, and the next worst correlates -0.9794 with the solution with the smallest
eigenvalue of 𝑅33.

To illustrate graphically how close MCA and DMCA are we plot the 24 cate-
gory quantifications on the first non-trivial dimension of the MCA solution (MCA
dimension two) and the first non-trivial dimension of DMCA (dimension five) in
figure 3. Note the dominant MCA dimension is always the trivial one, so we need the
second MCA dimension. For DMCA the firtst four dimensions correspond with the
trivial 𝑅11, and thus the first interesting dimension is number 𝑚 + 1,, corresponding
with the dominant eigenvalue of 𝑅22. In figure 4 we plot the corresponding MCA
dimension three and DMCA dimension 2𝑚+1 = 9, corresponding with the dominant
eigenvalue of 𝑅33.
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The chi-square partioning tells us the diagonal blocks of DMCA “explain” 87%
of the TCS, with the blocks 𝑅22, · · · , 𝑅77 contributing 56%, 16%, 8%, 5%, .5%, and
.4%. The complete partitioning is

Table 1 GALO TCS Percentages

DMCA2 DMCA3 DMCA4 DMCA5 DMCA6 DMCA7 DMCA8 DMCA9
DMCA2 0.5631 0.0020 0.0215 0.0172 0.0146 0.0024 7e-04 1e-04
DMCA3 0.0020 0.1638 0.0003 0.0001 0.0011 0.0001 0e+00 4e-04
DMCA4 0.0215 0.0003 0.0831 0.0003 0.0010 0.0001 0e+00 4e-04
DMCA5 0.0172 0.0001 0.0003 0.0492 0.0016 0.0008 0e+00 1e-04
DMCA6 0.0146 0.0011 0.0010 0.0016 0.0058 0.0001 5e-04 0e+00
DMCA7 0.0024 0.0001 0.0001 0.0008 0.0001 0.0041 0e+00 0e+00
DMCA8 0.0007 0.0000 0.0000 0.0000 0.0005 0.0000 0e+00 0e+00
DMCA9 0.0001 0.0004 0.0004 0.0001 0.0000 0.0000 0e+00 0e+00

7.3 BFI Data

Our final example is larger, and somewhat closer to an actual application of MCA.
The BFI data set is taken from the psychTools package (Revelle (2021)). It has
𝑛 = 2800 observations on 𝑚 = 25 personality self report items. After removing
persons with missing data there are 𝑛 = 2436 observations left. Each item has 𝑘 = 6
categories, and thus the Burt table is of order 𝑚 × 𝑘 = 150. Matrix 𝑅, excluding
𝑅11, has five diagonal blocks of order 25. DMCA takes 54 iterations for a DMCA fit
of 0.8860. The sorted non-trivial 125 MCA and DMCA eigenvalues are plotted in
figure 5.

The percentages of the TCS from the non-trivial submatrices of 𝑅 are

Table 2 BFI TCS Percentages

DMCA2 DMCA3 DMCA4 DMCA5 DMCA6
DMCA2 0.4877 0.0153 0.0059 0.0055 0.0041
DMCA3 0.0153 0.3302 0.0053 0.0037 0.0035
DMCA4 0.0059 0.0053 0.0394 0.0049 0.0042
DMCA5 0.0055 0.0037 0.0049 0.0206 0.0046
DMCA6 0.0041 0.0035 0.0042 0.0046 0.0081
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8 Discussion

Our mathematical and empirical examples show that in a wide variety of circum-
stances MCA and DMCA eigenvalues and eigenvectors are very similar, although
DMCA uses far fewer degrees of freedom for its diagonalisation. This indicates
that DMCA can be thought of, at least in some circumstances, as a smooth version
of MCA. The error is moved to the off-diagonal elements in the submatrices of
𝑅 = 𝑃′𝐹𝑃 and the structure is concentrated in the diagonal correlation matrices.

We have also seen that DMCA is like MCA, in the sense that it gives very
similar solutions, but it is also like non-linear PCA, because it imposes the rank one
restrictions on the weights. Thus it is a bridge between the two techniques, and it
clarifies their relationship.

DMCA also shows where the dominant MCA solutions originate, and indicates
quite clearly where the Guttman effect comes from (if it is there). It suggest the
Guttman effect, in a generalised sense, does not necessarily result in polynomials or
arcs. As long as there is simultaneous linearisation of all bivariate regressions 𝐸 is
orthonormally similar to the direct sum of the 𝑅𝑠𝑠 , and the principal components of
the 𝑅𝑠𝑠 will give a generalised Guttman effect.

This allows us to suggest some answer for questions coming from the Burt-
Guttman exchange. In many cases the principal components of MCA (beyond the
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first) come from the generalized Guttman effect, and should be interpreted as such.
Thus the first principal component does have a special status, and thus justifies
singling out RAA and Guttman scaling from the rest of MCA.

DMCA also reduces the amount of data production. Instead of 𝑘★−𝑚 non-trivial
correlations matrices of order 𝑚 with their PCA’s, we now have 𝑘+ − 1 non-trivial
correlation matrices of orders given by the 𝑚𝑠 . That is still more than one single
correlation matrix, as we have in non-linear PCA and the aspect approach, but the
different correlation matrices may either be related by the Guttman effect or give
non-trivial additional information.

We also mention some other attempts, besides equation (7) and DMCA, to
deal with the influence of the diagonal blocks on the MCA solution. The first is
Greenacre’s Joint Correspondence Analysis or JMCA (Greenacre (1988)), which
minimizes 𝐸 −𝑈𝑈′ not only over all 𝐾 × 𝑝 matrices𝑈 with𝑈′𝑈 = 𝐼, but in addition
over the 𝑚 diagonal blocks of 𝐸 . In JMCA the dominant trivial dimension is first re-
moved. JMCA uses a variation of the Thomson’s alternating least squares algorithm
for least squares factor analysis, alternating the minimising over 𝑈 for given 𝐶 and
the minimising over the diagonal blocks of 𝐶 for given 𝑈. The first minimisation is
an MCA of the modified Burt matrix with the current diagonal blocks, the second
minimisation replaces the diagonal blocks of𝐶 with the corresponding ones of𝑈𝑈′.
As a result JMCA does optimise the fit to the TCS without the adjustments of (7).
Nevertheless there are some problems with JMCA. It fixes the dimension 𝑝 at a low
value, and can compute separate un-nested solutions for each 𝑝. Thus it tends to
“data production” in our sense, because we have to find a way to relate the solutions
for different 𝑝. As in DMCA and MCA it would be advantageous to have a com-
plete and simultaneous nested solution by always choosing 𝑝 = 𝐾 − 𝑚. The second
problem with JMCA is that, when 𝑝 becomes larger, Heywood cases may become
more common, i.e. cases in which the reduced Burt matrix is no longer positive
semi-definite. This potentially leads to complex numbers and negative variances.

The second way of dealing with the undesirable dimensionality and explained
variances aspects of MCA is not to require 𝑈′𝑈 = 𝐼 but 𝑈′

𝑗
𝑈 𝑗 = 𝐼 for all 𝑗 . This

is sometimes called strong orthogonality (Dauxois and Pousse (1976)). We could
call the resulting technique strong multiple correspondence analysis of SMCA. If
𝑚 = 2 SMCA still gives MCA, and thus also CA and JMCA, but if 𝑚 > 2 SMCA is
only MCA or JMCA if we have simultaneous linearisability. SMCA tends to make
all variables equally important (see the discussion in Nishisato and Sheu (1980)).
SMCA also has its problems. The constraint 𝑈′

𝑗
𝑈 𝑗 = 𝐼 limits the dimensionality of

the nontrivial quantifications for variable 𝑗 to 𝑘 𝑗 −1, and it is unclear what to do with
the higher dimensions in 𝐸 . In DMCA strong orthogonality constraints are imposed
on the 𝐾 𝑗 , but the columns of the 𝐾 𝑗 are distributed over different correlation
matrices, and the resulting 𝑈 𝑗 are of rank one, but no longer orthonormal. The
mathematical properties of both JMCA and SMCA deserve some further study.

This also seems the place to point out a neglected aspect of MCA. The smallest
non-trivial solution gives a quantification or transformation of the data that max-
imises the singularity of the transformed data, i.e. the minimum eigenvalue of the
corresponding correlation matrix. We have seen in our empirical examples that MCA
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and DMCA often agree closely in their smallest eigenvalue solutions, and that may
indicate that it should be possible to give a scientific interpretation of these “bad”
solutions. In fact, the smallest DMCA and MCA eigenvalues can be used in a re-
gression interpretation in which we consider one or more of the variables as criteria
and the others are predictors.

A complaint that many users of MCA have is that, say, the first two components
“explain” such a small proportion of the “variance” (by which they mean the trace of
𝐸 , which is 𝐾 , the total number of categories, and which, of course, has nothing to
do with “variance”). Equation (7) indicates how to quantify the contributions of the
non-trivial eigenvalues. For the BFI data, for example, the first two non-trivial MCA
eigenvalue “explain” 0.0832 percent of the “variance”, but they “explain” 0.6305
percent of the TCS. Moreover DMCA shows us that we should really relate the
eigenvalues to the 𝑅𝑠𝑠 they come from, and see how much they “explain” of their
correlation matrices. It is even better to evaluate their contributions using the TCS
and its partitioning described in section 5 of this paper.
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Nishisato, S. 1980. Analysis of Categorical Data: Dual Scaling and its Applications.
Toronto, Canada: University of Toronto Press.
Nishisato, S. and Sheu, W. 1980. “Piecewise Method of Reciprocal Averages for
Dual Scaling of Multiple-Choice Data.”Psychometrika 45: 467–478
Peschar, J. L. 1975. School, Milieu, Beroep. Groningen, The Netherlands: Tjeek
Willink.



Deconstructing Multiple Correspondence Analysis 27

Revelle, W. 2021. psychTools:Tools to Accompany the ’psych’ Package for Psycho-
logical Research .
Richardson, M. W., and G. F. Kuder. 1933. “Making a Rating Scale That Measures.”
Personnel Journal 12: 36–40.
Sarmanov, O. V., and Z. N. Bratoeva. 1967. “Probabilistic Properties of Bilinear
Expansions of Hermite Polynomials.” Theory of Probability and Its Applications 12
(32): 470–81.
Tenenhaus, M., and F. W. Young. 1985. “An Analysis and Synthesis of Multiple
Correspondence Analysis, Optimal Scaling, Dual Scaling, Homogeneity Analysis
and Other Methods for Quantifying Categorical Multivariate Data.” Psychometrika
50: 91–119.
Wilks, S. S. 1938. “Weighting Systems for Linear Functions of Correlated Variables
when there is no Dependent Variable.” Psychometrika 3 (1): 23–40.
Young, F. W., Y. Takane, and J. De Leeuw. 1978. “The Principal Components of
Mixed Measurement Level Multivariate Data: An Alternating Least Squares Method
with Optimal Scaling Features.” Psychometrika 45: 279–81.


